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Abstract— This paper considers the distributed online convex
optimization problem with time-varying constraints over a net-
work of agents. This is a sequential decision making problem with
two sequences of arbitrarily varying convex loss and constraint
functions. At each round, each agent selects a decision from
the decision set, and then only a portion of the loss function
and a coordinate block of the constraint function at this round
are privately revealed to this agent. The goal of the network is
to minimize the network-wide loss accumulated over time. Two
distributed online algorithms with full-information and bandit
feedback are proposed. Both dynamic and static network regret
bounds are analyzed for the proposed algorithms, and network
cumulative constraint violation is used to measure constraint
violation, which excludes the situation that strictly feasible
constraints can compensate the effects of violated constraints.
In particular, we show that the proposed algorithms achieve
O(Tmax{κ,1−κ}) static network regret and O(T 1−κ/2) network
cumulative constraint violation, where T is the time horizon and
κ ∈ (0, 1) is a user-defined trade-off parameter. Moreover, if the
loss functions are strongly convex, then the static network regret
bound can be reduced to O(Tκ). Finally, numerical simulations
are provided to illustrate the effectiveness of the theoretical
results.

Index Terms—Cumulative constraint violation, distributed op-
timization, online optimization, regret, time-varying constraints.

I. INTRODUCTION
Online convex optimization is a promising framework for

machine learning and has wide applications such as online
binary classification [1], dictionary learning [2], and online
display advertising [3]. It can be traced back at least to the
1990’s [4]–[6]. Simply speaking, online convex optimization
is a sequential decision making problem with a sequence of
arbitrarily varying convex loss functions. At each round, a
decision maker selects a decision from the decision/constraint
set and then the loss function at this round is revealed. The goal
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of the decision maker is to minimize the loss accumulated over
time. For an online convex optimization algorithm, the stan-
dard performance metric is regret, which is the performance
gap between the decision sequence induced by the algorithm
and a benchmark in hindsight. If the benchmark is the optimal
static (dynamic) decision sequence, then regret is called static
(dynamic) regret.

Over the past decades, online convex optimization has been
extensively studied, e.g., [7]–[18]. In these studies, the pro-
posed algorithms usually are projection-based and the results
basically ensure that sublinear static regret can be achieved.
For example, the projection-based online gradient descent
algorithm proposed in [7] achieved an O(

√
T ) static regret

bound, where T is the time horizon. This is a tight bound up
to constant factors [8]. The static regret bound can be reduced
under more stringent strong convexity conditions on the loss
functions [8], [10], [12], [13]. Note that the projection operator
is performed at each round. It could yield heavy computation
and/or storage burden when the constraint set is determined by
a set of functional constraints. To tackle this challenge, online
convex optimization with long term constraints was consid-
ered, e.g., [19]–[23]. In this new problem, the constraints are
relaxed to be soft long term constraints. In other words, instead
of requiring the constraints to be satisfied at each round, the
constraints should be satisfied in the long term on average. In
addition to regret, the other performance metric in this case is
constraint violation, which is the violation of the cumulative
constraint functions. The problem can be further extended to a
more general scenario where the constraint functions are time-
varying and revealed to the decision maker after the decision
is chosen, e.g., [24]–[34].

Distributed optimization methods are becoming core aspects
of various important applications in view of flexibility and
scalability to large-scale datasets and systems, and from the
perspective of data privacy and locality [35]. Motivated by
this, a distributed variation of the classic online convex op-
timization was considered, e.g., [36]–[45]. In this setting, at
each round the loss function is decomposed across a network
of agents. Each agent selects a decision from the decision
set and then its own portion of the loss function, i.e., the
local loss function, at this round is revealed to itself only.
The goal of the network is to minimize the network-wide
loss accumulated over time, and the performance metric for a
distributed algorithm is hence measured by network regret, i.e.,
the average of all individual regrets. Each agent’s individual
regret is the difference between the cumulative global losses
evaluated at this agent’s decision sequence and a benchmark in
hindsight. In order to avoid the potential computation and/or
storage challenge caused by the projection operator when
using projection-based algorithms, distributed online convex
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optimization with long term constraints was considered in
[46]–[48]. For this problem, network constraint violation can
be similarly defined and also is a performance metric. For
example, in [46], an O(T 0.5+β) static network regret bound
and an O(T 1−β/2) network constraint violation bound were
achieved, where β ∈ (0, 0.5) is a user-defined parameter
which enables the trade-off between these two bounds. In
[49], the above distributed online convex optimization with
long term constraints was extended to a more general scenario
where the constraint functions are time-varying and at each
round only a coordinate block of the constraint function is
privately revealed to each agent after its decision is chosen,
and an O(Tmax{a,1−a+b}+T aPT ) network regret bound and
an O(

√
Tmax{2−b,2+2b−2a} + T 1+a−bPT ) network constraint

violation bound were achieved, where a, b ∈ (0, 1) with
a > b are user-defined trade-off parameters and PT ≥ 0
is the path-length of the benchmark (see Theorem 1). Other
forms of distributed variation of the centralized online convex
optimization have also been considered, e.g., [50]–[56].

It should be pointed out that the commonly used (network)
constraint violation metrics have a potential drawback since
they implicitly allow constraint violations at some rounds
to be compensated by strictly feasible decisions at other
rounds. In order to avoid this drawback, a more strict metric,
cumulative constraint violation, i.e., the constraint violation
accumulated over time, was considered in [21], [23], [47],
[48]. For example, in [21], the centralized online convex
optimization with long term constraints was considered, and
an O(Tmax{κ,1−κ}) static regret bound and an O(T 1−κ/2)
cumulative constraint violation bound were achieved, where
κ ∈ (0, 1) is a user-defined trade-off parameter. These results
were extended to the distributed setting with quadratic loss
functions and linear constraint functions in [47], and further to
the distributed setting with arbitrary convex loss and constraint
functions in [48].

In this paper, same as [49], we study the general online con-
strained convex optimization problem. However, different from
[49], we adopt a more strict metric, network cumulative con-
straint violation. Moreover, we consider both full-information
and bandit feedback scenarios. The full-information feedback
means that the expressions or (sub)gradients of the loss and
constraint functions are revealed, while the bandit feedback
means that only the values of the loss and constraint func-
tions are revealed at the sampling instance. We propose two
distributed online algorithms to solve the problem, which have
a good property that they do not use the time horizon or any
other parameters related to the loss or constraint functions
to design the algorithm parameters. We have the following
contributions.

• To the best of our knowledge, this paper is the first to
consider cumulative constraint violation for distributed
online convex optimization with time-varying constraints,
see Remark 1 for more detailed explanations.

• We show in Theorems 1 and 3 that the proposed al-
gorithms achieve an O(Tmax{κ,1−κ} + TκPT ) network
regret bound and an O(T 1−κ/2) network cumulative con-
straint violation bound. These bounds recover the results

achieved by the centralized online algorithms proposed in
[7], [11], [31], and are smaller than the bounds achieved
in [49] although the standard network constraint violation
metric rather than the more strict metric was used in [49],
see Remarks 3 and 6 for more detailed explanations.

• We show in Corollaries 1 and 2 that the proposed
algorithms achieve an O(Tmax{κ,1−κ}) static network
regret bound and an O(T 1−κ/2) network cumulative
constraint violation bound. These bounds generalize the
results in [9], [14], [19]–[21], [25], [46]–[48] to more
general settings, and also improve the results in [46], see
Remarks 4 and 7 for more detailed explanations.

• When the loss functions are strongly convex, we show in
Theorems 2 and 4 that the static network regret bound
can be improved to O(Tκ). This result generalizes the
result in [46] to more general settings, see Remark 5 for
more detailed explanations.

In conclusion, as explained at the end of Section III, the
results in this paper can be viewed as nontrivial extensions
of existing results. The detailed comparison of this paper to
some of the related works is summarized in TABLE I1.

The rest of this paper is organized as follows. Section II
formulates the considered problem. Sections III and IV provide
distributed online algorithms with full-information and bandit
feedback, respectively, and analyze their regret and cumula-
tive constraint violation bounds. Section V gives simulation
examples. Finally, Section VI concludes this paper.
Notations: All inequalities and equalities throughout this
paper are understood componentwise. Rp and Rp+ stand for
the set of p-dimensional vectors and nonnegative vectors,
respectively. N+ denotes the set of all positive integers. [n]
represents the set {1, . . . , n} for any positive integer n. ‖ · ‖
(‖·‖1) stands for the Euclidean norm (1-norm) for vectors and
the induced 2-norm (1-norm) for matrices. Bp and Sp are the
unit ball and sphere centered around the origin in Rp under
Euclidean norm, respectively. x> denotes the transpose of a
vector or a matrix. 〈x, y〉 represents the standard inner product
of two vectors x and y. 0m (1m) denotes the column zero (one)
vector with dimension m. col(z1, . . . , zn) is the concatenated
column vector of zi ∈ Rmi , i ∈ [n]. The notation A ⊗ B
denotes the Kronecker product of matrices A and B. For
a set K ⊆ Rp, PK(·) denotes the projection operator, i.e.,
PK(x) = arg miny∈K ‖x− y‖2, ∀x ∈ Rp. For simplicity, [·]+
is used to denote PRp+(·). For a scalar function f : Rp → R,
let ∂f(x) ∈ Rp denote the (sub)gradient of f at x, and let
∂[f(x)]+ denote the (sub)gradient of [f ]+ at x, i.e.,

∂[f(x)]+ =

{
0p, if f(x) < 0

∂f(x), otherwise.

For a vector function f = [f1, . . . , fd]
> :

Rp → Rd, its (sub)gradient at x is written as
∂f(x) = [∂f1(x), . . . , ∂fd(x)] ∈ Rp×d. Similarly,
the (sub)gradient of [f ]+ at x is written as
∂[f(x)]+ = [∂[f1(x)]+, . . . , ∂[fd(x)]+] ∈ Rp×d.

1In this table, we do not list the dynamic regret since most of the listed
works do not consider that.
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TABLE I: Comparison of this paper to related works on online constrained convex optimization.

Reference Problem
type Loss functions Constraint

functions Static regret Constraint violation Cumulative
constraint violation

[19] Centralized Convex Convex,
time-invariant O(

√
T ) O(T 3/4) Not given

[21] Centralized
Convex Convex,

time-invariant
O(Tmax{κ,1−κ}) O(T 1−κ/2)

Strongly convex O(log(T )) O(
√

log(T )T )

[25] Centralized Convex Convex O(
√
T ) O(T 3/4) Not given

[46] Distributed
Convex Convex,

time-invariant
O(Tmax{0.5+β}) O(T 1−β/2) Not given

Strongly convex O(Tκ) O(T 1−κ/2) Not given

[47] Distributed Quadratic Linear,
time-invariant O(Tmax{κ,1−κ}) O(T 1−κ/2)

[48] Distributed
Convex Convex,

time-invariant
O(Tmax{κ,1−κ}) O(T 1−κ/2)

Strongly convex O(log(T )) O(
√

log(T )T )

[49] Distributed Convex Convex O(Tmax{a,1−a+b}) O(Tmax{1−b/2,1+b−a}) Not given

This
paper Distributed

Convex
Convex

O(Tmax{κ,1−κ})
O(T 1−κ/2)

Strongly convex O(Tκ)

II. PROBLEM FORMULATION

In this section, we formulate the considered problem and
provide the motivating examples at the end of this section.

We consider distributed online convex optimization with
time-varying constraints. Specifically, consider a network of n
agents indexed by i ∈ [n], which can communicate with each
other according to a time-varying directed graph which will be
described shortly. Let {fi,t : X → R} and {gi,t : X → Rmi}
be sequences of local convex loss and constraint functions over
time t = 1, 2, . . . , respectively, where X ⊆ Rp is a known
convex set, p and mi are positive integers, and gi,t ≤ 0mi
is the local constraint. At time t, each agent i selects a
decision xi,t ∈ X. After the selection, the agent receives
full-information or bandit feedback about the loss function
fi,t and constraint function gi,t, which is held privately by
this agent. The objective is to design distributed sequential
decision selection algorithms such that the network-wide loss
accumulated over time is minimized. Similar to [46]–[49],
we use network regret and cumulative constraint violation
to measure performance of such an algorithm. Specifically,
network regret and cumulative constraint violation are defined
as

Net-Reg({xi,t}, y[T ]) :=
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(yt) (1)

and

1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖ (2)

respectively, where T is the time horizon, y[T ] = (y1, . . . , yT )
is a benchmark, and

ft(x) =
1

n

n∑
j=1

fj,t(x) (3)

gt(x) = col(g1,t(x), . . . , gn,t(x)) (4)

are the global loss and constraint functions, respectively.
In the literature, there are two commonly used benchmarks.

One is the optimal dynamic decision sequence

x∗[T ] = (x∗1, . . . , x
∗
T ),

where x∗t ∈ X denotes the minimizer of ft(x) constrained by
gt(x) ≤ 0m with m =

∑n
i=1mi. In other words, x∗t is the

best choice by knowing the functions ft and gt in advance. In
order to guarantee that the optimal dynamic decision sequence
always exists, we assume that for any T ∈ N+, the set of all
the feasible decision sequences

XT = {(x1, . . . , xT ) : xt ∈ X, gt(xt) ≤ 0m, ∀t ∈ [T ]}

is non-empty. In this case Net-Reg({xi,t}, x∗[T ]) is called the
dynamic network regret. Another benchmark is the optimal
static decision sequence

x̌∗[T ] = (x̌∗T , . . . , x̌
∗
T ),

where x̌∗T ∈ X denotes the minimizer of
∑T
t=1 ft(x) con-

strained by gt(x) ≤ 0m, ∀t ∈ [T ]. Similar to above, in order
to guarantee that the optimal static decision sequence always
exists, we assume that for any T ∈ N+, the set of all the
feasible static decision sequences

X̌T = {(x, . . . , x) : x ∈ X, gt(x) ≤ 0m, ∀t ∈ [T ]} ⊆ XT

is non-empty. In this case Net-Reg({xi,t}, x̌∗[T ]) is called
the static network regret. The network cumulative constraint
violation 1

n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖ is more strict than the

network constraint violation 1
n

∑n
i=1 ‖[

∑T
t=1 gt(xi,t)]+‖ since

1

n

n∑
i=1

∥∥∥[ T∑
t=1

gt(xi,t)
]
+

∥∥∥ ≤ 1

n

n∑
i=1

∥∥∥ T∑
t=1

[gt(xi,t)]+

∥∥∥
≤ 1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖.
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For simplicity purposes, we use standard constraint violation
metrics to refer the metrics that take the summation over
rounds before the projection, such as the network constraint
violation 1

n

∑n
i=1 ‖[

∑T
t=1 gt(xi,t)]+‖. The standard constraint

violation metrics are commonly used in the literature, e.g.,
[19], [20], [25]–[31], [46], [49], but have the drawback that
they implicitly allow constraint violations at some rounds to be
compensated by strictly feasible decisions at other rounds. It is
straightforward to see that the network cumulative constraint
violation 1

n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖ does not have such a

drawback.
Note that each agent alone cannot compute network regret

and cumulative constraint violation since it does not know
other agents’ local loss and constraint functions. Agents can
use a consensus protocol to collaborate. Therefore, agents need
to communicate with each other. We assume that agents are
allowed to share their decisions through a communication net-
work modeled by a time-varying directed graph. Specifically,
let Gt = (V, Et) denote the directed graph at the t-th round,
where V = [n] is the agent set and Et ⊆ V × V the edge set.
A directed edge (j, i) ∈ Et means that agent i can receive
data from agent j at the t-th round. Let N in

i (Gt) = {j ∈ [n] |
(j, i) ∈ Et} and N out

i (Gt) = {j ∈ [n] | (i, j) ∈ Et} be the sets
of in- and out-neighbors, respectively, of agent i at the t-th
round. A directed path is a sequence of consecutive directed
edges. A directed graph is said to be strongly connected if
there is at least one directed path from any agent to any other
agent in the graph. The adjacency (mixing) matrix Wt ∈ Rn×n
fulfills [Wt]ij > 0 if (j, i) ∈ Et or i = j, and [Wt]ij = 0
otherwise.

We make the following standing assumption on the loss and
constraint functions.

Assumption 1. 1) The set X is convex and closed. More-
over, it contains the ball of radius r(X) centered at the
origin and is contained in the ball of radius R(X), i.e.,

r(X)Bp ⊆ X ⊆ R(X)Bp. (5)

2) For any i ∈ [n], t ∈ N+, the functions fi,t and gi,t are
convex. Moreover, there exists a constant F1 such that

|fi,t(x)− fi,t(y)| ≤ F1, (6a)
‖gi,t(x)‖ ≤ F1, ∀i ∈ [n], t ∈ N+, x, y ∈ X. (6b)

3) For any i ∈ [n], t ∈ N+, x ∈ X, the subgradients
∂fi,t(x) and ∂gi,t(x) exist. Moreover, there exists a
constant F2 such that

‖∂fi,t(x)‖ ≤ F2, (7a)
‖∂gi,t(x)‖ ≤ F2, ∀i ∈ [n], t ∈ N+, x ∈ X. (7b)

The following assumption is made on the graph.

Assumption 2. For any t ∈ N+, the directed graph Gt satisfies
the following conditions:

(a) There exists a constant w ∈ (0, 1), such that [Wt]ij ≥ w
if [Wt]ij > 0.

(b) The mixing matrix Wt is doubly stochastic, i.e.,∑n
i=1[Wt]ij =

∑n
j=1[Wt]ij = 1, ∀i, j ∈ [n].

(c) There exists an integer B > 0 such that the directed
graph (V,∪B−1l=0 Et+l) is strongly connected.

Remark 1. To the best of our knowledge, this paper is the
first to consider cumulative constraint violation for distributed
online convex optimization with time-varying constraints. The
problem considered in this paper is a distributed variation of
the centralized online convex optimization with time-varying
constraints considered in [25]–[31]. The same distributed
online constrained convex optimization problem had also been
considered in [49], but in [49] the standard network constraint
violation metric was used. It should be pointed out that
the considered problem is more general than the distributed
problems considered in [46]–[48]. Specifically, in [46], [48]
the global constraint function is time-invariant and known
by each agent in advance, and in [46] the standard network
constraint violation metric was used. In [47], the local loss
functions are quadratic and the global constraint function is
time-invariant, linear, and known by each agent in advance.
It should also be highlighted that the considered problem in
this paper and the distributed online optimization with time-
varying coupled inequality constraints considered in [54],
[55] are different kinds of distributed problems. Specifically,
in [54], [55] at the t-th round the global loss function is∑n
i=1 fi,t(xi) and the constraints are

∑n
i=1 gi,t(xi) ≤ 0m,

where xi ∈ Rpi with pi being a positive integer. Therefore,
the algorithms proposed in [54], [55] cannot be used to solve
the problem considered in this paper. Moreover, the standard
constraint violation metric was used in [54], [55] and it is
unclear how to extend the results to the more strict constraint
violation metric.

Noting that the problem considered in this paper incor-
porates the problems considered in [25]–[31], [46]–[48], the
examples studied in these papers, such as online job schedul-
ing [26], online network resource allocation [28], mobile
fog computing in IoT [29], online linear regressions [47],
and online spam filtering task [48], motivate this paper. We
omit the details of these motivating examples due to space
limitations. In the simulations we use the distributed online
linear regression problem with time-varying linear inequality
constraints as an example to compare the performance of
different algorithms.

III. DISTRIBUTED ONLINE ALGORITHM WITH
FULL-INFORMATION FEEDBACK

In this section, we consider the distributed online con-
strained convex optimization problem formulated in Section II
with full-information feedback. We first propose a distributed
online algorithm, and then derive network regret and cumula-
tive constraint violation bounds for this algorithm.

A. Algorithm Description

Recall that at the t-th round, the global loss and constraint
functions are given in (3) and (4), respectively. The associated
regularized convex-concave function is

At(xt, qt) := ft(xt) + q>t [gt(xt)]+ −
βt+1

2
‖qt‖2,
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where xt ∈ X and qt ∈ Rm+ represent the primal and
dual variables, respectively, and βt+1 is the regularization
parameter. Here, the clipped constraint function [gt(xt)]+ is
used, which is essential for analyzing cumulative constraint
violation. The primal and dual variables can be updated by
the standard primal–dual algorithm

xt+1 = PX

(
xt − αt+1

∂At(xt, qt)
∂x

)
= PX(xt − αt+1ωt+1), (8)

qt+1 =
[
qt + γt+1

∂At(xt, qt)
∂q

]
+

= [(1− βt+1γt+1)qt + γt+1[gt(xt)]+]+, (9)

where αt+1 > 0 and γt+1 > 0 are the stepsizes used in the
primal and dual updates, respectively, and

ωt+1 =
1

n

n∑
i=1

∂fi,t(xt) + ∂[gt(xt)]+qt.

We then modify the centralized algorithm (8)–(9) to a
distributed manner. We use xi,t to denote the local copy of
the primal variable xt and rewrite the dual variable in an
agent-wise manner, i.e., qt = col(q1,t, . . . , qn,t) with each
qi,t ∈ Rmi . Then, for each agent i, zi,t+1 computed by the
consensus protocol (11) is used to track the average estimation
1
n

∑n
i=1 xi,t and thus can be used to estimate xt. Moreover,

ωi,t+1 defined in (12) can be understood as a part of ωt+1 that
is available to agent i. In this case, each xi,t+1 is updated by
(13) which is similar to the updating rule (8), and the updating
rule (9) can be executed in an agent-wise manner as

qi,t+1 = [(1− βt+1γt+1)qi,t + γt+1[gi,t(xi,t)]+]+. (10)

In order to avoid using the upper bounds of the loss and con-
straint functions and their subgradients to design the algorithm
parameters αt, βt, and γt, inspired by the algorithms proposed
in [26], [27], [54], we slightly modify the dual updating rule
(10) as (14). As a result, the updating rule (8)–(9) can be
executed in a distributed manner, which is given in pseudo-
code as Algorithm 1.

Remark 2. Algorithm 1 can be recognized as the distributed
variant of the centralized algorithm proposed in [26], [27].
It is different from the distributed algorithm proposed in
[54] since they are designed for solving different problems
as explained in Remark 1. One obvious difference is that in
our Algorithm 1 the local primal variables are communicated
between agents, while in the algorithm proposed in [54]
the local dual variables are communicated between agents.
Therefore, the proofs are also different when analyzing their
performance.

B. Performance Analysis

This section analyzes network regret and cumulative con-
straint violation bounds for Algorithm 1.

We first characterize dynamic network regret and cumulative
constraint violation bounds based on some natural vanishing
stepsize sequences in the following theorem.

Algorithm 1 Distributed Online Algorithm with Full-
Information Feedback

Input: non-increasing and positive sequences {αt}, {βt}
and {γt}.
Initialize: xi,1 ∈ X and qi,1 = 0mi for all i ∈ [n].
for t = 1, . . . do

for i = 1, . . . , n in parallel do
Broadcast xi,t to N out

i (Gt) and receive xj,t from j ∈
N in
i (Gt);

Observe ∂fi,t(xi,t), ∂gi,t(xi,t), and gi,t(xi,t);
Update

zi,t+1 =

n∑
j=1

[Wt]ijxj,t, (11)

ωi,t+1 = ∂fi,t(xi,t) + ∂[gi,t(xi,t)]+qi,t, (12)
xi,t+1 = PX(zi,t+1 − αt+1ωi,t+1), (13)
qi,t+1 = [(1− βt+1γt+1)qi,t + γt+1([gi,t(xi,t)]+

+ (∂[gi,t(xi,t)]+)>(xi,t+1 − xi,t))]+. (14)

end for
end for
Output: {xi,t}.

Theorem 1. Suppose Assumptions 1–2 hold. For all i ∈ [n],
let {xi,t} be the sequences generated by Algorithm 1 with

αt =
α0

tκ
, βt =

1

tκ
, γt =

1

t1−k
, ∀t ∈ N+, (15)

where α0 > 0 and κ ∈ (0, 1). Then, for any T ∈ N+ and any
benchmark y[T ] ∈ XT ,

Net-Reg({xi,t}, y[T ]) = O
(
α0T

1−κ +
Tκ(1 + PT )

α0

)
, (16)

1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖ = O(
√

(α0 + 1)T 2−κ), (17)

where PT =
∑T−1
t=1 ‖yt+1 − yt‖ is the path-length of the

benchmark y[T ].

Proof. The explicit expressions of the right-hand sides of
(16)–(17), and the proof are given in Appendix B.

Remark 3. It should be pointed out that the sequences
in (15) do not use the time horizon T or any other pa-
rameters related to the loss or constraint functions. The
intuition of designing the sequences in (15) is to make the
network regret and cumulative constraint violation bounds
provided in Lemma 7 in Appendix B as small as possible.
The idea is original to [54] and has also been used in
[49], [55]. The omitted constants in the right-hand sides
of (16)–(17) depend on the user-defined trade-off parameter
κ, the number of agents n, the constants related to the
loss and constraint functions as assumed in Assumption 1,
and the constants related to the communication network
connectivity as assumed in Assumption 2. Theorem 1 shows
that Algorithm 1 achieves improved performance compared
with the dynamic network regret bound O(Tmax{a,1−a+b} +
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T aPT ) and the standard network constraint violation bound
O(
√
Tmax{2−b,2+2b−2a} + T 1+a−bPT ) achieved by the dis-

tributed online algorithm proposed in [49], where a, b ∈ (0, 1)
and a > b. If setting α0 = 1 and κ = 0.5 in Theorem 1, the
dynamic regret bound O(

√
T (1 + PT )) for centralized online

convex optimization achieved in [7] is recovered. If the path-
length PT is known in advance, then setting α0 =

√
1 + PT

and κ = 0.5 in Theorem 1 recovers the dynamic regret bound
O(
√
T (1 + PT )). This is the optimal dynamic regret bound

for centralized online convex optimization as shown in [15],
[23].

We then provide static network regret and cumulative con-
straint violation bounds for Algorithm 1 by replacing y[T ] with
the static sequence x̌∗[T ] in Theorem 1.

Corollary 1. Under the same conditions as stated in Theo-
rem 1 with α0 = 1, for any T ∈ N+, it holds that

Net-Reg({xi,t}, x̌∗[T ]) = O(Tmax{κ,1−κ}), (18)

1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖ = O(T 1−κ/2). (19)

Remark 4. The results presented in Corollary 1 generalize the
results in [20], [21], [25], [47]. Specifically, by setting κ = 0.5
in Corollary 1, the result in [25] is recovered, although the
algorithm proposed in [25] is centralized and the standard
constraint violation metric rather than the more strict metric
is used. The bounds presented in (18)–(19) are consistent with
the result in [20], [21], [48], although the proposed algorithm
in [20], [21] is centralized, the constraint functions in [20],
[21], [48] are time-invariant and known in advance, and the
standard constraint violation metric is used in [20]. The same
performance was also achieved in [47] when the loss functions
are quadratic and the constraint functions are time-invariant,
linear, and known in advance. Corollary 1 also shows that
Algorithm 1 achieves improved performance compared with
the static network regret bound O(T 0.5+β) and the standard
network constraint violation bound O(T 1−β/2) achieved by
the distributed online algorithm proposed in [46], where β ∈
(0, 0.5), although the global constraint functions in [46] are
time-invariant and known in advance by each agent.

The static network regret bound in Corollary 1 at least is
O(
√
T ) and it can be reduced to strictly less than O(

√
T ) if

the local loss functions fi,t(x) are strongly convex.

Assumption 3. For any i ∈ [n] and t ∈ N+, {fi,t(x)} are
strongly convex with convex parameter µ > 0 over X , i.e.,
for all x, y ∈ X,

fi,t(x) ≥ fi,t(y) + 〈x− y, ∂fi,t(y)〉+
µ

2
‖x− y‖. (20)

Theorem 2. Suppose Assumptions 1–3 hold. For all i ∈ [n],
let {xi,t} be the sequences generated by Algorithm 1 with

αt =
1

tc
, βt =

1

tκ
, γt =

1

t1−k
, ∀t ∈ N+, (21)

where c ∈ [max{κ, 1 − κ}, 1) and κ ∈ (0, 1). Then, for any
T ∈ N+, it holds that

Net-Reg({xi,t}, x̌∗[T ]) = O(Tκ), (22)

1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖ = O(T 1−κ/2). (23)

Proof. The explicit expressions of the right-hand sides of
(22)–(23), and the proof are given in Appendix C.

Remark 5. Theorem 2 shows that under the strongly convex
assumption Algorithm 1 achieves the same static network
regret and constraint violation bounds as the distributed
algorithm proposed in [46]. However, in [46] the standard
constraint violation metric rather than the more strict metric
is used, and the global constraint functions are time-invariant
and known in advance by each agent. Moreover, in [46] the
convex parameter and the upper bound of the subgradients of
the loss and constraint functions need to be known in advance
to design the algorithm parameters. However, the bounds
presented in (22)–(23) are larger than the bounds achieved
by the centralized and distributed algorithms respectively
proposed in [21] and [48] for strongly convex loss functions.
We think this is acceptable since Algorithm 1 is suitable for a
more general scenario where not only the constraints are time-
varying but also each agent only knows a coordinate block of
the constraint function at each round. Moreover, it does not use
any parameters related to the loss and constraint functions.
In contrast, the algorithms proposed in [21], [48] use the
upper bound of the subgradients of the loss and constraint
functions to design the stepsizes, and it is unclear whether the
results in [21], [48] can still be achieved or not after extending
the algorithms to suit the general scenario as considered in
this paper. It is our ongoing work to design new distributed
online algorithms such that they can achieve the same regret
and cumulative constraint violation bounds as achieved by the
centralized algorithm proposed in [21].

Before ending this section, we would like to present some
discussions on the stepsizes. Algorithm 1 uses vanishing
stepsizes as shown in (15) and (21), while there are some
online algorithms, such as the online algorithms proposed in
[11], [12], [43], [45], used constant stepsizes. However, using
vanishing stepsizes does not mean that Algorithm 1 cannot be
used for infinite horizons, since the results stated above hold
for any time horizons, which guarantee that Algorithm 1 can be
used for infinite horizons. By the way, it should be mentioned
that [11], [12], [43], [45] all assumed that the cost functions are
smooth, i.e., the gradients of the cost functions are Lipschitz
continuous. Such an assumption is rarely used in the papers
considered vanishing stepsizes. Moreover, to the best of our
knowledge, in the study of online convex optimization with
long term constraints, there are no studies that consider non-
vanishing stepsizes. We think that one possible reason for this
is as follows. In the analysis in [11], [12], [43], [45], the
inequality that ft(xt) − ft(x∗t ) ≥ 0 is explicitly or implicitly
used. For example, that inequality has been explicitly used
below equation (32) in the proof of [11] and implicitly used
to yield equation (29) in [45]. However, when studying online
convex optimization with long term constraints, that inequality
may not hold since when choosing xt the constraints can
be violated. Therefore, it is challenging to design online
algorithms with non-vanishing stepsizes for online convex
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optimization with long term constraints and analyze their
performance.

Moreover, we would like to point out that compared with
related studies, the consideration of the more strict constraint
violation metric is a contribution but not the key contribution
of this section and does not cause significant challenges
for the performance analysis either. Actually, some existing
results can be extended to the scenario under the more strict
constraint violation metric when using the clipped constraint
functions to replace the original constraint functions. Instead,
the key contributions of this section are (a) proposing a
distributed algorithm for the general online constrained convex
optimization problem which incorporates various problems
studied in the literature as special cases and (b) showing
the proposed algorithm achieves the same or even better
performance measured by regret and the more strict constraint
violation metric as explained in the above remarks, which also
make the proofs more challenging. Simply speaking, the main
challenge in the proofs is how to handle the error caused
by the inconsistency in the local decisions at each round. It
should be mentioned that due to the distributed setting the
proofs are much more complicated than that for the centralized
algorithms. Moreover, the proofs are different from [46]–[48]
since we achieve strictly better results than [46] as explained in
Remark 4, and our algorithm is different from the algorithms
in [47], [48] even when considering the same problem settings
as [47], [48]. Similar discussions also hold for the results in
the next section. In conclusion, the results in this paper can
be viewed as nontrivial extensions of existing results.

IV. DISTRIBUTED ONLINE ALGORITHM WITH BANDIT
FEEDBACK

To handle the situations where the entire function and
gradient information are not available, in this section, we focus
on the bandit feedback, where at each round each agent can
sample the values of its local loss and constraint functions at
two points2.

A. Algorithm Description

Under the bandit feedback setting each agent i does not
know the subgradients ∂fi,t(xi,t) and ∂[gi,t(xi,t)]+. Inspired
by the two-point gradient estimator proposed in [9], [14], these
subgradients can be estimated by

∂̂fi,t(xi,t) =
p

δt
(fi,t(xi,t + δtui,t)− fi,t(xi,t))ui,t ∈ Rp,

and

∂̂[gi,t(xi,t)]+

=
p

δt
([gi,t(xi,t + δtui,t)]+ − [gi,t(xi,t)]+)> ⊗ ui,t ∈ Rp×mi ,

where ui,t ∈ Sp is a uniformly distributed random vector,
δt ∈ (0, r(X)ξt] is an exploration parameter, ξt ∈ (0, 1) is a
shrinkage coefficient, and r(X) is a known constant given in
the first part in Assumption 1.

2The cases where one- and multi-point bandit feedback are available could
be studied similarly, but would have different network regret and cumulative
constraint violation bounds.

Combining our Algorithm 1 with the above two-point
gradient estimators, our algorithm for the bandit setting is
outlined in pseudo-code as Algorithm 2.

Algorithm 2 Distributed Online Algorithm with Bandit Feed-
back

Input: non-increasing sequences {αt}, {βt}, {γt} ⊆
(0,+∞), {ξt} ⊆ (0, 1), and {δt} ⊆ (0, r(X)ξt].
Initialize: xi,1 ∈ (1− ξ1)X and qi,1 = 0mi for all i ∈ [n].
for t = 1, . . . do

for i = 1, . . . , n in parallel do
Broadcast xi,t to N out

i (Gt) and receive xj,t from j ∈
N in
i (Gt);

Select vector ui,t ∈ Sp independently and uniformly at
random;
Sample fi,t(xi,t + δtui,t), fi,t(xi,t), gi,t(xi,t + δtui,t)
and gi,t(xi,t);
Update

zi,t+1 =

n∑
j=1

[Wt]ijxj,t, (24)

ω̂i,t+1 = ∂̂fi,t(xi,t) + ∂̂[gi,t(xi,t)]+qi,t, (25)
xi,t+1 = P(1−ξt+1)X(zi,t+1 − αt+1ω̂i,t+1), (26)
qi,t+1 = [(1− βt+1γt+1)qi,t + γt+1([gi,t(xi,t)]+

+ (∂̂[gi,t(xi,t)]+)>(xi,t+1 − xi,t))]+. (27)

end for
end for
Output: {xi,t}.

The sequences {αt}, {βt}, {γt}, {ξt}, and {δt} used in Al-
gorithm 2 are pre-determined and the vector sequences {ui,t}
are randomly selected. Moreover, {zi,t}, {ω̂i,t}, {xi,t}, and
{qi,t} are random vector sequences generated by Algorithm 2.
Let Ut denote the σ-algebra generated by the independent
and identically distributed random variables u1,t, . . . , un,t and
let Ut =

⋃t
s=1 Us. It is straightforward to see that {zi,t+1},

{ω̂i,t}, {xi,t}, and {qi,t}, i ∈ [n] depend on Ut−1 and are
independent of Us for all s ≥ t.

B. Performance Analysis
This section analyzes network regret and cumulative con-

straint violation bounds for Algorithm 2.
Similar to the performance analysis for Algorithm 1. We

have the following results.

Theorem 3. Suppose Assumptions 1–2 hold. For all i ∈ [n],
let {xi,t} be the sequences generated by Algorithm 2 with

αt =
α0

tκ
, βt =

1

tκ
, γt =

1

t1−κ
,

ξt =
1

t+ 1
, δt =

r(X)

t+ 1
, t ∈ N+, (28)

where α0 > 0 and κ ∈ (0, 1). Then, for any T ∈ N+ and any
benchmark y[T ] ∈ XT ,

E[Net-Reg({xi,t}, y[T ])] = O
(
α0T

1−κ +
Tκ(1 + PT )

α0

)
,

(29)
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1

n

n∑
i=1

T∑
t=1

E[‖[gt(xi,t)]+‖] = O(
√

(α0 + 1)T 2−κ). (30)

Proof. The explicit expressions of the right-hand sides of
(29)–(30), and the proof are given in the online version [57]
due to space limitations.

Remark 6. By setting α0 =
√

1 + PT and κ = 0.5 in Theo-
rem 3, the dynamic regret bound achieved by the centralized
online algorithm with two-point bandit feedback proposed in
[11] is recovered, although [11] only considered the static
set constraint. Moreover, in this case the dynamic regret and
constraint violation bounds achieved by the centralized online
algorithm with two-point bandit feedback proposed in [31] are
also recovered.

Replacing y[T ] with the static sequence x̌∗[T ] in Theorem 3
gives static network regret and cumulative constraint violation
bounds for Algorithm 2.

Corollary 2. Under the same conditions as stated in Theo-
rem 3 with α0 = 1, for any T ∈ N+, it holds that

E[Net-Reg({xi,t}, x̌∗[T ])] = O(Tmax{κ,1−κ}), (31)

1

n

n∑
i=1

T∑
t=1

E[‖[gt(xi,t)]+‖] = O(T 1−κ/2). (32)

Remark 7. Corollary 2 shows that the results achieved by
Algorithm 2 are more general than the results achieved by the
online algorithms with two-point bandit feedback proposed
in [9], [14], [19], [47]. Specifically, by setting κ = 0.5
in Corollary 2, the results in [9], [14], [19] are recovered,
although the algorithms proposed in [9], [14], [19] all are
centralized, and [9], [14] only considered the static set
constraint, and [19] considered static inequality constraints
and full-information feedback for the loss functions. The same
bounds as presented in (31)–(32) were also achieved by the
distributed online algorithm with two-point bandit feedback
proposed in [47] when the loss functions are quadratic and
the constraint functions are time-invariant, linear, and known
in advance.

If Assumption 3 also holds, then the static network regret
bound can be further reduced.

Theorem 4. Suppose Assumptions 1–3 hold. For all i ∈ [n],
let {xi,t} be the sequences generated by Algorithm 2 with

αt =
1

tc
, βt =

1

tκ
, γt =

1

t1−κ
,

ξt =
1

t+ 1
, δt =

r(X)

t+ 1
, t ∈ N+, (33)

where c ∈ [max{κ, 1 − κ}, 1) and κ ∈ (0, 1). Then, for any
T ∈ N+, it holds that

E[Net-Reg({xi,t}, x̌∗[T ])] = O(Tκ), (34)

1

n

n∑
i=1

T∑
t=1

E[‖[gt(xi,t)]+‖] = O(T 1−κ/2). (35)

Proof. The explicit expressions of the right-hand sides of
(34)–(35), and the proof are given in the online version [57]
due to space limitations.

Remark 8. By comparing Theorem 1, Corollary 1, and
Theorem 2 with Theorem 3, Corollary 2, and Theorem 4,
respectively, we can see that the same network regret and
cumulative constraint violation bounds are achieved under the
same assumptions. In other words, in an average sense, the
distributed online algorithm with two-point bandit feedback
(Algorithm 2) is as efficient as the distributed online algorithm
with full-information feedback (Algorithm 1).

V. SIMULATIONS

In this section, we evaluate the performance of Algorithms 1
and 2 in solving the distributed online linear regression prob-
lem with time-varying linear inequality constraints.

In this problem, the local loss and constraint functions
are fi,t(x) = 1

2 (Hi,tx − zi,t)
2 and gi,t(x) = Ai,tx − ai,t,

respectively, where Hi,t ∈ Rdi×p, zi,t ∈ Rdi , Ai,t ∈ Rmi×p,
and ai,t ∈ Rmi with di ∈ N+. Moreover, the constraint set
is X ⊆ Rp. At each time t, an undirected random graph is
used as the communication graph. Specifically, connections
between agents are random and the probability of two agents
being connected is ρ. To guarantee that Assumption 2 holds,
edges (i, i+ 1), i ∈ [n− 1] are also added and [Wt]ij = 1

n if
(j, i) ∈ Et and [Wt]ii = 1−

∑n
j=1[Wt]ij .

We set n = 100, ρ = 0.1, di = 4, p = 10, mi = 2,
and X = [−5, 5]p. Each component of Hi,t is generated from
the uniform distribution in the interval [−1, 1] and zi,t =
Hi,t1p + εi,t, where εi,t is a standard normal random vector.
Each component of Ai,t and ai,t is generated from the uniform
distribution in the interval [0, 2] and [0, 1], respectively.

Noting that there are no other distributed online algo-
rithms to solve the considered problem due to the time-
varying constraints, we compare our Algorithms 1 and 2
with the centralized algorithms with full-information feed-
back proposed in [25]–[27]3 and the centralized algorithm
with two-point bandit feedback proposed in [31]. Fig. 1 and
Fig. 2 illustrate the evolutions of the average cumulative loss
1
n

∑n
i=1

∑T
t=1 ft(xi,t)/T and the average cumulative con-

straint violation 1
n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖/T , respectively.

Fig. 1 shows that the algorithms with the same kind of in-
formation feedback have almost the same average cumulative
loss and the algorithms with full-information feedback have
smaller average cumulative loss, which are in accordance with
the theoretical results. Fig. 2 shows that our proposed algo-
rithms have smaller average cumulative constraint violation,
which also matches the theoretical results since the standard
constraint violation metric rather than the more strict metric
was used in [25]–[27], [31].

VI. CONCLUSIONS

In this paper, we considered the distributed online con-
vex optimization problem with time-varying constraints over
a network of agents, which incorporates various problems
studied in the literature. We proposed two distributed online
algorithm to solve this problem and analyzed network regret
and cumulative constraint violation bounds for the proposed

3The algorithms in [26], [27] are the same.
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Fig. 1: Evolutions of 1
n

∑n
i=1

∑T
t=1 ft(xi,t)/T .
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Fig. 2: Evolutions of 1
n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖/T .

algorithms under different conditions. Our results can be
viewed as nontrivial extensions of existing results, where
we considered distributed and time-varying settings and used
the more strict constraint violation metric. In the future, we
will design new distributed online algorithms such that the
static network regret bound can be further reduced under
the strongly convex condition and the network cumulative
constraint violation bound can be reduced when the constraint
functions satisfy Slater’s condition. We will also consider how
to reduce communication complexity.

APPENDIX

A. Useful Lemmas

The following results are used in the proofs.

Lemma 1. ( [58], [59]) Let Wt be the adjacency matrix
associated with a time-varying graph satisfying Assumption 2.
Then,∣∣∣[Ψt

s]ij −
1

n

∣∣∣ ≤ τλt−s, ∀i, j ∈ [n], ∀t ≥ s ≥ 1, (36)

where Ψt
s = WtWt−1 · · ·Ws, τ = (1 − w/4n2)−2 > 1, and

λ = (1− w/4n2)1/B ∈ (0, 1).

Lemma 2. (Lemma 3 in [55]) Let K be a nonempty closed
convex subset of Rp and let a, b, c be three vectors in Rp.
The following statements hold.
(a) If a ≤ b, then

‖[a]+‖ ≤ ‖b‖ and [a]+ ≤ [b]+. (37)

(b) If x1 = PK(c− a), then for any y ∈ K, it holds that

2〈x1 − y, a〉 ≤ ‖y − c‖2 − ‖y − x1‖2 − ‖x1 − c‖2.
(38)

Lemma 3. Let f : K→ Rm be a vector function with K ⊂ Rp
being a convex and closed set. Moreover, there exists r(K) > 0
such that r(K)Bp ⊆ K. Denote

∂̂f(x) =
p

δ
(f(x+ δu)− f(x))> ⊗ u, ∀x ∈ (1− ξ)K,

f̂(x) = Ev∈Bp [f(x+ δv)], ∀x ∈ (1− ξ)K,

where u ∈ Sp is a uniformly distributed random vector, δ ∈
(0, r(K)ξ], ξ ∈ (0, 1), and the expectation is taken with respect
to uniform distribution. The following statements hold.
(a) The function f̂ is differentiable on (1− ξ)K and

∂f̂(x) = Eu∈Sp [∂̂f(x)], ∀x ∈ (1− ξ)K.

(b) If f is convex on K, then f̂ is convex on (1− ξ)K and

f(x) ≤ f̂(x), ∀x ∈ (1− ξ)K.

(c) If f is Lipschitz-continuous on K with constant L0(f) >
0, then f̂ is Lipschitz-continuous on (1 − ξ)K with
constants L0(f). Moreover, for all x ∈ (1− ξ)K,

‖f̂(x)− f(x)‖ ≤ δL0(f), ‖∂̂f(x)‖ ≤ pL0(f).

(d) If f is bounded on K, i.e., there exists F0(f) > 0 such
that ‖f(x)‖ ≤ F0(f), ∀x ∈ K, then

‖f̂(x)‖ ≤ F0(f), ∀x ∈ (1− ξ)K.

(e) If f is strongly convex with constant µ > 0 over K, then
f̂ is strongly convex with constant µ > 0 over (1− ξ)K.

Proof. The proof is given in the online version [57].

B. Proof of Theorem 1

Denote x̄t = 1
n

∑n
i=1 xi,t, ε

x
i,t−1 = xi,t − zi,t, ∆i,t(µi) =

1
2γt

(‖qi,t − µi‖2 − (1 − βtγt)‖qi,t−1 − µi‖2) with µi be-
ing an arbitrary vector in Rmi+ , bi,t = [gi,t−1(xi,t−1)]+ +
(∂[gi,t−1(xi,t−1)]+)>(xi,t − xi,t−1), ε1 = 2(F1 + F2R(X))2,
ε2 = τ

λ(1−λ)
∑n
i=1 ‖xi,1‖, ε3 = 2F2 + n2F2τ

2

2(1−λ)2 , ε4 = 2F2ε3 +
F 2

2

4 , ε5 = 2F2ε3 + ε4, ε6 = 40ε5, µ0
ij =

∑T
t=1[gi,t(xj,t)]+

1
γ1

+
∑T
t=1(βt+2ε6αt)

.
To prove Theorem 1, we need some preliminary results.

Firstly, we quantify the disagreement among agents.

Lemma 4. If Assumption 2 holds. For all i ∈ [n] and t ∈ N+,
xi,t generated by Algorithm 1 satisfy

‖xi,t − x̄t‖ ≤ τλt−2
n∑
j=1

‖xj,1‖+
1

n

n∑
j=1

‖εxj,t−1‖
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+ ‖εxi,t−1‖+ τ

t−2∑
s=1

λt−s−2
n∑
j=1

‖εxj,s‖. (39)

Proof. The proof is given in the online version [57].

Then, we present a result on the evolution of local dual
variables, which is critical to the analysis.

Lemma 5. Suppose Assumptions 1–2 hold and γtβt ≤ 1, t ∈
N+. For all i ∈ [n] and t ∈ N+, the sequences qi,t generated
by Algorithm 1 satisfy

∆i,t(µi) ≤ ε1γt + q>i,t−1bi,t − µ>i [gi,t−1(xi,t−1)]+

+
1

2
βt‖µi‖2 + F2‖µi‖‖xi,t − xi,t−1‖. (40)

Proof. We first use mathematical induction to prove

‖βtqi,t‖ ≤ F1. (41)

It is straightforward to see that ‖β1qi,1‖ ≤ F1, ∀i ∈ [n]
since qi,1 = 0mi , ∀i ∈ [n]. Assume now that it is true at
time slot t for all i ∈ [n], i.e., ‖βtqi,t‖ ≤ F1. We show that it
remains true at time slot t+ 1.

Noting that [gi,t]+ is convex since gi,t is convex and that
∂[gi,t(xi,t)]+ is the subgradient of [gi,t]+ at xi,t, we have

bi,t+1 ≤ [gi,t(xi,t+1)]+. (42)

Then, we have

‖qi,t+1‖ = ‖[(1− βt+1γt+1)qi,t + γt+1bi,t+1]+‖
≤ ‖(1− γt+1βt+1)qi,t + γt+1[gi,t(xi,t+1)]+‖
≤ (1− γt+1βt+1)‖qi,t‖+ γt+1‖gi,t(xi,t+1)‖

≤ (1− γt+1βt+1)
F1

βt
+ γt+1F1

≤ (1− γt+1βt+1)
F1

βt+1
+ γt+1F1 =

F1

βt+1
, ∀i ∈ [n],

where the first equality holds due to (14); the first inequality
holds due to (37) and (42); the third inequality holds due to
‖βtqi,t‖ ≤ F1 and (6b); and the last inequality holds since
the sequence {βt} is non-increasing and γtβt ≤ 1. Thus, the
result follows.

We then prove (40).
For any µi ∈ Rmi+ , from that the projection [·]+ is nonex-

pansive and (14), we have

‖qi,t − µi‖2 = ‖[(1− βtγt)qi,t−1 + γtbi,t]+ − [µi]+‖2

≤ ‖(1− βtγt)qi,t−1 + γtbi,t − µi‖2

= ‖qi,t−1 − µi‖2 + γ2t ‖bi,t − βtqi,t−1‖2 + 2γtq
>
i,t−1bi,t

− 2γtµ
>
i [gi,t−1(xi,t−1)]+ − 2βtγt(qi,t−1 − µi)>qi,t−1

− 2γtµ
>
i (∂[gi,t−1(xi,t−1)]+)>(xi,t − xi,t−1). (43)

We have

‖bi,t − βtqi,t−1‖ ≤ ‖bi,t‖+ ‖βtqi,t−1‖
≤ ‖[gi,t−1(xi,t−1)]+

+ (∂[gi,t−1(xi,t−1)]+)>(xi,t − xi,t−1)‖+ βt
F1

βt−1
≤ ‖[gi,t−1(xi,t−1)]+‖

+ ‖∂[gi,t−1(xi,t−1)]+‖‖xi,t − xi,t−1‖+ F1

≤ ‖gi,t−1(xi,t−1)‖+ ‖∂gi,t−1(xi,t−1)‖‖xi,t − xi,t−1‖+ F1

≤ 2F1 + 2F2R(X), (44)

where the second inequality holds due to (41); the third
inequality holds since {βt} is a non-increasing sequence; and
the last inequality holds due to (5), (6b), and (7b).

We have

−2βtγt(qi,t−1 − µi)>qi,t−1 ≤ βtγt(‖µi‖2 − ‖qi,t−1 − µi‖2).
(45)

From (7b), we have

− 2γtµ
>
i (∂[gi,t−1(xi,t−1)]+)>(xi,t − xi,t−1)

≤ 2γtF2‖µi‖‖xi,t − xi,t−1‖. (46)

Finally, from (43)–(46), we have (40).

Next, we provide network regret bound at one slot.

Lemma 6. Suppose Assumptions 1–2 hold. For all i ∈ [n], let
{xi,t} be the sequences generated by Algorithm 1 and {yt}
be an arbitrary sequence in X, then

1

n

n∑
i=1

ft(xi,t)− ft(yt)

≤ 1

n

n∑
i=1

q>i,t([gi,t(yt)]+ − bi,t+1)− 1

n

n∑
i=1

1

2αt+1
‖εxi,t‖2

+
1

n

n∑
i=1

F2(2‖xi,t − x̄i,t‖+ ‖xi,t − xi,t+1‖)

+
1

2nαt+1

n∑
i=1

(‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2

+ ‖yt+1 − xi,t+1‖2 − ‖yt − xi,t+1‖2). (47)

Proof. From the third part in Assumption 1 and Lemma 2.6
in [10], it follows that for all i ∈ [n], t ∈ N+, x, y ∈ X,

|fi,t(x)− fi,t(y)| ≤ F2‖x− y‖, (48a)
‖gi,t(x)− gi,t(y)‖ ≤ F2‖x− y‖. (48b)

We have

1

n

n∑
i=1

ft(xi,t) =
1

n

n∑
i=1

( 1

n

n∑
j=1

fj,t(xi,t)
)

=
1

n

n∑
i=1

fi,t(xi,t) +
1

n2

n∑
i=1

n∑
j=1

(fj,t(xi,t)− fj,t(xj,t))

≤ 1

n

n∑
i=1

fi,t(xi,t) +
1

n2

n∑
i=1

n∑
j=1

F2‖xi,t − xj,t‖

≤ 1

n

n∑
i=1

fi,t(xi,t) +
2F2

n

n∑
i=1

‖xi,t − x̄t‖, (49)

where the first inequality holds due to (48a).
Noting that fi,t is convex, from (7a), we have

fi,t(xi,t)− fi,t(yt) ≤ 〈∂fi,t(xi,t), xi,t − yt〉
= 〈∂fi,t(xi,t), xi,t − xi,t+1〉+ 〈∂fi,t(xi,t), xi,t+1 − yt〉
≤ F2‖xi,t − xi,t+1‖+ 〈∂fi,t(xi,t), xi,t+1 − yt〉. (50)
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For the second term of (50), from (12), we have

〈∂fi,t(xi,t), xi,t+1 − yt〉
= 〈ωi,t+1, xi,t+1 − yt〉+ 〈∂[gi,t(xi,t)]+qi,t, yt − xi,t〉

+ 〈∂[gi,t(xi,t)]+qi,t, xi,t − xi,t+1〉. (51)

Noting that ∂[gi,t(xi,t)]+ is the subgradient of the convex
function [gi,t]+ at xi,t, from qi,t ≥ 0mi , ∀t ∈ N+, ∀i ∈ [n],
we have

〈∂[gi,t(xi,t)]+qi,t, yt − xi,t〉
≤ q>i,t[gi,t(yt)]+ − q>i,t[gi,t(xi,t)]+. (52)

Applying (38) to the update (13), we get

〈ωi,t+1, xi,t+1 − yt〉

≤ 1

2αt+1
(‖yt − zi,t+1‖2 − ‖yt − xi,t+1‖2 − ‖εxi,t‖2)

=
1

2αt+1

(
‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2 − ‖εxi,t‖2

+
∥∥∥yt+1 −

n∑
j=1

[Wt+1]ijxj,t+1

∥∥∥2 − ‖yt − xi,t+1‖2
)

≤ 1

2αt+1

(
‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2 − ‖εxi,t‖2

+

n∑
j=1

[Wt+1]ij‖yt+1 − xj,t+1‖2 − ‖yt − xi,t+1‖2
)
, (53)

where the last inequality holds since Wt+1 is doubly stochastic
and ‖ · ‖2 is convex.

Combining (50)–(53), summing over i ∈ [n], and dividing
by n, and using

∑n
i=1[Wt]ij = 1, ∀t ∈ N+ yields (47).

Finally, we show network regret and cumulative constraint
violation bounds.

Lemma 7. Suppose Assumptions 1–2 hold and γtβt ≤ 1, t ∈
N+. For all i ∈ [n], let {xi,t} be the sequences generated by
Algorithm 1. Then, for any benchmark y[T ] ∈ XT ,

Net-Reg({xi,t}, y[T ])

≤ 4F2ε2 +

T∑
t=1

(ε1γt + 10ε5αt) +
2R(X)2

αT+1
+

2R(X)

αT
PT

− 1

2n

T∑
t=1

n∑
i=1

( 1

γt
− 1

γt+1
+ βt+1

)
‖qi,t‖2, (54)

1

n

n∑
i=1

∥∥∥ T∑
t=1

[gt(xi,t)]+

∥∥∥2
≤ 4nε2F1F2T + 2

( 1

γ1
+

T∑
t=1

(βt + ε6αt)
)(
nF1T

+

T∑
t=1

n(ε1γt + 20ε5αt) +
2nR(X)2

αT+1

− 1

2

T∑
t=1

n∑
i=1

( 1

γt
− 1

γt+1
+ βt+1

)
‖qi,t − µ0

ij‖2
)
. (55)

Proof. (i) We first provide a loose bound for network regret.

From (5), we have

‖yt+1 − xi,t+1‖2 − ‖yt − xi,t+1‖2

≤ ‖yt+1 − yt‖‖yt+1 − xi,t+1 + yt − xi,t+1‖
≤ 4R(X)‖yt+1 − yt‖. (56)

From (40), (47), and (56), and noting that gi,t(yt) ≤
0mi , ∀i ∈ [n] when y[T ] ∈ XT , we have

1

n

n∑
i=1

(
∆i,t+1(µi) + µ>i [gi,t(xi,t)]+ −

1

2
βt+1‖µi‖2

)
+

1

n

n∑
i=1

ft(xi,t)− ft(yt)

≤ ε1γt+1 +
1

n

n∑
i=1

∆̃i,t+1(µi) +
2R(X)

αt+1
‖yt+1 − yt‖

+
1

2nαt+1

n∑
i=1

(‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2), (57)

where

∆̃i,t+1(µi) = F2(‖µi‖+ 1)‖xi,t − xi,t+1‖

+ 2F2‖xi,t − x̄i,t‖ −
1

2αt+1
‖εxi,t‖2.

From {αt} is non-increasing and (5), we have

T∑
t=1

1

αt+1
(‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2)

≤ 1

α1
‖y1 − zi,2‖2 −

1

αT+1
‖yT+1 − zi,T+2‖2

+

T∑
t=1

( 1

αt+1
− 1

αt

)
4R(X)2 ≤ 4R(X)2

αT+1
. (58)

Summing (57) over t ∈ [T ], using (58), choosing µi = 0mi ,
and setting yT+1 = yT gives

Net-Reg({xi,t}, y[T ]) +
1

n

T∑
t=1

n∑
i=1

∆i,t+1(0mi)

≤ ε1
T∑
t=1

γt+1 +
1

n

T∑
t=1

n∑
i=1

∆̃i,t+1(0mi)

+
2R(X)2

αT+1
+

2R(X)

αT
PT . (59)

To get (54), we then establish a lower bound for∑T
t=1

∑n
i=1 ∆i,t+1(0mi) and an upper bound for∑T

t=1

∑n
i=1 ∆̃i,t+1(0mi).

(i-1) Establish a lower bound for
∑T
t=1

∑n
i=1 ∆i,t+1(0mi).

For any T ∈ N+, we have
T∑
t=1

∆i,t+1(µi)

=
‖qi,T+1 − µi‖2

2γT+1
− ‖µi‖

2

2γ1

+
1

2

T∑
t=1

( 1

γt
− 1

γt+1
+ βt+1

)
‖qi,t − µi‖2. (60)
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Substituting µi = 0mi into (60) yields
T∑
t=1

∆i,t+1(0mi) ≥
1

2

T∑
t=1

( 1

γt
− 1

γt+1
+ βt+1

)
‖qi,t‖2. (61)

(i-2) Establish an upper bound for
∑T
t=1

∑n
i=1 ∆̃i,t+1(0mi).

We have
T∑
t=1

t−2∑
s=1

λt−s−2
n∑
j=1

‖εxj,s‖ =

T−2∑
t=1

n∑
j=1

‖εxj,t‖
T−t−2∑
s=0

λs

≤ 1

1− λ

T−2∑
t=1

n∑
j=1

‖εxj,t‖. (62)

From (39) and (62), for any µi ∈ Rmi , and a > 0, we have
T∑
t=1

n∑
i=1

‖µi‖‖xi,t − x̄t‖

≤ ε2
n∑
i=1

‖µi‖+
1

n

T∑
t=2

n∑
i=1

n∑
j=1

‖εxj,t−1‖‖µi‖

+

T∑
t=2

n∑
i=1

‖εxi,t−1‖‖µi‖+
τ

1− λ

T−2∑
t=1

n∑
i=1

n∑
j=1

‖εxj,t‖‖µi‖

≤ ε2
n∑
i=1

‖µi‖

+
1

n

T∑
t=2

n∑
i=1

n∑
j=1

( 1

4aF2αt
‖εxi,t−1‖2 + aF2αt‖µj‖2

)
+

T∑
t=2

n∑
i=1

( 1

4aF2αt
‖εxi,t−1‖2 + aF2αt‖µi‖2

)
+

T∑
t=2

n∑
i=1

n∑
j=1

( 1

2anF2αt
‖εxi,t−1‖2 +

anF2τ
2αt

2(1− λ)2
‖µj‖2

)
= ε2

n∑
i=1

‖µi‖ +

T∑
t=2

n∑
i=1

(
aε3αt‖µi‖2 +

1

aF2αt
‖εxi,t−1‖2

)
.

(63)

For any µi ∈ Rmi and a > 0, we have

‖µi‖‖xi,t − xi,t+1‖
≤ ‖µi‖‖xi,t − zi,t+1‖+ ‖µi‖‖zi,t+1 − xi,t+1‖

≤ ‖µi‖‖xi,t − zi,t+1‖+
1

aF2αt+1
‖εxi,t‖2 +

aF2αt+1

4
‖µi‖2.

(64)

From (11) and
∑n
i=1[Wt]ij =

∑n
j=1[Wt]ij = 1, we have

n∑
i=1

‖xi,t − zi,t+1‖ ≤
n∑
i=1

(‖xi,t − x̄t‖+ ‖x̄t − zi,t+1‖)

=

n∑
i=1

(
‖xi,t − x̄t‖+

∥∥∥x̄t − n∑
j=1

[Wt]ijxj,t

∥∥∥)
≤

n∑
i=1

‖xi,t − x̄t‖+

n∑
i=1

n∑
j=1

[Wt]ij‖x̄t − xj,t‖

= 2

n∑
i=1

‖xi,t − x̄t‖. (65)

From (63)–(65), for any µi ∈ Rmi , and a > 0, we have

T∑
t=1

n∑
i=1

F2‖µi‖‖xi,t − xi,t+1‖

≤ 2F2ε2

n∑
i=1

‖µi‖

+

T∑
t=2

n∑
i=1

(
2aF2ε3αt‖µi‖2 +

2

aαt
‖εxi,t−1‖2

)
+

T∑
t=1

n∑
i=1

( 1

aαt+1
‖εxi,t‖2 +

aF 2
2αt+1

4
‖µi‖2

)
≤ 2F2ε2

n∑
i=1

‖µi‖+

T∑
t=1

n∑
i=1

( 3

aαt+1
‖εxi,t‖2 + aε4αt‖µi‖2

)
.

(66)

Choosing ‖µi‖ = 1 in (63) yields

T∑
t=1

n∑
i=1

2F2‖xi,t − x̄t‖

≤ 2nF2ε2 +

T∑
t=2

n∑
i=1

(
2aF2ε3αt +

2

aαt
‖εxi,t−1‖2

)
. (67)

Choosing ‖µi‖ = 1 in (66) yields

T∑
t=1

n∑
i=1

F2‖xi,t − xi,t+1‖

≤ 2nF2ε2 +

T∑
t=1

n∑
i=1

3

aαt+1
‖εxi,t‖2 +

T∑
t=1

anε4αt. (68)

Combining (67) and (68), and choosing a = 10 yields

T∑
t=1

n∑
i=1

∆̃i,t+1(0mi) ≤ 4nF2ε2 +

T∑
t=1

10nε5αt. (69)

(i-3) Combining (69), (61), and (59) yields (54).
(ii) We first provide a loose bound for network cumulative
constraint violation.

We have

µ>i [gi,t(xi,t)]+

= µ>i [gi,t(xj,t)]+ + µ>i [gi,t(xi,t)]+ − µ>i [gi,t(xj,t)]+

≥ µ>i [gi,t(xj,t)]+ − ‖µi‖‖[gi,t(xi,t)]+ − [gi,t(xj,t)]+‖
≥ µ>i [gi,t(xj,t)]+ − ‖µi‖‖gi,t(xi,t)− gi,t(xj,t)‖
≥ µ>i [gi,t(xj,t)]+ − F2‖µi‖‖xi,t − xj,t‖
≥ µ>i [gi,t(xj,t)]+ − F2‖µi‖(‖xi,t − x̄t‖+ ‖xj,t − x̄t‖),

(70)

where the second inequality holds since that the projection
operator is non-expansive and the third inequality holds due
to (48b).

Combining (57) and (70), setting yt = y, and summing over
j ∈ [n] yields

n∑
i=1

(
∆i,t+1(µi) +

1

n

n∑
j=1

µ>i [gi,t(xj,t)]+ −
1

2
βt+1‖µi‖2

)
12



+

n∑
i=1

ft(xi,t)− nft(y)

≤ nε1γt+1 +

n∑
i=1

∆̂i,t+1(µi) +
1

n
∆̌t

+
1

2αt+1

n∑
i=1

(‖y − zi,t+1‖2 − ‖y − zi,t+2‖2), (71)

where

∆̂i,t+1(µi) = F2‖µi‖‖xi,t − x̄i,t‖+ ∆̃i,t+1(µi),

∆̌t =

n∑
j=1

n∑
i=1

F2‖µi‖‖xj,t − x̄t‖.

To get (55), we then establish upper bounds for∑T
t=1

∑n
i=1 ∆̂i,t+1(µi) and

∑T
t=1 ∆̌t.

(ii-1)Establish an upper bound for
∑T
t=1

∑n
i=1 ∆̂i,t+1(µi).

Combining (63) and (66)–(68), and choosing a = 20 yields
T∑
t=1

n∑
i=1

∆̂i,t+1(µi) ≤ 4nF2ε2 +

T∑
t=1

20nε5αt + 3F2ε2

n∑
i=1

‖µi‖

+

T∑
t=1

n∑
i=1

20(F2ε3 + ε4)αt‖µi‖2

−
T∑
t=1

n∑
i=1

1

20αt+1
‖εxi,t‖2. (72)

(ii-2) Establish an upper bound for 1
n

∑T
t=1 ∆̌t.

From (39) and (62), for any µj ∈ Rmj , and a > 0, we have
T∑
t=1

n∑
i=1

n∑
j=1

‖µj‖‖xi,t − x̄t‖

≤ nε2
n∑
j=1

‖µj‖+ 2

T∑
t=2

n∑
i=1

n∑
j=1

‖εxi,t−1‖‖µj‖

+
nτ

1− λ

T−2∑
t=1

n∑
i=1

n∑
j=1

‖εxi,t‖‖µj‖

≤ nε2
n∑
i=1

‖µi‖

+

T∑
t=2

n∑
i=1

(
naε3αt‖µi‖2 +

n

aF2αt
‖εxi,t−1‖2

)
. (73)

Choosing a = 20 in (73) yields
T∑
t=1

1

n

T∑
t=1

∆̌t ≤ F2ε2

n∑
i=1

‖µi‖+

T∑
t=2

n∑
i=1

(
20F2ε3αt‖µi‖2

+
1

20αt
‖εxi,t−1‖2

)
. (74)

(ii-3) Prove (55).
Let hij : Rmi+ → R be a function defined as

hij(µi) = µ>i

T∑
t=1

[gi,t(xj,t)]+

− 1

2
‖ui‖2

( 1

γ1
+

T∑
t=1

(βt + ε6αt)
)
. (75)

Then, noting (58), (60), (72), (74), and (75), and summing
(71) over t ∈ [T ] gives

1

2

T∑
t=1

n∑
i=1

( 1

γt
− 1

γt+1
+ βt+1

)
‖qi,t − µi‖2

+
1

n

n∑
i=1

n∑
j=1

hij(µi) + nNet-Reg({xi,t}, {y})

≤ 4nF2ε2 + n

T∑
t=1

(ε1γt + 20ε5αt)

+ 4F2ε2

n∑
i=1

‖µi‖+
2nR(X)2

αT+1
. (76)

Noting that µ0
ij =

∑T
t=1[gi,t(xj,t)]+

1
γ1

+
∑T
t=1(βt+2ε6αt)

and substituting µi =

µ0
ij ∈ Rm+ into (75) yields

hij(µ
0
ij) =

‖
∑T
t=1[gi,t(xj,t)]+

∥∥∥2
2( 1
γ1

+
∑T
t=1(βt + ε6αt))

. (77)

From gt(x) = col(g1,t(x), . . . , gn,t(x)), we have

n∑
i=1

n∑
j=1

∥∥∥ T∑
t=1

[gi,t(xj,t)]+

∥∥∥2 =

n∑
j=1

∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥2. (78)

From the definition of µ0
ij and (6b), we have

‖µ0
i ‖ ≤

F1T
1
γ1

+
∑T
t=1(βt + ε6αt)

. (79)

From (6a), we have

−Net-Reg({xi,t}, {y}) ≤ F1T. (80)

Substituting µij = µ0
ij into (76), using (77)–(80), and

rearranging terms yields (55).

We are now ready to prove Theorem 1. The proof is to
substitute the specially designed parameter sequences in (15)
into the bounds provided in Lemma 7.
(i) For any constant a ∈ [0, 1) and T ∈ N+, it holds that

T∑
t=1

1

ta
≤
∫ T

1

1

ta
dt+ 1 =

T 1−a − a
1− a

≤ T 1−a

1− a
. (81)

From (15) and (81), we have

T∑
t=1

(ε1γt + 10ε5αt) ≤
ε1
κ
Tκ +

10ε5α0

1− κ
T 1−κ. (82)

From (15), we have

1

γt
− 1

γt+1
+ βt+1 =

t

tκ
− t+ 1

(t+ 1)κ
+

1

tκ

=
t+ 1

tκ
− t+ 1

(t+ 1)κ
> 0. (83)

Combining (54), (82), and (83) yields

Net-Reg({xi,t}, y[T ]) ≤ 4F2ε2 +
ε1
κ
Tκ +

10ε5α0

1− κ
T 1−κ
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+
4R(X)2Tκ

α0
+

2R(X)TκPT
α0

,

(84)

which gives (16).
(ii) From (15) and (81), we have

T∑
t=1

(ε1γt + 20ε5αt) ≤
ε1
κ
Tκ +

20ε5α0

(1− κ)
T 1−κ, (85)

T∑
t=1

(βt + ε6αt) ≤
1 + ε6α0

1− κ
T 1−κ. (86)

Combining (55), (83), (85), and (86) yields( 1

n

n∑
j=1

∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥)2 ≤ 1

n

n∑
j=1

∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥2
≤ 4nε2F1F2T + 2n

(
1 +

1 + ε6α0

1− κ
T 1−κ

)(
F1T

+
ε1
κ
Tκ +

20ε5α0

1− κ
T 1−κ +

4R(X)2Tκ

α0

)
. (87)

Combining (87) and
T∑
t=1

‖[gt(xj,t)]+‖ ≤
T∑
t=1

‖[gt(xj,t)]+‖1

=
∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥
1
≤
√
m
∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥ (88)

yields (17).

C. Proof of Theorem 2

In addition to the notations defined in the proof of Theo-
rem 1, we also denote ε7 = d( 1

µ )
1

1−c e, where d·e is the ceiling
function.
(i) Under Assumption 3, (50) can be replaced by

fi,t(xi,t)− fi,t(yt) ≤ F2‖xi,t − xi,t+1‖ −
µ

2
‖yt − xi,t‖2

+ 〈∂fi,t(xi,t), xi,t+1 − yt〉. (89)

Note that compared with (50), (89) has an extra term −µ2 ‖yt−
xi,t‖2. Then, (58) can be replaced by

1

n

n∑
i=1

( 1

αt+1
(‖yt − zi,t+1‖2 − ‖yt+1 − zi,t+2‖2)

− µ‖yt − xi,t‖2
)

=
1

n

n∑
i=1

( 1

αt
‖yt − zi,t+1‖2 −

1

αt+1
‖yt+1 − zi,t+2‖2

+
( 1

αt+1
− 1

αt

)∥∥yt − n∑
j=1

[Wt]ijxj,t‖2 − µ‖yt − xi,t‖2
)

≤ 1

n

n∑
i=1

( 1

αt
‖yt − zi,t+1‖2 −

1

αt+1
‖yt+1 − zi,t+2‖2

+
( 1

αt+1
− 1

αt
− µ

)
‖yt − xi,t‖2

)
, (90)

where the inequality holds due to
∑n
j=1[Wt]ij =∑n

i=1[Wt]ij = 1.

When t ≥ ε7, we have

1

αt+1
− 1

αt
− µ =

t+ 1

(t+ 1)1−c
− t

t1−c
− µ

<
1

t1−c
− µ ≤ 0. (91)

Similar to the way to get (84), from (21), (90), and (91),
we have

Net-Reg({xi,t}, x̌∗T )

≤ 4F2ε2 +
ε1
κ
Tκ +

10ε5
(1− c)

T 1−c +
1

n

n∑
i=1

1

α1
‖y1 − zi,2‖2

+
1

n

n∑
i=1

ε7−1∑
t=1

( 1

αt+1
− 1

αt
− µ

)
‖yt − xi,t‖2

≤ 4F2ε2 +
ε1
κ
Tκ +

10ε5
1− c

T 1−c

+ 4(1 + (ε7 − 1)[1− µ]+)R(X)2, (92)

Noting that κ ≥ 1− c due to c ≥ 1−κ, from (92), we have
(22).
(ii) Similar to the way to get (87), from (21), (90), and (91),
we have( 1

n

n∑
j=1

∥∥∥ T∑
t=1

[gt(xj,t)]+

∥∥∥)2
≤ 4nε2F1F2T + 2n

(
1 +

1

1− κ
T 1−κ +

ε6
1− c

T 1−c
)(
F1T

+
ε1
κ
Tκ +

20ε5
1− c

T 1−c + 4(1 + (ε7 − 1)[1− µ]+)R(X)2
)
.

(93)

Noting that 1−κ ≥ 1− c due to c ≥ κ, from (88) and (93),
we have (23).
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