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Sublinear and Linear Convergence of Modified
ADMM for Distributed Nonconvex Optimization
Xinlei Yi , Shengjun Zhang , Tao Yang , Senior Member, IEEE, Tianyou Chai , Life Fellow, IEEE,

and Karl Henrik Johansson , Fellow, IEEE

Abstract—In this article, we consider distributed noncon-
vex optimization over an undirected connected network.
Each agent can only access to its own local nonconvex cost
function and all agents collaborate to minimize the sum of
these functions by using local information exchange. We
first propose a modified alternating direction method of
multipliers (ADMM) algorithm. We show that the proposed
algorithm converges to a stationary point with the sublinear
rate O(1/T ) if each local cost function is smooth and the
algorithm parameters are chosen appropriately. We also
show that the proposed algorithm linearly converges to
a global optimum under an additional condition that the
global cost function satisfies the Polyak–Łojasiewicz con-
dition, which is weaker than the commonly used condi-
tions for showing linear convergence rates including strong
convexity. We then propose a distributed linearized ADMM
(L-ADMM) algorithm, derived from the modified ADMM algo-
rithm, by linearizing the local cost function at each iteration.
We show that the L-ADMM algorithm has the same conver-
gence properties as the modified ADMM algorithm under
the same conditions. Numerical simulations are included
to verify the correctness and efficiency of the proposed
algorithms.

Index Terms—Alternating direction method of multipliers
(ADMM), distributed optimization, linear convergence, lin-
earized ADMM, Polyak–Łojasiewicz condition.

I. INTRODUCTION

CONSIDER a group of n agents that are connected via a
communication network. Each agent is associated with a
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local (possibly nonconvex) cost function fi(x), where x ∈ Rp

is the decision variable and p is its dimension. The local cost
function fi is known to agent i only. By exchanging information
with their neighbors through the underlying communication net-
work, all agents collaborate to solve the following unconstrained
optimization problem:

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x). (1)

This is the distributed nonconvex optimization problem. It is
a fundamental component of distributed decision-making and
has a wide range of applications, for example, power alloca-
tion in wireless ad hoc networks [1], distributed clustering [2],
compressed sensing [3], dictionary learning [4], and empirical
risk minimization [5]. Various algorithms have been proposed to
solve (1); see, e.g., [1], [4], [6]–[16]. The convergence properties
have also been analyzed. For instance, in [12], [15], and [16],
it was shown that the first-order stationary point can be found
with the sublinear convergence rate O(1/T ) when each local
cost function is smooth, where T is the total number of itera-
tions; in [9], [10], and [13], it was shown that the second-order
stationary points can be found under additional assumptions,
such as Lipschitz-continuous Hessian and/or a suitably chosen
initialization; in [16], it was shown that the global optima
can be found linearly if the global cost function satisfies the
Polyak–Łojasiewicz (P–Ł) condition.

We are interested in proposing the alternating direction
method of multipliers (ADMM) method to solve (1). The
ADMM is very effective at numerically solving many prac-
tical convex and nonconvex optimization problems [17]–[19].
However, existing distributed ADMM algorithms with provable
convergence analysis to solve (1) normally require that cost
functions are convex or the communication network is a star
graph, i.e., hub/leaf topology. If cost functions are convex, many
distributed ADMM algorithms have been proposed to solve
(1); see, e.g., [20]–[32]. The convergence property of these
algorithms has also been analyzed. For instance, the O(1/T )
and the linear convergence rates were established in [20], [21],
and [27] and [22]–[24], [26], [28], and [29], respectively. If the
communication network is a star graph, the authors of [33]–[35]
proposed distributed ADMM algorithms and proved that the
first-order stationary points can be found with the sublinear
convergence rate O(1/T ) when each local cost function is
smooth. One advantage of these algorithms is that they are
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asynchronous. However, in addition to the star graph restriction,
the algorithms proposed in [33] and [34] require that each leaf
agent communicates both primal and dual variables to the hub
agent. Moreover, the algorithm proposed in [35] is based on
the standard master/worker model. Specifically, the master (hub
agent) executes all of the updating, while each worker (leaf
agent) only computes the gradient of its own local cost function
and sends it to the master. In other words, all decisions are
made by a single agent, the master, which suffers from a single
point of failure, high communication, and computation cost,
etc. To the best of our knowledge, the distributed proximal
primal-dual algorithm (Prox-PDA) proposed in [36], which is
a generalization of the distributed ADMM algorithms proposed
in [22] and [29], is the only distributed ADMM algorithm with
provable convergence analysis to solve (1) when cost functions
are nonconvex and the communication network is arbitrarily
connected. Through a lower bounded potential function, it was
shown that the Prox-PDA finds a first-order stationary point with
the sublinear convergence rate O(1/T ) when each local cost
function is smooth. To the best of our knowledge, there are no
existing results to guarantee that the global optima can be found
by ADMM algorithms when cost functions are nonconvex.

In this article, we first propose a modified ADMM algorithm
to solve the nonconvex optimization problem (1), which is mod-
ified from the classic ADMM algorithm. We have the following
contributions.

1) The proposed modified ADMM algorithm is suitable
for arbitrarily undirected connected communication net-
works, not necessarily a star graph.

2) When each local cost function is smooth, we appro-
priately choose the algorithm parameters and construct
a nonnegative potential function. With this nonnegative
potential function, we show that the proposed algorithm
can find a first-order stationary point with the well-known
sublinear convergence rate O(1/T ).

3) If the global cost function satisfies the P–Ł condition
in addition, with the same algorithm parameters and
potential function, we show that not only the modified
ADMM algorithm can find a global optimum but also its
convergence rate is linear, which is our main contribution.
The P–Ł condition is weaker than the strong convexity
condition assumed in [22]–[24], [26], [28], and [29] since
it does not require convexity and the global minimizer
is not necessarily unique or finite. To the best of our
knowledge, the proposed distributed ADMM algorithm
is the first ADMM algorithm with provable convergence
rate analysis to find the global optima of nonconvex cost
function. The closely related studies, e.g., [10], [33]–[36],
used lower bounded potential functions to only show that
their algorithms can find a stationary point sublinearly at a
rate O(1/T ), but they did not consider the scenario when
the global cost function satisfies the P–Ł condition. It is
unclear whether those lower bounded potential functions
can be used or the analysis can be extended to show linear
convergence under the P–Ł condition or not.

Note that the modified ADMM algorithm has the same poten-
tial drawback as existing distributed ADMM algorithms, such

as [20]–[22], [24], [25], [28]–[35], i.e., each agent has to solve a
local optimization problem at each iteration, which results in a
heavy computational burden to each agent. To tackle this poten-
tial drawback, we then propose a distributed linearized ADMM
(L-ADMM) algorithm, derived from the proposed distributed
ADMM algorithm by linearizing the local cost function at each
iteration. As a result, in the proposed distributed L-ADMM, the
explicit closed-form solution to each local optimization problem
is available. We show that the proposed distributed L-ADMM
algorithm has the same convergence properties as the proposed
distributed ADMM algorithm under the same conditions.

The rest of this article is organized as follows. Section II
introduces some preliminaries. Sections III and IV provide the
distributed ADMM and L-ADMM algorithms, respectively, and
present their convergence properties. Simulations are given in
Section V. Finally, Section VI concludes this article.

Notations: [n] denotes the set {1, . . . , n} for any positive
integer n. col(z1, . . . , zk) is the concatenated column vector
of vectors zi ∈ Rpi , i ∈ [k]. 1n (0n) denotes the column one
(zero) vector of dimension n. In is the n-dimensional identity
matrix. Given a vector [x1, . . . , xn]

� ∈ Rn, diag([x1, . . . , xn])
is a diagonal matrix with the ith diagonal element being xi. The
notation A⊗B denotes the Kronecker product of matrices A
andB. null(A) is the null space of matrixA. Given two symmet-
ric matrices M and N , M ≥ N means that M −N is positive
semidefinite. ρ(·) stands for the spectral radius for matrices and
ρ2(·) indicates the minimum positive eigenvalue for matrices
having positive eigenvalues. ‖ · ‖ represents the Euclidean norm
for vectors or the induced two-norm for matrices. For any square
matrixA, denote ‖x‖2A = x�Ax. Given a differentiable function
f , ∇f denotes the gradient of f . R

II. PRELIMINARIES

In this section, we present some definitions from algebraic
graph theory, smooth functions, and the P–Ł condition.

A. Algebraic Graph Theory

Let G = (V, E , A) denote a weighted undirected graph
with the set of vertices (nodes) V = [n], the set of links
(edges) E ⊆ V × V , and the weighted adjacency matrix
A = A� = (aij) with non-negative elements aij . A link
of G is denoted by (i, j) ∈ E if aij > 0, i.e., if vertices
i and j can communicate with each other. It is assumed
that aii = 0 for all i ∈ [n]. Let Ni = {j ∈ [n] : aij > 0}
and degi =

∑n
j=1 aij denote the neighbor set and weighted

degree of vertex i, respectively. The degree matrix of graph
G is Deg = diag([deg1, . . . ,degn]). The Laplacian matrix
is L = (Lij) = Deg−A. A path of length k between
vertices i and j is a subgraph with distinct vertices
i0 = i, . . . , ik = j ∈ [n] and edges (ij , ij+1) ∈ E , j =
0, . . . , k − 1. An undirected graph is connected if there
exists at least one path between any two distinct vertices. The
star graph is a special undirected graph, in which there is one
and only one agent (hub agent) that connects to all of the rest
agents (leaf agents) and each leaf agent only connects to the
hub agent.
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For a connected undirected graph, we have the following
results.

Lemma 1: ([37, Lemmas 1 and 2]) Let L be the Laplacian
matrix associated with a connected undirected graph G and
Kn = In − 1

n1n1
�
n . Then L and Kn are positive semidefinite,

null(L) = null(Kn) = {1n}, L ≤ ρ(L)In, ρ(Kn) = 1

KnL = LKn = L (2)

0 ≤ ρ2(L)Kn ≤ L ≤ ρ(L)Kn. (3)

Moreover, there exists an orthogonal matrix [r R] ∈ Rn×n with
r = 1√

n
1n and R ∈ Rn×(n−1) such that

RΛ−1
1 R�L = LRΛ−1

1 R� = Kn (4)

1

ρ(L)
Kn ≤ RΛ−1

1 R� ≤ 1

ρ2(L)
Kn (5)

where Λ1 = diag([λ2, . . . , λn]) with 0 < λ2 ≤ · · · ≤ λn being
the nonzero eigenvalues of the Laplacian matrix L.

B. Smooth Function

Definition 1: The function f(x) : Rp �→ R is smooth with
constant Lf > 0 if it is differentiable and

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ ∀x, y ∈ Rp. (6)

From [38, Lemma 1.2.3], we know that (6) implies

|f(y)− f(x)− (y − x)�∇f(x)|

≤ Lf

2
‖y − x‖2 ∀x, y ∈ Rp. (7)

Moreover, we have the following lemma.
Lemma 2: If f(x) : Rp �→ R is smooth with constant Lf >

0, then, for any a > Lf , the function g(x) = f(x) + a
2‖x‖2 is

strongly convex with convex parameter a− Lf .
Proof: From (6), we have

〈∇f(x)−∇f(y), x− y〉
≥ −‖∇f(x)−∇f(y)‖‖x− y‖ ≥ −Lf‖x− y‖2.

Then

〈∇g(x)−∇g(y), x− y〉
= 〈∇f(x) + ax−∇f(y)− ay, x− y〉
= 〈∇f(x)−∇f(y), x− y〉+ a‖x− y‖2

≥ (a− Lf )‖x− y‖2.
Then, from [38, Theorem 2.1.9], we know that this lemma
holds. �

C. Polyak–Łojasiewicz Condition

Let f(x) : Rp �→ R be a differentiable function. Let X∗ =
arg minx∈Rpf(x) and f ∗ = minx∈Rp f(x). Moreover, we as-
sume that f ∗ > −∞.

Definition 2: The function f satisfies the P–Ł condition with
constant ν > 0 if

1

2
‖∇f(x)‖2 ≥ ν(f(x)− f ∗) ∀x ∈ Rp. (8)

It is straightforward to see that if a function is strongly convex
with convex parameter ν, then it also satisfies the P–Ł condition
with the same constant ν. Moreover, it was shown in [39] that
the P–Ł condition is weaker than the commonly used condi-
tions that have been explored to show linear convergence rates
without strong convexity, such as essential strong convexity,
weak strong convexity, and restricted strong convexity. The
P–Ł condition implies that every stationary point is a global
minimizer, i.e., X∗ = {x ∈ Rp : ∇f(x) = 0p}. But unlike the
(essentially, weakly, or restricted) strong convexity, the P–Ł
condition does not imply the convexity of f . Moreover, it does
not imply that X∗ is a singleton either.

It was also given in [39] that the function f(x) = x2 +
3 sin2(x) is an example of nonconvex functions satisfying the
P–Ł condition withν = 1/32. Although it is difficult to precisely
characterize the general class of functions satisfying the P–Ł
condition, in [39], one special case was given as follows.

Lemma 3: Let f(x) = g(Ax), where g : Rp → R is a
strongly convex function and A ∈ Rp×p is a matrix; then f
satisfies the P–Ł condition.

Moreover, the loss functions in some applications may satisfy
the P–Ł condition in the local region near a local minimum;
see [40]. For example, [41] and [42] showed strong convexity
in the neighborhood of the ground truth solution in some simple
neural networks. Moreover, the P–Ł condition holds in certain
reinforcement learning problems; see [43] and [44]. For exam-
ple, [45] proved that the cost function of the policy optimization
for the linear quadratic regulator problem is nonconvex and
satisfies the P–Ł condition.

III. DISTRIBUTED ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

In this section, we propose a distributed ADMM algorithm to
solve optimization (1) and analyze its convergence rate under
different conditions.

We assume that the communication network among agents
is described by a weighted undirected graph G. Let X∗ and f ∗

denote the optimal set and the minimum function value of the
optimization problem (1), respectively. The following standard
assumptions are made.

Assumption 1: The undirected graph G is connected.
Assumption 2: The optimal set X∗ is nonempty and f ∗ >

−∞.
Assumption 3: Each local cost function is smooth with

constant Lf > 0.
Remark 1: It should be highlighted that the boundedness of

the gradients of the cost functions are not assumed. Moreover,
we do not assume that X∗ is a singleton or finite set either.

A. Distributed ADMM Algorithm

Denote x = col(x1, . . . , xn) and f̃(x) =
∑n

i=1 fi(xi), and
then the optimization problem (1) is equivalent to the following
constrained optimization problem:

x ∈ Rnp, x0 ∈ Rpf̃(x)

s.t x− 1n ⊗ x0 = 0np. (9)
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The augmented Lagrangian of (9) is

L(x, x0,v) = f̃(x) + β〈v,x− 1n ⊗ x0〉
+

γ

2
‖x− 1n ⊗ x0‖2 (10)

where v = col(v1, . . . , vn) ∈ Rnp is the Lagrange multiplier,
and β > 0 and γ > 0 are constants. Then, applying the classic
ADMM algorithm [17], [18], we get the following ADMM
algorithm to solve (9):

xk+1 = arg min
x∈Rnp

L(x, x0,k,vk) (11a)

x0,k+1 = arg min
x0∈Rp

L(xk+1, x0,vk) (11b)

vk+1 = vk +
γ

β
(xk+1 − 1n ⊗ x0,k+1). (11c)

If there exists a virtual agent, denoted as agent 0, that can
communicate with all of the n agents, which corresponds to that
the underlying communication graph G of the n agents is a star
graph, then the ADMM algorithm (11) can be written agentwise
as

xi,k+1 = arg min
x∈Rp

fi(x) + β〈vi,k, x〉+ γ

2
‖x− x0,k‖2 (12a)

x0,k+1 =
1

n

n∑
i=1

(
xi,k+1 +

β

γ
vi,k

)
(12b)

vi,k+1 = vi,k +
γ

β
(xi,k+1 − x0,k+1) ∀i ∈ [n]. (12c)

It has been shown in [33]–[35] that for star graphs, the ADMM
algorithm (12) can find a first-order stationary point of the
optimization problem (1) with a rateO(1/k) if γ is large enough,
β = 1, and Assumptions 2 and 3 hold. If the communication
graph G is a general connected graph, then each agent i cannot
execute (12a) and (12c) since x0,k+1 is not available in this case.
In other words, the ADMM algorithm (12) is restricted to a star
graph. In order to remove this restriction, we modify the ADMM
algorithm (12) as follows:

xi,k+1 = arg minx∈Rpfi(x) + β〈vi,k, x〉

+
γ

2
‖x− xi,k +

α

γ

n∑
j=1

Lijxj,k‖2 (13a)

vi,k+1 = vi,k +
β

γ

n∑
j=1

Lijxj,k+1,

n∑
j=1

vj,0 = 0p ∀i ∈ [n]

(13b)

where α > 0 is a constant.
Remark 2: The intuition of the modification from (12) to (13)

is as follows. When γ is large enough, then from (12b), we know
x0,k+1 ≈ (1/n)

∑n
i=1 xi,k+1. In multiagent systems, for each

agent i, 1
n

∑n
i=1 xi,k can be estimated byxi,k − b

∑n
j=1 Lijxj,k

with some positive gains b. Thus, replacing x0,k in (12a) by its
estimation xi,k − (α/γ)

∑n
j=1 Lijxj,k gives (13a). Then, each

xi,k+1 is available to each agent i, and, through communication,
it is also available to agent j if j ∈ Ni. Thus, replacing x0,k+1

Algorithm 1: Distributed ADMM Algorithm.
1: Input: constants α > 0, β > 0, and γ > 0.
2: Initialize: xi,0 ∈ Rp and vi,0 = 0p, ∀i ∈ [n].
3: Broadcast xi,0 to Ni and receive xj,0 from j ∈ Ni;
4: for k = 0, 1, . . . do
5: for i = 1, . . . , n in paralleldo
6: Update xi,k+1 by (13a);
7: Broadcast xi,k+1 to Ni and receive xj,k+1 from

j ∈ Ni;
8: Update vi,k+1 by (13b).
9: end for

10: end for
11: Output: {xk}.

in (12c) by its estimation xi,k+1 − β2

γ2

∑n
j=1 Lijxj,k+1 gives

(13b). Here, we used different gains α
γ and β2

γ2 since such
a setting facilitates the convergence analysis. Moreover, the
extra initialization condition

∑n
j=1 vj,0 = 0p is also used to

facilitate the convergence analysis. This initialization condi-
tion is easy to be satisfied, for example, vi,0 = 0p ∀i ∈ [n], or
vi,0 =

∑n
j=1 Lijxj,0 ∀i ∈ [n].

Remark 3: The objective function in subproblem (13a) may
be not convex since each fi is possibly nonconvex. However, if
Assumption 3 holds and γ > Lf , then from Lemma 2, we know
that the objective function is strongly convex with convexity
parameter γ − Lf . Hence, subproblem (13a) is solvable.

We write the distributed ADMM algorithm (13) in pseu-
docode as Algorithm 1.

For simplicity, denote xk = col(x1,k, . . . , xn,k), vk = col
(v1,k, . . . , vn,k),L = L⊗ Ip,K = Kn ⊗ Ip,H = 1

n (1n1
�
n ⊗

Ip), Q = RΛ−1
1 R� ⊗ Ip, x̄k = 1

n (1
�
n ⊗ Ip)xk, x̄k = 1n ⊗

x̄k, gk = ∇f̃(xk), ḡk = Hgk, g0
k = ∇f̃(x̄k), ḡ0

k = Hg0
k =

1n ⊗∇f(x̄k), and yk = vk + 1
βg

0
k.

B. Convergence Analysis

In this section, we present convergence analysis for Algo-
rithm 1. We first present a preliminary result regarding the
general relations of two consecutive outputs of Algorithm 1.

Lemma 4: Let {xk} be the sequence generated by Algo-
rithm 1. If Assumptions 1–3 hold and γ > Lf , then

Ṽk+1 ≤ Ṽk − ‖xk‖21
γ (ε3− 1

γ ε4)K

− ‖yk‖21
γ (ε5− 1

γ ε6)K
− 1

4γ
‖ḡ0

k‖2

− 1

γ

(
ε7 − 1

γ
ε8 − 1

γ2
ε9 − 1

γ3
ε10

)
‖ḡk+1‖2 (14)

where Ṽk = Vk − ‖xk‖21
γ (ε1+

1
γ ε2)K

, Vk =
∑4

i=1 Vi,k, and

V1,k =
1

2
‖xk‖2K , V2,k =

1

2
‖yk‖2Q+α

β K

V3,k = x�
kK

(
vk +

1

β
g0
k

)
, V4,k = n(f(x̄k)− f ∗)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 12:07:55 UTC from IEEE Xplore.  Restrictions apply. 



YI et al.: SUBLINEAR AND LINEAR CONVERGENCE OF MODIFIED ADMM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 79

ε1 =
3

2
+ 2L2

f + βρ(L),

ε2 = (2 + ρ(L2))3L2
f + β2ρ(L) + αβρ(L2),

ε3 = αρ2(L)− 1

2
− ε1,

ε4 =

(
1 +

1

2
ρ(L2)

)
3α2ρ(L2) + ε2,

ε5 = β − 1

2
− α

2β2
− 1

2βρ2(L)
,

ε6 =
1

2
(α2 + (7 + 3ρ(L2))β2),

ε7 =
1

4
− 1

2β

(
1

ρ2(L)
+

α+ 1

β

)
L2
f ,

ε8 =

(
1

2
+

1

β2

(
1

ρ2(L)
+

α

β

)
Lf

)
Lf ,

ε9 = 3L2
f , ε10 = 3(2 + ρ(L2))L2

f .

Proof: The proof is given in Appendix A. �
Remark 4: From Lemma 4, we know that Ṽk can serve as the

potential function for Algorithm 1. This potential function has
a good property that it is nonnegative if the parameters α, β,
and γ are appropriately chosen. With this nonnegative potential
function, we can establish convergence rates for Algorithm 1
under different assumptions as shown in the following.

The first main result is stated below.
Theorem 1: Let {xk} be the sequence generated by

Algorithm 1. If Assumptions 1–3 hold, 1
ρ2(L) (ρ(L)β +

κ1) < α ≤ κ2β, β > max{ κ1

κ2ρ2(L)−ρ(L) , κ3, κ4}, and γ >

max{ ε4
ε3
, ε6

ε5
, ε8+ε9+ε10

ε7
, 1

ε15
}, then

T∑
k=0

(‖xk‖2K + ‖yk‖2K + ‖ḡ0
k‖2) ≤

Ṽ0

ε16
∀T ≥ 0 (15)

where

κ1 = 2L2
f + 2, κ2 >

ρ(L)

ρ2(L)
,

κ3 =
1

4
(1 + (1 + 8κ2 +

8

ρ2(L)
)

1
2 ),

κ4 =

(
κ2 +

1

ρ2(L)

)
L2
f +

((
κ2 +

1

ρ2(L)

)2

L4
f + 2L2

f

) 1
2

ε11 =
1

2
− 1

γ
ε1 − 1

γ2
ε2 > 0, ε12 =

1

2

(
1

ρ(L)
+

α

β

)

ε13 =
1

2
(ε11 − ε12 + ((ε11 − ε12)

2 + 1)
1
2 )

ε14 =
α+ β

2β
+

1

2ρ2(L)

ε15 =
1

2ε2

(
−ε1 +

(
ε21 + 2− 1

ε12

) 1
2

)
> 0

ε16 =
1

γ
min

{
ε3 − 1

γ
ε4, ε5 − 1

γ
ε6,

1

4

}
> 0.

Proof: (i) We first show that all of the used constants are
positive.

From 1
ρ2(L) (ρ(L)β + κ1) < α, we have α

β > ρ(L)
ρ2(L) ≥ 1.

Then, we know ε12 > 1
2 . Thus, 2− 1

ε12
> 0. Hence

ε15 > 0. (16)

Then, from 0 < 1
γ < ε15, we have 4ε11ε12 > 1. Hence

1

2
> ε11 − ε13 > 0. (17)

From 1
ρ2(L) (ρ(L)β + κ1) < α, we have

ε3 > κ1 − 2L2
f − 2 = 0. (18)

Hence, from 0 < 1
γ < ε3

ε4
and (18), we have

1

γ

(
ε3 − 1

γ
ε4

)
> 0. (19)

From α ≤ κ2β and β > κ3, we have

ε5 ≥
(
β − 1

2
− κ2

2β

)
− 1

2βρ2(L)
> 0. (20)

Hence, from 0 < 1
γ < ε5

ε6
and (20), we have

1

γ

(
ε5 − 1

γ
ε6

)
> 0. (21)

From (19) and (21), we have

ε16 > 0. (22)

From α ≤ κ2β and β > κ4, we have

ε7 ≥ 1

4
− 1

2β

(
1

β
+

1

ρ2(L)
+ κ2

)
L2
f > 0. (23)

From κ2 > 1, we have κ3 > 1. Thus, β > 1. Thus, 1
γ < ε5

ε6
<

2
7β < 2

7 . Hence, from 0 < 1
γ < ε7

ε8+ε9+ε10
and (23), we have

1

γ

(
ε7 − ε8

1

γ
− ε9

1

γ2
− ε10

1

γ3

)

>
1

γ

(
ε7 − ε8

1

γ
− ε9

1

γ
− ε10

1

γ

)
> 0. (24)

(ii) We then show that (15) holds.
Noting that β > κ4 >

√
2Lf and 0 < ε5 < β, we know γ >

ε6
ε5

> ε6
β > 7β

2 >
7
√
2Lf

2 > Lf . Thus, the conditions needed in
Lemma 4 are all satisfied. Thus, (14) holds.

Denote

V̂k = ‖xk‖2K + ‖yk‖2K + n(f(x̄k)− f ∗). (25)

We know

Ṽk =

(
1

2
− ε1

1

γ
− ε2

1

γ2

)
‖xk‖2K +

1

2
‖yk‖2Q+α

β K

+ x�
kKyk + n(f(x̄k)− f ∗)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 12:07:55 UTC from IEEE Xplore.  Restrictions apply. 



80 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

≥ ε11‖xk‖2K + ε12‖yk‖2K
− ε13‖xk‖2K − 1

4ε13
‖yk‖2K + n(f(x̄k)− f ∗)

= (ε11 − ε13)(‖xk‖2K + ‖yk‖2K) + n(f(x̄k)− f ∗) (26)

≥ (ε11 − ε13)V̂k ≥ 0 (27)

where the first inequality holds due to (5) and the Cauchy–
Schwarz inequality; the second equality holds due to ε11 −
ε13 = ε12 − 1

4ε13
; and the last inequality holds due to (17).

Similarly, we have

Ṽk ≤ Vk ≤ ε14V̂k. (28)

From (14), (24), and K ≥ 0, we know that

Ṽk+1 ≤ Ṽk − ‖xk‖21
γ (ε1−ε3− 1

γ (ε2+ε4))K

− ‖yk‖21
γ (ε5− 1

γ ε6)K
− 1

4γ
‖ḡ0

k‖2

≤ Ṽk − ε16(‖xk‖2K + ‖yk‖2K + ‖ḡ0
k‖2). (29)

Then, (29) yields

T∑
k=0

Ṽk+1 ≤
T∑

k=0

Ṽk − ε16

T∑
k=0

(‖xk‖2K + ‖yk‖2K + ‖ḡ0
k‖2).

(30)

Then, (30) yields

ṼT+1 + ε16

T∑
k=0

(‖xk‖2K + ‖yk‖2K + ‖ḡ0
k‖2) ≤ Ṽ0. (31)

From (31), (22), and (27), we know that (15) holds. �
Remark 5: From (15), we know that mink∈[T ]{‖xk‖2K +

‖vk + 1
βg

0
k‖2K + ‖ḡ0

k‖2} = O(1/T ). In other words, Theo-
rem 1 shows that our distributed ADMM algorithm converges
to a stationary point sublinearly at a rate O(1/T ). This rate is
the same as that achieved by the Prox-PDA proposed in [36]
under the same conditions. The same convergence rate was also
achieved by ADMM algorithms proposed in [10], [33]–[35].
However, these algorithms are restricted to a star graph. More-
over, the algorithms proposed in [10], [33], and [34] require
that each leaf agent has to communicate both primal and dual
variables to the hub agent and the algorithm proposed in [35]
is based on the standard master/worker model. Compared with
these algorithms, the advantages of Algorithm 1 are that it is
suitable for general connected graphs and each agent only needs
to communicate the primal variable with its neighbors, while
one potential drawback is that our algorithm is synchronous. We
leave the extension to the asynchronous communication setting
for future studies.

Remark 6: The settings on the algorithm parametersα, β, and
γ in Theorem 1 are instrumental in the convergence analysis of
Algorithm 1. They are just sufficient conditions. In other words,
the bounds forα, β, and γ are not tight. With some modifications
of the proofs, for example choosing different coefficients when
applying the Cauchy–Schwarz inequality in the proofs, other
forms of bounds for these parameters can still guarantee the same

kind of convergence rate as stated in (15) but with a different
definition of ε16.

If the following assumption holds, then Algorithm 1 can find
a global optimum and the convergence rate is linear.

Assumption 4: The global cost function f(x) satisfies the
P–Ł condition with constant ν > 0.

Theorem 2: Let {xk} be the sequence generated by Algo-
rithm 1. If Assumptions 1–4 hold, the settings on α, β, and γ
are the same as those in Theorem 1, then

‖xk − x̄k‖2 + n(f(x̄k)− f ∗) ≤ (1− ε)kc ∀k ≥ 0 (32)

where

ε =
ε17
ε14

∈ (0, 1), c =
Ṽ0

ε11 − ε13
≥ 0,

ε17 =
1

γ
min{ε3 − 1

γ
ε4, ε5 − 1

γ
ε6,

ν

2
} > 0.

Proof: (i) We first show that ε ∈ (0, 1) and c ≥ 0.
From (19) and (21), we have

ε17 > 0. (33)

From Assumptions 2 and 4 as well as (8), we have that

‖ḡ0
k‖2 = n‖∇f(x̄k)‖2 ≥ 2νn(f(x̄k)− f ∗). (34)

Then, from (24)–(25), (34), (33), and (28), we have

Ṽk+1 ≤ Ṽk − ε17V̂k ≤ Ṽk − ε17
ε14

Ṽk. (35)

Noting that ε5 < β, ε6 > 7
2β

2, and ε14 > α+β
2β > 1, we have

0 < ε =
ε17
ε14

< ε17 ≤ 1

γ
(ε5 − 1

γ
ε6) ≤ ε25

4ε6
<

1

14
. (36)

From (17), we have c ≥ 0.
(ii) We then show that (32) holds.
From (35), (27), and (36), we have

Ṽk+1 ≤ (1− ε)Ṽk ≤ (1− ε)k+1Ṽ0. (37)

Hence, from (27) and (17), we have

‖xk − x̄k‖2 + n(f(x̄k)− f ∗)

= ‖xk‖2K + n(f(x̄k)− f ∗) ≤ V̂k ≤ Ṽk

ε11 − ε13
. (38)

Hence, (37) and (38) give (32). �
Remark 7: From (32), we know that there exists a constant

θ ∈ (0, 1) such that ‖xk − x̄k‖2 + n(f(x̄k)− f ∗) = O(θk). In
other words, Theorem 2 shows that our distributed ADMM
algorithm converges linearly under the P–Ł condition. Linear
convergence was also established by the distributed ADMM
algorithms proposed in [22], [24], [28], and [29]. However, they
all assumed that each local cost function is convex. Moreover,
in [22] and [28], it was assumed that each local cost function
is strongly convex. In [24], it was assumed that the optimal
set X∗ is a singleton and the global cost function is locally
strongly convex. In [29], it was assumed that the global cost
function is strongly convex. In contrast, the linear convergence
result established in Theorem 2 only requires that the global
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cost function satisfies the P–Ł condition, but the convexity
assumption on cost functions and the singleton assumption on
the optimal set are not required. Compared with the results
established in [22], [24], [28], and [29], one potential drawback
of our results is that we need to use some global information,
such as the smooth constant and the eigenvalues of the Laplacian
matrix associated with the communication graph to design the
algorithm parameters α, β, and γ. Noting that [10], [33]–[36]
which proposed distributed ADMM algorithms for nonconvex
optimization problem also have such a kind of drawback, we
think it may be caused by the lack of the convexity assumption.
It is unclear how to overcome this drawback. It may be overcome
with the studies on estimating the largest and the second smallest
eigenvalues of the communication graph [46], [47].

Remark 8: A detailed expression for the theoretical conver-
gence rate is stated in (32), although it is complicated. Note
that ε17 is the only constant that depends on the P–Ł constant
ν. From (32), we know that the larger the P–Ł constant, the
faster the convergence. However, we cannot make similar kinds
of conclusion for the smooth constant and the eigenvalues of the
communication graph. Compared with the linear convergence
rates achieved in [22] and [28], this is a potential drawback. We
think that it may be caused because the weaker assumption (the
P–Ł condition) rather than the stronger assumption (the strongly
convex assumption for each local cost function) is used.

IV. DISTRIBUTED LINEARIZED ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

One potential limitation of Algorithm 1 is the requirement
that at each iteration, each subproblem (13a) needs to be solved
exactly, which normally has no closed-form solution, and thus
results in a heavy computational burden to each agent. To over
come this, in this section, we propose a distributed L-ADMM
algorithm and analyze its convergence rate under different con-
ditions.

A. Distributed Linearized ADMM Algorithm

In this section, we present the modification of (13a). The
main idea is that instead of minimizing exactly with respect
to x, we take an inexact minimization in which the function
fi(x) is replaced by a linearized approximation centered at
the current iteration. Specifically, replacing the function fi(x)
with fi(xi,k) + 〈∇fi(xi,k), x− xi,k〉 in (13a) gives the inexact
update for xi,k+1 as follows:

xi,k+1 = arg min
x∈Rp

fi(xi,k) + 〈∇fi(xi,k), x− xi,k〉

+ β〈vi,k, x〉+ γ

2
‖x− xi,k +

α

γ

n∑
j=1

Lijxj,k‖2.

(39)

The idea of using linearized approximation is standard and has
also been used in [23], [36], and [48]–[50].

Noting that the objective function in subproblem (39) is
strongly convex, from the first-order optimality conditions for

Algorithm 2: Distributed L-ADMM Algorithm.
1: Input: constants α > 0, β > 0, and γ > 0.
2: Initialize: xi,0 ∈ Rp and vi,0 = 0p, ∀i ∈ [n].
3: Broadcast xi,0 to Ni and receive xj,0 from j ∈ Ni;
4: for k = 0, 1, . . . do
5: for i = 1, . . . , n in paralleldo
6: Update xi,k+1 by (40a);
7: Broadcast xi,k+1 to Ni and receive xj,k+1 from

j ∈ Ni;
8: Update vi,k+1 by (40b).
9: end for

10: end for
11: Output: {xk}.

convex optimization problem, we know that the explicit ex-
pression of xi,k+1. Hence, we get the following distributed
L-ADMM algorithm:

xi,k+1 = xi,k − 1

γ

⎛
⎝α

n∑
j=1

Lijxj,k + βvi,k +∇fi(xi,k)

⎞
⎠ ,

(40a)

vi,k+1 = vi,k +
β

γ

n∑
j=1

Lijxj,k+1,

n∑
j=1

vj,0 = 0p ∀i ∈ [n].

(40b)

We write the distributed L-ADMM algorithm (40) in pseu-
docode as Algorithm 2.

Remark 9: It is straightforward to check that the sequence
{xk}generated by the distributed L-ADMM algorithm (40) with
the initialization condition vi,0 = β

γ

∑n
j=1 Lijxi,0 ∀i ∈ [n] is

the same as the sequence generated by the EXTRA proposed
in [51]

x1 = Wx0 − 1

γ
∇f̃(x0) ∀x0 ∈ Rnp

xk+1 = (Inp +W )xk − W̃xk−1

− 1

γ
(∇f̃(xk)−∇f̃(xk−1))

with mixing matrices W = Inp − α
γL− β2

γ2L and W̃ = Inp −
α
γL. However, in [51], it was assumed that each local cost
function is convex, the global cost function is restricted strongly
convex, and X∗ is a singleton, while our proposed L-ADMM
algorithm (40) is applicable to general nonconvex cost functions
as shown later in Theorems 3 and 4.

B. Convergence Analysis

Similar to Lemma 4, we have the following lemma.
Lemma 5: Let {xk} be the sequence generated by Algo-

rithm 2. If Assumptions 1–3 hold, then

V̆k+1 ≤ V̆k − ‖xk‖21
γ (ε̆3− 1

γ ε̆4)K
− ‖yk‖21

γ (ε5− 1
γ ε6)K
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− 1

4γ
‖ḡ0

k‖2 −
1

γ

(
ε7 − 1

γ
ε8

)
‖ḡk‖2 (41)

where V̆k = Vk − ‖xk‖21
γ (ε̆1+

1
γ ε̆2)K

, and

ε̆1 =
1

2
+ βρ(L), ε̆2 = β2ρ(L) + αβρ(L2),

ε̆3 =
1

2
(2αρ2(L)− 1− 3L2

f )− ε̆1,

ε̆4 = 3(1 +
1

2
ρ(L2))(α2ρ(L2) + L2

f ) + ε̆2.

Proof: The proof is similar to the proof of Lemma 4 and is
thus omitted.

Similar to Theorem 1, we have the following result. �
Theorem 3: Let {xk} be the sequence generated by

Algorithm 2. If Assumptions 1–3 hold, 1
ρ2(L) (ρ(L)β +

κ̆1) < α ≤ κ2β, β > max{ κ̆1

κ2ρ2(L)−ρ(L) , κ3, κ4}, and γ >

max{ ε̆4
ε̆3
, ε6

ε5
, ε8

ε7
, 1

ε̆15
}, then

T∑
k=0

(‖xk‖2K + ‖yk‖2K + ‖ḡ0
k‖2) ≤

V̆0

ε̆16
∀T ≥ 0 (42)

where

κ̆1 =
3

2
L2
f + 1, ε̆11 =

1

2
− 1

γ
ε̆1 − 1

γ2
ε̆2 > 0

ε̆13 =
1

2
(ε̆11 − ε12 + ((ε̆11 − ε12)

2 + 1)
1
2 )

ε̆15 =
1

2ε̆2
(−ε̆1 + (ε̆21 + 2− 1

ε12
)

1
2 ) > 0

ε̆16 =
1

γ
min{ε̆3 − 1

γ
ε̆4, ε5 − 1

γ
ε6,

1

4
} > 0.

Proof: The proof is similar to the proof of Theorem 1 and is
thus omitted. �

When Assumption 4 also holds, similar to Theorem 2 we have
the following result.

Theorem 4: Let {xk} be the sequence generated by Algo-
rithm 2. If Assumptions 1–4 hold, the settings on α, β, and γ
are the same as those in Theorem 3, and then

‖xk − x̄k‖2 + n(f(x̄k)− f ∗) ≤ (1− ε̆)k c̆ ∀k ≥ 0 (43)

where

ε̆ =
ε̆17
ε14

∈ (0, 1), c̆ =
V̆0

ε̆11 − ε̆13
≥ 0

ε̆17 =
1

γ
min{ε̆3 − 1

γ
ε̆4, ε5 − 1

γ
ε6,

ν

2
} > 0.

�
Proof: The proof is similar to the proof of Theorem 2 and is

thus omitted. �
Remark 10: The same convergence rate as stated in (42)

has also been achieved by the linearized version of Prox-PDA,
the distributed proximal gradient primal-dual algorithm (Prox-
GPDA), proposed in [36] under the same conditions. However,
we also show that our distributed L-ADMM algorithm achieves

linear convergence under the P–Ł condition, which was not
considered in [36].

Remark 11: Linear convergence was also established by the
distributed L-ADMM algorithm proposed in [23]. However,
in [23], it was assumed that each local cost function is strongly
convex, while we assume that the global cost function satisfies
the P–Ł condition, which is much weaker. Same as stated in
Remark 7, compared with the results established in [23], one
potential drawback of our results is that we need to use some
global information, such as the eigenvalues of the communica-
tion graph.

Remark 12: By comparing Theorems 1 and 2 with Theo-
rems 3 and 4, respectively, we see that, in theory, under the same
conditions, the distributed L-ADMM algorithm (40) has the
same convergence properties as those of the distributed ADMM
algorithm (13). However, in numerical simulations, the dis-
tributed ADMM algorithm (13) normally requires less iterations
than the distributed L-ADMM algorithm (40) to reach the same
error bound at a cost of more computation resource being needed
by each agent to solve the local optimization problem.

V. SIMULATIONS

This section evaluates the performance of Algorithms 1 and
2 in solving the phase retrieval problem [52].

Phase retrieval can be reformulated as the distributed opti-
mization problem (1) with each component function fi given
by

fi(x) =
1

mi

mi∑
l=1

(yil − |b�ilx|2)2

=
1

mi

mi∑
l=1

(yil − (x�bRil )
2 − (x�bIil)

2)2 (44)

where mi is the number of data points recorded by detector i,
bil = bRil + ibIil ∈ Cp is the phase of the linear operator used in
the lth measurement by detector i, and yil ∈ R is the correspond-
ing noisy squared magnitude.

All settings for cost functions and the communication graph
are the same as those described in [53]. Specifically, n = 50,
p = 64, and m = 30. We independently and randomly gener-
ate the vectors bRil and bIil such that (bRil , b

I
il) ∼ N (02p,

1
2I2p).

The scalars yil are generated by yil = |b�ily0|+ εi,l, where
y0 = (1, 0, . . . , 0)� and εi,l ∼ N (0, 0.012) are independent
Gaussian noise. The graph used in the simulation is generated
by uniformly randomly sampling n points on S2, and then
connecting pairs of points with spherical distances less thanπ/4.

We compare Algorithms 1 and 2 with state-of-the-art algo-
rithms: distributed gradient tracking algorithm (DGTA) [53],
[54], distributed ADMM algorithm (Prox-PDA), and its lin-
earized version (Prox-GPDA) [36]. Fig. 1 illustrates the conver-
gence of mink∈[T ]{‖∇f(x̄k)‖2 + 1

n

∑n
i=1 ‖xi,k − x̄k‖2} with

respect to the number of iterations T for these algorithms with
the same initial condition. It can be seen that, in this numerical
example, both distributed ADMM algorithms (Algorithms 1 and
Prox-PDA) have almost the same performance and are better
than the remaining algorithms. By comparing the two distributed
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Fig. 1. Evolutions of mink∈[T ]{‖∇f(x̄k)‖2 + 1
n

∑n

i=1
‖xi,k − x̄k‖2}

w.r.t. the number of iterations T .

L-ADMM algorithms (Algorithm 2 and Prox-GPDA), we see
that Algorithm 2 converges faster. Moreover, Algorithm 2 also
converges faster than DGTA.

VI. CONCLUSION

In this article, we proposed a ADMM algorithm to solve the
distributed nonconvex optimization problem. We analyzed its
convergence properties under different conditions. Especially,
the linear convergence was established under the condition that
the global cost function satisfies the P–Ł condition. Moreover,
we extended the proposed distributed ADMM algorithm to a lin-
earized version and established the same convergence properties
under the same conditions. Interesting directions for future work
include proving the convergence results for larger algorithm
parameters, considering asynchronous and dynamic network
setting, and studying constraints.

APPENDIX

A. Proof of Lemma 4

We first note that V4,k is well defined due to f ∗ > −∞ as
assumed in Assumption 2. Thus, Vk is well defined.

Noting γ > Lf , from Remark 3, we know that subproblem
(13a) is solvable andxi,k+1 is unique. Then noting first-order op-
timality conditions for convex optimization problem, we know
that algorithm (13) can be rewritten as

xi,k+1 = xi,k − η

⎛
⎝α

n∑
j=1

Lijxj,k + βvi,k +∇fi(xi,k+1)

⎞
⎠

(45a)

vi,k+1 = vi,k + ηβ

n∑
j=1

Lijxj,k+1

∀xi,0 ∈ Rp,

n∑
j=1

vj,0 = 0p (45b)

where η = 1
γ .

Denote v̄k = 1
n (1

�
n ⊗ Ip)vk. From (45b), we have v̄k+1 =

v̄k. Then, from
∑n

i=1 vi,0 = 0p, we have v̄k = 0p. Then, from
(45a), we know that

x̄k+1 = x̄k − ηḡk+1. (46)

Noting that∇f̃ is Lipschitz-continuous with constantLf > 0
as assumed in Assumption 3, we have that

‖g0
k − gk‖2 = ‖∇f̃(x̄k)−∇f̃(xk)‖2

≤ L2
f‖x̄k − xk‖2 = L2

f‖xk‖2K . (47)

We also have

‖g0
k+1 − g0

k‖2 ≤ L2
f‖x̄k+1 − x̄k‖2 = η2L2

f‖ḡk+1‖2 (48)

where the equality holds due to (46). Then, we have

‖g0
k − gk+1‖2 = ‖g0

k − g0
k+1 + g0

k+1 − gk+1‖2

≤ 2‖g0
k − g0

k+1‖2 + 2‖g0
k+1 − gk+1‖2

≤ 2η2L2
f‖ḡk+1‖2 + 2L2

f‖xk+1‖2K (49)

where the last inequality holds due to (47) and (48). Then, we
have

‖ḡ0
k − ḡk+1‖2 = ‖H(g0

k − gk+1)‖2 ≤ ‖g0
k − gk+1‖2

≤ 2η2L2
f‖ḡk+1‖2 + 2L2

f‖xk+1‖2K (50)

where the first inequality holds due to ρ(H) = 1; and the last
inequality holds due to (49). Then, we have

‖xk+1 − xk‖2K = η2‖αLxk + βvk + g0
k + gk+1 − g0

k‖2K
≤ 3η2(‖αLxk‖2 + ‖βvk + g0

k‖2K + ‖gk+1 − g0
k‖2)

≤ ‖xk‖23η2α2ρ(L2)K + ‖yk‖23η2β2K

+ 6η4L2
f‖ḡk+1‖2 + ‖xk+1‖26η2L2

fK
(51)

where the first equality holds due to (45a); the first inequality
holds due to the Cauchy–Schwarz inequality, (2), and ρ(K) =
1; and the last inequality holds due to (3) and (49).

We have

V1,k+1 =
1

2
‖xk − η(αLxk + βvk + gk+1)‖2K

=
1

2
‖xk‖2K − ‖xk‖2

ηαL− η2α2

2 L2

−ηβx�
k (Inp−ηαL)K

(
vk+

1

β
g0
k+

1

β
gk+1−

1

β
g0
k

)

+
η2β2

2
‖vk +

1

β
g0
k +

1

β
gk+1 −

1

β
g0
k‖2K

≤ 1

2
‖xk‖2K − ‖xk‖2

ηαL− η2α2

2 L2 − ηβx�
kKyk

+
η

2
‖xk‖2K +

η

2
‖gk+1 − g0

k‖2 +
1

2
η2α2‖xk‖2L2
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+
1

2
η2β2‖yk‖2K+

1

2
η2α2‖xk‖2L2

+
1

2
η2‖gk+1−g0

k‖2

+ η2β2‖yk‖2K + η2‖gk+1 − g0
k‖2

≤ 1

2
‖xk‖2K − ‖xk‖2

ηαρ2(L)K− η
2K− 3η2α2

2 ρ(L2)K

−ηβx�
k+1Kyk+

1

2
‖xk+1−xk‖2K+‖yk‖22η2β2K

+ ‖xk+1‖2η(1+3η)L2
fK

+ η3(1 + 3η)L2
f‖ḡk+1‖2

(52)

where the first equality holds due to (45a); the second equality
holds due to (2); the first inequality holds due to the Cauchy–
Schwarz inequality and ρ(K) = 1; and the last inequality holds
due to (3) and (49).

We have

V2,k+1 =
1

2
‖yk + ηβLxk+1 +

1

β
(g0

k+1 − g0
k)‖2Q+α

β K

= V2,k + ηx�
k+1(βK + αL)yk

+ ‖xk+1‖2η2β
2 (βL+αL2)

+
1

2β2
‖g0

k+1 − g0
k‖2Q+α

β K

+
1

β
(yk + ηβLxk+1)

�(Q+
α

β
K)(g0

k+1 − g0
k)

≤ V2,k+ηx�
k+1(βK + αL)yk + ‖xk+1‖2η2β(βL+αL2)

+‖yk‖2η
2β (Q+α

β K)+

(
1

β2
+

1

2ηβ

)
‖g0

k+1−g0
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β K
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k+1(βK + αL)yk
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2β (Q+α
β K)

+

(
1

β2
+

1

2ηβ

)(
1

ρ2(L)
+

α

β

)
‖g0

k+1 − g0
k‖2

≤ V2,k + ηx�
k+1(βK + αL)yk + ‖yk‖2η

2β ( 1
ρ2(L)

+α
β )K

+ ‖xk+1‖2η2β(βρ(L)+αρ(L2))K

+ η

(
η

β2
+

1

2β

)(
1

ρ2(L)
+

α

β

)
L2
f‖ḡk+1‖2

(53)

where the first equality holds due to (45b); the second equality
holds due to (2) and (4); the first inequality holds due to the
Cauchy–Schwarz inequality, (2), and (4); the second inequality
holds due to ρ(Q+ α

βK) ≤ ρ(Q) + α
β ρ(K), (5), ρ(K) = 1;

and the last inequality holds due to (3), (5), and (48).
We have

V3,k+1 = x�
k+1K(vk+1 +

1

β
g0
k+1)

= (xk − η(αLxk + βvk + g0
k + gk+1 − g0
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1

β
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η

2
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1
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η
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f )K+ηβρ(L)K (54)

where the second equality holds due to (45); the third equality
holds due to (2); the first inequality holds due to the Cauchy–
Schwarz inequality, (2), and ρ(K) = 1; the second inequality
holds due to (48) and (49); and the last inequality holds due to
(3).

We have

V4,k+1 = n(f(x̄k+1)− f ∗) = f̃(x̄k+1)− nf ∗

= f̃(x̄k)− nf ∗ + f̃(x̄k+1)− f̃(x̄k)

≤ f̃(x̄k)− nf ∗ − ηḡ�
k+1g

0
k +

η2Lf

2
‖ḡk+1‖2

= n(f(x̄k)− f ∗)− η

2
ḡ�
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k + ḡ0
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�ḡ0
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2
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4
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η

4
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4
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4
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η2Lf
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‖ḡk+1‖2

≤ n(f(x̄k)− f ∗)− η

4
(1− 2ηLf − 4η2L2

f )‖ḡk+1‖2

+ ‖xk+1‖2ηL2
fK

− η

4
‖ḡ0

k‖2 (55)

where the first inequality holds since f̃ is smooth, (7) and
(46); the third equality holds due to ḡ�

k+1g
0
k = g�

k+1Hg0
k =

g�
k+1HHg0

k = ḡ�
k+1ḡ

0
k; and the last inequality holds due to

(50).
Finally, from (51)–(55), we have (14).
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