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   Abstract—The  distributed  nonconvex  optimization  problem of
minimizing a global cost function formed by a sum of n local cost
functions by using local information exchange is considered. This
problem  is  an  important  component  of  many  machine  learning
techniques  with  data  parallelism,  such  as  deep  learning  and
federated  learning.  We  propose  a  distributed  primal-dual
stochastic  gradient  descent  (SGD)  algorithm,  suitable  for
arbitrarily  connected  communication  networks  and  any  smooth
(possibly  nonconvex)  cost  functions.  We  show that  the  proposed
algorithm  achieves  the  linear  speedup  convergence  rate

 for  general  nonconvex  cost  functions  and  the  linear
speedup  convergence  rate  when  the  global  cost
function satisfies the Polyak-Łojasiewicz (P-Ł) condition, where T
is the total number of iterations. We also show that the output of
the  proposed  algorithm  with  constant  parameters  linearly
converges  to  a  neighborhood  of  a  global  optimum.  We
demonstrate through numerical experiments the efficiency of our
algorithm  in  comparison  with  the  baseline  centralized  SGD  and
recently proposed distributed SGD algorithms.
    Index Terms—Distributed nonconvex optimization,  linear  speedup,
Polyak-Łojasiewicz (P-Ł) condition, primal-dual algorithm, stochastic
gradient descent.
  

I.  Introduction

fi : Rp→ R
CONSIDER  a  network  of n  agents,  each  of  which  has  a

local  smooth  (possibly  nonconvex)  cost  function
.  All  agents  collaboratively  solve  the  following

optimization problem:
 

min
x∈Rp

f (x) :=
1
n

n∑
i=1

fi(x). (1)

fi
Each  agent i  only  has  information  about  its  local  cost

function  and  communicates  with  its  neighbors  through the

G = (V,E)
V = {1, . . . ,n} E ⊆ V×V
(i, j) ∈ E
Ni = { j ∈ V : (i, j) ∈ E}

underlying  communication  network.  The  communication
network is modeled by an undirected graph , where

 is the agent set,  is the edge set, and
 if  agents i  and  j  communicate  with  each  other.  The

set  is  the  neighboring  set  of  agent i.
The  optimization  problem  (1)  incorporates  many  popular
machine  learning  approaches  with  data  parallelism,  such  as
deep learning [1] and federated learning [2]. A star graph is a
special  undirected  graph,  in  which  there  is  one  and  only  one
agent (hub agent) that connects to all of the other agents (leaf
agents)  and  each  leaf  agent  only  connects  to  the  hub  agent.
Such  a  graph  corresponds  to  the  master/worker  architecture
adopted by many parallel learning algorithms.

Due  to  the  nonconvexity,  convergence  results  typically
ensure  that  the  distributed  algorithms  find  first-order
stationary points
 

{x ∈ Rp : ∇ f (x) = 0p}

O(1/T )

which  could  be  local  maxima  or  minima.  Global  optima  are
usually  hard  to  find.  For  example,  in  [3]–[9],  it  was  shown
that first-order stationary points can be found with an 
convergence rate, i.e.,
 

1
T

T−1∑
k=0

∥∇ f (x̄k)∥2 = O(
1
T

)

∇ f
x̄k =

1
n
∑n

i=1 xi,k xi,k ∈ Rp
where T  is  the  total  number  of  iterations,  denotes  the
gradient of f, and  with  being agent i’s
estimate of the optimal solution at time instant k.

Note  that  the  algorithms  proposed  in  the  aforementioned
references  use  at  least  gradient  information  of  the  cost
functions,  and  sometimes  even  the  second-  or  higher-order
information.  However,  in  many  applications  explicit
expressions of  the gradients  are  often unavailable  or  difficult
to obtain. In this paper, we consider the case where each agent
can only collect stochastic gradients of its local cost function
and  propose  a  distributed  stochastic  gradient  descent  (SGD)
algorithm to solve (1). In general, SGD algorithms are suitable
for  scenarios  where  explicit  expressions  of  the  gradients  are
unavailable  or  difficult  to  obtain.  For  example,  in  some  big
data  applications,  such  as  empirical  risk  minimization,  the
actual  gradient  is  calculated  from  the  entire  data  set,  which
results in a heavy computational burden. A stochastic gradient
can be calculated from a randomly selected subset of the data
and  is  often  an  efficient  way  to  replace  the  actual  gradient.
Other  examples  which  SGD  algorithms  are  suitable  for
include scenarios where data are arriving sequentially such as
in online learning [10].  
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A.  Literature Review

O(1/
√

nT )

O(1/
√

T )

O(1/(nT ))

When  the  communication  network  is  a  star  graph,  various
parallel  SGD algorithms  have  been  proposed  to  solve  (1).  A
potential  performance  bottleneck  of  such  algorithms  lies  on
the  communication  burden  of  the  master.  To  overcome  this
issue,  a  promising  strand  of  research  is  combining  parallel
SGD  algorithms  with  communication  reduction  approaches,
e.g.,  asynchronous  parallel  SGD  algorithms  [11]–[15],
gradient  compression  based  parallel  SGD  algorithms  [12],
[16]–[19],  periodic  averaging  based  parallel  SGD  algorithms
[17],  [18],  [20]–[24],  and  parallel  SGD  algorithm  with
dynamic  batch  sizes  [25].  Convergence  properties  of  these
algorithms have been analyzed in detail. In particular, in [17],
[21],  [23],  [25],  an  convergence  rate  has  been
established for general nonconvex cost functions. This rate is
n times faster than the well known  convergence rate
established  by  SGD  over  a  single  agent,  and  thus  a  linear
speedup in the number of agents is achieved. In [24], [25], the
convergence  rate  has  been  improved  to  when  the
global  cost  function  satisfies  the  P-Ł  condition,  which  also
achieves  a  linear  speedup.  In  addition to  the  star  architecture
restriction,  aforementioned  parallel  SGD  algorithms  require
certain  restrictions  on  the  cost  functions,  such  as  bounded
gradients  of  the  local  cost  functions  or  bounded  difference
between the gradients of the local and global cost functions.

O(1/
√

nT )

D2

O(1/
√

nT )

−1/3

O(1/
√

T )

Distributed  algorithms  executed  over  arbitrarily  connected
communication  networks  have  been  suggested  to  overcome
communication  bottlenecks  for  parallel  SGD  algorithms.
Various  distributed  SGD  algorithms  have  been  proposed  to
solve (1),  e.g.,  synchronous distributed SGD algorithms [23],
[26]–[28],  asynchronous  distributed  SGD  algorithms  [29],
[30],  compression  based  distributed  SGD  algorithms
[31]–[34],  and  periodic  averaging  based  distributed  SGD
algorithm  [35].  Convergence  properties  of  these  algorithms
have  been  analyzed  and  the  linear  speedup  convergence  rate

 has  been  established  for  general  nonconvex  cost
functions [23], [27], [30], [31], [33]–[35]. However, similarly
to  aforementioned  parallel  SGD algorithms,  these  distributed
algorithms  require  restrictive  assumptions  on  the  cost
functions. In order to remove these restrictions, the authors of
[36]  proposed  a  variant  of  the  distributed  SGD  algorithm
proposed  in  [27],  named ,  in  which  each  agent  stores  the
stochastic  gradient  and  its  local  model  in  last  iteration  and
linearly  combines  them  with  the  current  stochastic  gradient
and local model. For this algorithm the authors established the
linear speedup convergence rate , but they required
that  the eigenvalues of the mixing matrix associated with the
communication  network  are  strictly  greater  than .  The
authors  of  [37],  [38]  proposed  distributed  stochastic  gradient
tracking  algorithms  suitable  for  arbitrarily  connected
communication  networks.  However,  these  algorithms  only
achieve  convergence  rate,  which  is  not  a  speedup.
Moreover,  gradient  tracking  algorithms  have  the  common
potential drawback that in order to track the global gradient, at
each iteration each agent needs to communicate one additional
p-dimensional  variable  with  its  neighbors.  This  results  in
heavy  communication  burden  when p  is  large.  Note  that  all

aforementioned  distributed  SGD  algorithms  converge  to
stationary  points,  which  may  be  local  or  global  optima,  or
saddle  points.  None  of  existing  studies  on  distributed  SGD
algorithms  consider  finding  the  global  optimum  when  the
global cost function satisfies some additional property, such as
the  P-Ł  condition  studied  for  the  parallel  algorithms  in  [24],
[25]. Noting above, two core theoretical questions arise.

O(1/
√

nT )

Q1) Are  there  any distributed  SGD algorithms that  are  not
only  suitable  for  arbitrarily  connected  communication
networks and any smooth cost functions but also find stations
points with the linear speedup convergence rate ?

O(1/(nT ))

Q2)  If  the  P-Ł  condition  holds  in  addition,  can  the  above
SGD  algorithms  find  the  global  optimum  with  the  linear
speedup  convergence  rate  as  achieved  in  [24],
[25]?  

B.  Main Contributions
This  paper  provides  positive  answers  for  the  above  two

questions.  More  specifically,  the  contributions  of  this  paper
are summarized as follows.

i)  We  propose  a  distributed  primal-dual  SGD  algorithm  to
solve the optimization problem (1). In the proposed algorithm,
each  agent  maintains  the  primal  and  dual  variable  sequences
and only communicates the primal variable with its neighbors.
This algorithm is suitable for arbitrarily connected communi-
cation  networks  and  any  smooth  (possibly  nonconvex)  cost
functions.

O(1/
√

nT )

ii)  We  show  in  Corollary  1  that  our  algorithm  finds  a
stationary  point  with  the  linear  speedup  convergence  rate

 for general nonconvex cost functions, thus answers
Q1).  Compared  with  [17],  [21],  [23],  [25],  [27],  [30],  [31],
[33]–[36],  we  achieve  the  same  convergence  rate  but  under
weaker  assumptions  related  to  network  architectures  and/or
cost  functions,  and  compared  with  [37],  [38],  we  not  only
establish linear speedup but also just use half communication
in each iteration.

O(1/(nT ))
iii) We show in Theorem 3 that our algorithm finds a global

optimum with the linear speedup convergence rate 
when the global cost function satisfies the P-Ł condition, thus
answers  Q2).  Compared  with  [24],  [25],  [34],  [39]–[41],  we
achieve  the  same  convergence  rate  but  under  weaker
assumptions  related  to  network  architectures  and/or  cost
functions,  and  compared  with  [18],  [26],  [42]–[46],  we  not
only  establish  linear  speedup  but  also  relax  the  strong
convexity by the P-Ł condition.

iv)  We  show  in  Theorems  4  and  5  that  the  output  of  our
algorithm  with  constant  parameters  linearly  converges  to  a
neighborhood  of  a  global  optimum  when  the  global  cost
function  satisfies  the  P-Ł  condition.  Compared  with  [26],
[46]–[49],  which  used  the  strong  convexity  assumption,  we
achieve  the  similar  convergence  result  under  weaker
assumptions on the cost function.

The  detailed  comparison  of  this  paper  with  other  related
studies in the literature is summarized in Table I.  

C.  Outline
The  rest  of  this  paper  is  organized  as  follows.  Section  II

presents  the  novel  distributed  primal-dual  SGD  algorithm.
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TABLE I 

Comparison of This Paper to Some Related Works

Reference Problem type Extra
assumption Communication network Communicated variable Communication

rounds Convergence rate

[17] Nonconvex ∥∇ fi −∇ f ∥
Bounded Star graph One quantized variable O(n5/4T 3/4) O(1/

√
nT )

[18]
Nonconvex

∇ fiIdentical Star graph One quantized variable O(T )
O(1/

√
T )

Strongly
convex O(1/T )

[21] Nonconvex ∥∇ fi∥Bounded Star graph One full-information
variable O(n3/4T 3/4) O(1/

√
nT )

[23] Nonconvex ∥∇ fi −∇ f ∥
Bounded Star graph Two full-information

variables
O(n3/4T 3/4)

O(1/
√

nT )
Connected graph O(T )

[24] P-Ł condition ∇ fiIdentical Star graph One full-information
variable O((nT )1/3) O(1/(nT ))

[25]
Nonconvex ∇ fiIdentical ,

exponentially
increasing batch

size

Star graph One full-information
variable

O(
√

nT log( T
n )) O(1/

√
nT )

P-Ł condition O(log(T )) O(1/(nT ))

[26]

Nonconvex

∥∇ fi∥Bounded Connected graph One full-information
variable O(T )

O(1/T θ), ∀θ ∈ (0,0.5)

Strongly
convex

O(1/T ); linearly to a neighbor
of the global optimum (constant

stepsize)

[27] Nonconvex ∥∇ fi −∇ f ∥
Bounded Connected graph One full-information

variable O(T ) O(1/
√

nT )

[30] Nonconvex ∥∇ fi −∇ f ∥
Bounded Uniformly jointly strongly

connected digraph
One full-information

variable O(T ) O(1/
√

nT )

[31] Nonconvex ∥∇ fi −∇ f ∥
Bounded Connected graph One compressed

variable O(T ) O(1/
√

nT )

[33] Nonconvex ∥∇ fi∥Bounded Strongly connected digraph One quantized variable O(T ) O(1/
√

nT )

[34]
Nonconvex

∥∇ fi∥Bounded Connected graph One compressed
variable Event-triggered

O(1/
√

nT )
Strongly
convex O(1/(nT ))

[35] Nonconvex ∇ fiIdentical Connected graph One full-information
variable O(n3/2

√
T ) O(1/

√
nT )

[36] Nonconvex

−1/3

The eigenvalues
of the mixing

matrix are
strictly greater

than 

Connected graph One full-information
variable O(T ) O(1/

√
nT )

[37], [38] Nonconvex No Connected graph Two full-information
variables O(T ) O(1/

√
T )

[39] Strongly
convex ∥∇ fi∥Bounded Star graph One full-information

variable O(
√

T/n) O(1/(nT ))

[40] Strongly
convex ∥∇ fi∥Bounded Connected graph One compressed

variable O(T ) O(1/(nT ))

[41] Strongly
convex No Connected graph Two full-information

variables O(T ) O(1/(nT ))

[42] Strongly
convex ∇ fiIdentical Connected graph One full-information

variable O(T ) O(1/T )

[43] Strongly
convex No Connected graph One full-information

variable O(
√

T ) O(1/T )

[44] Strongly
convex ∥∇ fi∥Bounded Uniformly jointly strongly

connected digraph
One full-information

variable O(T ) O(1/T )

[45] Strongly
convex No Connected graph in

expectation
One full-information

variable O(T ) O(1/T )

[46] Strongly
convex No Connected graph One full-information

variable O(T )
O(1/T ); linearly to a neighbor

of the global optimum (constant
stepsize)

[47] Strongly
convex No Connected graph One full-information

variable O(T )
Linearly to a neighbor of the

global optimum (constant
stepsize)

[48] Strongly
convex No Connected graph Two full-information

variables O(T )
Linearly to a neighbor of the

global optimum (constant
stepsize)

[49] Strongly
convex No Strongly connected digraph Two full-information

variables O(T )
Linearly to a neighbor of the

global optimum (constant
stepsize)

This paper

Nonconvex

No
Connected graph One full-information

variable O(T )

O(1/
√

nT )

P-Ł condition

O(1/(T θ)), ∀θ ∈ (0,1);
linearly to a neighbor of the
global optimum (constant

stepsize)

f ∗iBounded O(1/(nT ))
 

 814 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore.  Restrictions apply. 



Section  III  analyzes  its  convergence  rate.  Numerical
experiments  are  given  in  Section  IV.  Finally,  concluding
remarks are offered in Section V. To improve the readability,
all the proofs are given in the appendix.

N0 N+
[n] {1, . . . ,n}

n ∈ N+ 1n 0n
col(z1, . . . ,zk)

zi ∈ Rpi , i ∈ [k] ∥ · ∥

Notations:  and   denote  the  set  of  nonnegative  and
positive integers, respectively.  denotes the sets  for
any .  ( )  denotes  the  column  one  (zero)  vector  of
dimension n.   is the concatenated column vector
of  vectors .  represents  the  Euclidean  norm
for vectors or the induced 2-norm for matrices.  

II.  Distributed Primal-Dual SGD Algorithm

In  this  section,  we  propose  a  novel  distributed  SGD
algorithm based on the primal-dual method.

x = col(x1, . . . , xn) f̃ (x) =
∑n

i=1 fi(xi) L = L⊗ Ip

L = (Li j)
G

null(L) = {1n}
G

Denote , , and ,
where  is  the  weighted  Laplacian  matrix  associated
with  the  undirected  communication  graph .  Recall  that  the
Laplacian matrix L is positive semi-definite and 
when  is  connected  [50].  The  optimization  problem  (1)  is
equivalent to the following constrained optimization problem:
 

min
x∈Rnp

f̃ (x)

s.t. L1/2x = 0np. (2)
L1/2 = L1/2⊗ Ip L1/2

L1/2x = 0np

x = 1n⊗ x null(L1/2) = null(L) =
{1n}

Here,  and   is  the  square  root  of  the
positive  semi-definite  matrix L .  Moreover,  is
equivalent to  due to the fact that 

.
u ∈ RnpLet  denote  the  dual  variable.  Then  the  augmented

Lagrangian function associated with (2) is
 

A(x,u) = f̃ (x)+
α

2
xT Lx+βuT L1/2x (3)

α > 0 β > 0where  and  are parameters to be designed later.
Based  on  the  primal-dual  gradient  method,  a  distributed

SGD algorithm to solve (2) is
 

xk+1 = xk −ηk(αk Lxk +βk L1/2uk + gu
k) (4a)

 

uk+1 = uk +ηkβk L1/2xk, ∀x0, u0 ∈ Rnp (4b)
ηk > 0 αk > 0 βk > 0

gu
k = col(gu

1,k, . . . ,g
u
n,k) gu

i,k = gi(xi,k, ξi,k)
fi xi,k ξi,k

vk = col(v1,k, . . . ,vn,k) = L1/2uk

where  is  the  stepsize  at  iteration k,   and  
are  the  values  of  the  parameters α  and  β  at  iteration k,
respectively,  and  with  
being  the  stochastic  gradient  of  at   and   being  a
random variable. Denote . Then
the recursion (4) can be rewritten as
 

xk+1 = xk −ηk(αk Lxk +βkvk + gu
k) (5a)

 

vk+1 = vk +ηkβk Lxk, ∀x0 ∈ Rnp,

n∑
j=1

v j,0 = 0p. (5b)

∑n
j=1 v j,0 = 0p

v0 = L1/2u0

vi,0 = 0p, ∀i ∈ [n] vi,0 =
∑n

j=1 Li jx j,0, ∀i ∈ [n]

The  initialization  condition  is  derived  from
,  and  it  is  easy  to  be  satisfied,  for  example,

,  or .  Note  that  (5)
can be written agent-wise as
 

xi,k+1 = xi,k −ηk
(
αk

n∑
j=1

Li jx j,k +βkvi,k +gu
i,k

)
(6a)

 

vi,k+1 = vi,k +ηkβk

n∑
j=1

Li jx j,k,

∀xi,0 ∈ Rp, vi,0 = 0p, ∀i ∈ [n]. (6b)
This  corresponds  to  our  proposed  distributed  primal-dual

SGD  algorithm,  which  is  presented  in  pseudo-code  as
Algorithm 1.

Algorithm 1 Distributed Primal-Dual SGD Algorithm

{αk} {βk} {ηk} ⊆ (0,+∞)1: Input: parameters , , .
xi,0 ∈ Rp vi,0 = 0p, ∀i ∈ [n]2: Initialize:  and .

k = 0,1, . . .3: for  do
i = 1, . . . ,n4: 　for  in parallel do

xi,k Ni x j,k j ∈ Ni5: 　　Broadcast  to  and receive  from ;
gi(xi,k , ξi,k)6: 　　Sample stochastic gradient ;

xi,k+17: 　　Update  by (6a);
vi,k+18: 　　Update  by (6b).

9: 　end for
10: end for

{xk}11: Output: .

{αk} {βk} {ηk} x0 v0 v1
{xk}k≥1 {vk}k≥2

Fk
ξ1,k, . . . , ξn,k

Fk =
∪k

s=1Fs xk vk+1

Fk−1 Fs s ≥ k

It should be pointed out that , , , , , and  in
Algorithm  1  are  deterministic,  while  and   are
random variables generated by Algorithm 1. Let  denote the
σ-algebra  generated  by  the  random variables  and
let .  It  is  straightforward  to  see  that  and  
depend on  and are independent of  for all .  

III.  Convergence Rate Analysis

In  this  section,  we  analyze  the  convergence  rate  of
Algorithm 1. The following assumptions are made.

GAssumption  1: The  undirected  communication  graph  is
connected.

Assumption  2: The  minimum  function  value  of  the
optimization problem (1) is finite.

fi
L f > 0

Assumption  3: Each  local  cost  function  is  smooth  with
constant , i.e.,
 

∥∇ fi(x)−∇ fi(y)∥ ≤ L f ∥x− y∥, ∀x,y ∈ Rp. (7)
{ξi,k, i ∈ [n], k ∈ N0}Assumption  4: The  random  variables 

are independent of each other.
gi(x, ξi,k)

i ∈ [n] k ∈ N0 x ∈ Rp
Assumption 5: The stochastic estimate  is unbiased,

i.e., for all , , and ,
 

Eξi,k [gi(x, ξi,k)] = ∇ fi(x). (8)
gi(x, ξi,k)

i ∈ [n] k ∈ N0 x ∈ Rp

Assumption  6: The  stochastic  estimate  has
bounded variance,  i.e.,  there  exists  a  constant σ  such that  for
all , , and ,
 

Eξi,k [∥gi(x, ξi,k)−∇ fi(x)∥2] ≤ σ2. (9)

1
n
∑n

i=1 ∥∇ fi(x)−∇ f (x)∥2

Remark  1: The  bounded  variance  assumption  (Assumption
6)  is  weaker  than  the  bounded  second  moment  (or  bounded
gradient) assumption made in [11]–[13], [15], [19], [21], [26],
[28], [33], [34], [39], [40], [44], [51]. Moreover, note that we
make  no  assumption  on  the  boundedness  of  the  deviation
between the gradients of local cost functions. In other words,
we  do  not  assume  that  is  uniformly
bounded,  a  common  assumption  made  in  studies  of  deep
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Eξ[gi(x, ξ)] = ∇ f (x),
∀x ∈ Rp, ∀i ∈ [n]

learning, e.g., [17], [21], [23], [27], [29]–[31]. Also, we do not
assume that  the  mean of  each  local  stochastic  gradient  is  the
gradient  of  the global  cost  function,  i.e., 

,  which  is  commonly  assumed  in  studies  of
empirical  risk  minimization  and stochastic  optimization,  e.g.,
[14], [16], [18], [20], [22], [24], [25], [32], [35], [42].  

A.  Find Stationary Points
Let  us  consider  the  case  when  Algorithm  1  is  able  to  find

stationary points. We have the following convergence results.
{xk}Theorem 1: Suppose Assumptions 1–6 hold. Let  be the

sequence generated by Algorithm 1 with
 

αk = κ1βk, βk = β, ηk =
κ2
βk
, ∀k ∈ N0 (10)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c0(κ1, κ2)
c0(κ1, κ2), c1, c2(κ1) > 0
T ∈ N+

where , ,  and  with
 defined in Appendix B. Then, for any

,
 

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
= O(

1
T

)+O(
1
β2 ) (11a)

 

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] = O(
κ2β

T
)+O(

4κ2
nβ

)

+O(
1
T

)+O(
1
β2 ) (11b)

 

E[ f (x̄T )]− f ∗ = O(1)+O(
T

nβ2 )+O(
T
β3 ) (11c)

f ∗

x̄k =
1
n
∑n

i=1 xi,k

where  is  the  minimum  function  value  of  the  optimization
problem (1) and .

Proof: The  explicit  expressions  of  the  right-hand  sides  of
(11a)–(11c) and the proof are given in Appendix B. It should
be highlighted that the omitted constants in the first two terms
on  the  right-hand  side  of  (11b)  do  not  depend  on  any
parameters related to the communication network. ■

f (x̄0)− f ∗ = O(1)

β = κ2
√

T/
√

n

Noting  the  right-hand  side  of  (11b)  and ,
the linear speedup (w.r.t. number of agents) can be established
if we set , as shown in the following.

β = κ2
√

T/
√

n
T >max{n(c0(κ1, κ2)/κ2)2, n3}

Corollary 1 (Linear Speedup): Under the same assumptions
as  in  Theorem  1,  let .  Then,  for  any

,
 

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
= O(

n
T

) (12a)

 

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] = O(
1
√

nT
)+O(

n
T

) (12b)

 

E[ f (x̄T )]− f ∗ = O(1). (12c)
Remark  2: It  should  be  highlighted  that  the  omitted

constants  on  the  first  term in  the  right-hand side  of  (12b)  do
not  depend  on  any  parameters  related  to  the  communication
network. The same linear speedup result as in (12b) was also
established  by  the  SGD  algorithms  proposed  in  [17],  [21],
[23], [25], [27], [30], [31], [33]–[36]. However, in [17], [23],
[27],  [30],  [31],  the  additional  assumption  that  the  deviation

−1/3

xi,k

O(1/
√

T )

between the gradients  of  local  cost  functions is  bounded was
made;  in  [21],  [33],  [34],  it  was  required  that  each  local
stochastic gradient has bounded second moment; in [25], [35],
it was assumed that the mean of each local stochastic gradient
is the gradient of the global cost function; and in [36], it was
required that the eigenvalues of the mixing matrix are strictly
greater than . Moreover, the algorithms proposed in [17],
[25]  are  restricted  to  a  star  graph;  the  distributed  momentum
SGD  algorithm  proposed  in  [23]  requires  each  agent i  to
communicate  one  additional p -dimensional  variable  besides
the communication of  with its neighbors at each iteration;
and the  algorithm proposed in  [25]  requires  an  exponentially
increasing  batch  size,  which  is  not  favorable  in  practice.
Under  the  same  conditions,  the  well  known 
convergence rate, which is not a speedup, was achieved by the
distributed stochastic gradient tracking algorithm proposed in
[37],  [38].  Moreover,  similarly  to  the  distributed  momentum
SGD  algorithm  proposed  in  [23],  one  potential  drawback  of
the  distributed  stochastic  gradient  tracking  algorithms  is  that
at  each  iteration  each  agent  needs  to  communicate  one
additional  variable.  The  potential  drawbacks  of  the  results
stated  in  Corollary  1  are  that  i)  we  do  not  consider
communication  efficiency,  which  was  considered  in  [17],
[21],  [25],  [31],  [33]–[35];  and  ii)  we  consider  undirected
graphs rather than directed graphs as considered in [30], [33].
We leave  the  extension  to  the  (time-varying)  directed  graphs
with communication efficiency as future research directions.  

B.  Find Global Optimum
Let us next consider the case when Algorithm 1 finds global

optimum. The following assumption is crucial.
f (x)

ν > 0
Assumption  7: The  global  cost  function  satisfies  the

Polyak-Łojasiewicz (P-Ł) condition with constant , i.e.,
 

1
2
∥∇ f (x)∥2 ≥ ν( f (x)− f ∗), ∀x ∈ Rp. (13)

It is straightforward to see that every (essentially or weakly)
strongly convex function satisfies the P-Ł condition. The P-Ł
condition  implies  that  every  stationary  point  is  a  global
minimizer. But unlike (essentially or weak) strong convexity,
the  P-Ł  condition  alone  does  not  imply  convexity  of f.
Moreover,  it  does  not  imply  that  the  global  minimizer  is
unique either [52], [53].

Various  practical  applications,  such  as  least  squares  and
logistic  regression,  do  not  always  have  strongly  convex  cost
functions. The cost function in least squares problems has the
form
 

f (x) =
1
2
∥Ax−b∥2

A ∈ Rm×p b ∈ Rm

f (x)
f (x)

f (x) = x2+3sin2(x)

ν = 1/32

where  and  .  Note  that  if A  has  full  column
rank,  then  is  strongly  convex.  However,  if A  is  rank
deficient, then  is not strongly convex, but it is convex and
satisfies  the  P-Ł  condition.  The  function 
given in [52] is an example of a nonconvex function satisfying the
P-Ł condition with . Moreover, it was shown in [54]
that  the  loss  functions  in  some  applications  satisfy  the  P-Ł
condition in the region near a local minimum. Moreover, [55]

 816 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore.  Restrictions apply. 



proved that the cost function of the policy optimization for the
linear  quadratic  regulator  problem is  nonconvex and satisfies
the  P-Ł  condition.  More  examples  of  nonconvex  functions
satisfying the P-Ł condition can be found in [52], [53].

Although it  is difficult to precisely characterize the general
class  of  functions for  which the P-Ł condition is  satisfied,  in
[52], one important special class was given as follows:

f (x) = g(Ax) g : Rp→ R
A ∈ Rp×p

Lemma 1: Let , where  is a strongly
convex function and  is  a  matrix,  then f  satisfies the
P-Ł condition.

We have the following global convergence results.

T ≥ (c0(κ1, κ2)/κ2)1/θ {x0, . . . , xT }
Theorem 2: Suppose Assumptions 1–7 hold. For any given

,  let  be  the  sequence
generated by Algorithm 1 with
 

αk = κ1βk, βk = κ2(T +1)θ, ηk =
κ2
βk
, ∀k ≤ T (14)

θ ∈ (0,1) κ1 > c1 κ2 ∈ (0,c2(κ1))where , , . Then,
 

E
[1
n

n∑
i=1

∥xi,T − x̄T ∥2
]
= O(

1
T 2θ ) (15a)

 

E[ f (x̄T )− f ∗] = O(
1

nT θ
)+O(

1
T 2θ ). (15b)

Proof: The  explicit  expressions  of  the  right-hand  sides  of
(15a)  and  (15b),  and  the  proof  are  given  in  Appendix  C.  It
should  be  highlighted  that  the  omitted  constants  in  the  first
term  on  the  right-hand  side  of  (15b)  do  not  depend  on  any
parameters related to the communication network. ■

O(1/(nT ))
O(1/(nT ))

f ∗i > −∞
f ∗i =minx∈Rp fi(x)

From Theorem 2, we see that the convergence rate is strictly
greater  than .  In  the  following  we  show  that  the
linear speedup convergence rate  can be achieved if
the  P-Ł  constant ν  is  known  in  advance  and  each ,
where .  The  total  number  of  iterations T  is
not needed.

f ∗i > −∞ {xk}

Theorem  3  (Linear  Speedup): Suppose  Assumptions  1–7
hold,  and  the  P-Ł  constant  ν  is  known  in  advance,  and  each

. Let  be the sequence generated by Algorithm 1
with
 

αk = κ1βk, βk = κ0(k+ t1), ηk =
κ2
βk
, ∀k ∈ N0 (16)

κ0 ∈ [ĉ0νκ2/4, νκ2/4) κ1 > c1 κ2 ∈ (0, ĉ2(κ1))
t1 > ĉ3(κ0, κ1, κ2) ĉ0 ∈ (0,1) ĉ2(κ1)
ĉ3(κ0, κ1, κ2) T ∈ N+

where , , ,  and
 with   being  a  constant,  and

 defined in Appendix D. Then, for any ,
 

E
[1
n

n∑
i=1

∥xi,T − x̄T ∥2
]
= O(

1
T 2 ) (17a)

 

E[ f (x̄T )− f ∗] = O(
1

nT
)+O(

1
T 2 ). (17b)

Proof: The  explicit  expressions  of  the  right-hand  sides  of
(17a)  and  (17b),  and  the  proof  are  given  in  Appendix  D.  It
should  be  highlighted  that  the  omitted  constants  in  the  first
term  on  the  right-hand  side  of  (17b)  do  not  depend  on  any
parameters related to the communication network. ■

O(1/T )Remark  3: It  has  been  shown  in  [51]  that  conver-
gence  rate  is  optimal  for  centralized  strongly  convex  optimi-

O(1/(nT ))

zation.  This  rate  has  been  established  by  various  distributed
SGD  algorithms  when  each  local  cost  function  is  strongly
convex,  e.g.,  [18],  [26],  [42]–[46].  In  contrast,  the  linear
speedup convergence rate  established in Theorem 3
only  requires  that  the  global  cost  function  satisfies  the  P-Ł
condition, but no convexity assumption is required neither on
the  global  cost  function  nor  on  the  local  cost  functions.  The
SGD algorithms in [24], [25], [34], [39]–[41] also achieve the
same  linear  speedup  convergence  rate.  However,  the  algori-
thms in [24], [25], [39] are restricted to a star graph, while our
algorithm  is  applicable  to  an  arbitrarily  connected  graph.
Moreover,  [24],  [25]  assumed  that  the  mean  of  each  local
stochastic gradient is the gradient of the global cost function,
and T  has  to  be  known  to  choose  the  algorithm  parameters.
The  algorithm  in  [25]  furthermore  requires  an  exponentially
increasing  batch  size,  which  is  not  favorable  in  practice.  In
[39],  it  was  assumed that  the  global  cost  function is  strongly
convex. In [34], [39], it was assumed that each local stochastic
gradient  has  bounded  second  moment.  In  [34],  [40],  [41],  it
was assumed that each local cost function is strongly convex.
It  is  one  of  our  future  research  directions  to  achieve  linear
speedup  with  reduced  communication  rounds  and  communi-
cation efficiency for an arbitrarily connected graph.

Theorem  3  shows  that  the  convergence  rate  to  a  global
optimum  is  sublinear  when  we  allow  the  parameters  to  be
time-varying.  The  following  theorem  establishes  that  the
output  of  Algorithm  1  with  constant  algorithm  parameters
linearly converges to a neighborhood of a global optimum.

{xk}Theorem 4: Suppose Assumptions 1–7 hold. Let  be the
sequence generated by Algorithm 1 with
 

αk = α = κ1β, βk = β, ηk = η =
κ2
β
, ∀k ∈ N0 (18)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c0(κ1, κ2)
c0(κ1, κ2), c1, c2(κ1) > 0
where , ,  and  with

 defined in Appendix B. Then,
 

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2+ f (x̄k)− f ∗
]

≤ (1−ηε)kc4+ c5ησ
2, ∀k ∈ N+ (19)

ε ∈ (0,1/η), c4, c5 > 0where  are  constants  defined  in
Appendix E.
    Proof: The proof is given in Appendix E. ■

Remark 4: It should be highlighted the P-Ł constant ν is not
used  to  design  the  algorithm  parameters.  Therefore,  the
constant ν  does  not  need  to  be  known  in  advance.  Similar
convergence  result  as  stated  in  (19)  was  achieved  by  the
distributed SGD algorithms proposed in [26], [46]–[49] when
each local cost function is strongly convex, which obviously is
stronger  than  the  P-Ł  condition  assumed  in  Theorem  4.  In
addition to the strong convexity condition, in [26], it was also
assumed that each local cost function is Lipschitz-continuous.
Some information related to the Lyapunov function and global
parameters,  which  may  be  difficult  to  get,  were  furthermore
needed  to  design  the  stepsize.  Moreover,  in  [46]–[49],  the
strong  convexity  constant  was  needed  to  design  the  stepsize
and in [48], [49], a p-dimensional auxiliary variable, which is
used to track the global gradient, was communicated between
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agents.  The  potential  drawbacks  of  the  results  stated  in
Theorem  4  are  that  i)  we  consider  undirected  graphs  rather
than directed graphs as  considered in  [49];  and ii)  we do not
analyze the robustness level to gradient noise as [46] did. We
leave the extension to  the (time-varying)  directed graphs and
the robustness level analysis as future research directions.

Note that  the unbiased assumption,  i.e.,  Assumption 5,  can
be removed, as shown in the following.

{xk}
Theorem  5  (Biased  SGD): Suppose  Assumptions  1–4,  6,

and 7 hold. Let  be the sequence generated by Algorithm 1
with
 

αk = α = κ1β, βk = β, ηk = η =
κ2
β
, ∀k ∈ N0 (20)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c̆0(κ1, κ2)
c̆0(κ1, κ2) > 0 c1, c2(κ1) > 0
where , ,  and  with

 and   defined  in  Appendices  F  and
B, respectively. Then,
 

E[
1
n

n∑
i=1

∥xi,k − x̄k∥2+ f (x̄k)− f ∗]

≤ (1−ηε)kc4+ c̆5σ
2, ∀k ∈ N+ (21)

ε ∈ (0,1/η), c4 > 0 c̆5 > 0where  and   are  constants  defined  in
Appendices E and F, respectively.

Proof: The proof is given in Appendix F. ■

O(η) O(1)
σ = 0

Remark 5: By comparing (19) with (21), we can see that no
matter  the  unbiased  assumption  holds  or  not,  the  output  of
Algorithm 1 with constant parameters linearly converges to a
neighborhood  of  a  global  optimum,  but  the  size  of
neighborhood  is  different.  Specifically,  in  (19)  the  size  of
neighborhood is in an order of ,  while it  is  in (21).
When true gradients are available,  i.e., ,  then from (19)
or (21) we know that a global optimum can be linearly found.
It  should  be  highlighted that  this  linear  convergence result  is
established  under  the  P-Ł  condition  and  the  P-Ł  constant  is
not  used  to  design  the  algorithm  parameters.  These  are  two
advantages  since  in  existing  studies  obtaining  linear
convergence  for  distributed  smooth  optimization,  e.g.,
[56]–[58],  it  is  standard  to  assume  (restricted)  strong
convexity, which is stronger than the P-Ł condition, and to use
the convexity parameter.  

IV.  Simulations

In this section, we evaluate the performance of the proposed
distributed  primal-dual  SGD  algorithm  through  numerical
experiments.  All  algorithms  and  agents  are  implemented  and
simulated  in  MATLAB R2018b,  run  on  a  desktop  with  Intel
Core  i5-9600K  processor,  Nvidia  RTX  2070  super,  32  GB
RAM, Ubuntu 16.04.  

A.  Neural Networks
We consider the training of neural networks (NN) for image

classification tasks of the database MNIST [59]. The same NN
is  adopted  as  in  [28]  for  each  agent  and  the  communication
graph is generated randomly. The graph is shown in Fig. 1 and
the  corresponding  Laplacian  matrix L  is  given  in  (22).  The
corresponding mixing matrix W  is  constructed by Metropolis
weights, which is given in (23). 

L =



1 −1 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0
0 −1 3 −1 0 0 −1 0 0 0
0 −1 −1 4 −1 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 −1 −1 2 0 0 0 0
0 0 −1 0 0 0 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 1



.

(22)
 

W =



3/4 1/4 0 0 0
1/4 3/10 1/4 1/5 0
0 1/4 3/10 1/5 0
0 1/5 1/5 1/5 1/5
0 0 0 1/5 7/15
0 0 0 1/5 1/3
0 0 1/4 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 1/4 0 0 0

1/5 0 0 0 0
1/3 0 0 0 0

7/15 0 0 0 0
0 5/12 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3
0 0 0 1/3 2/3



. (23)

Each local neural network consists of a single hidden layer
of  50  neurons,  followed  by  a  sigmoid  activation  layer,
followed  by  the  output  layer  of  10  neurons  and  another
sigmoid  activation  layer.  In  this  experiment,  we  use  a  subset
of  MNIST  data  set.  Each  agent  is  assigned 2500  data  points
randomly, and at each iteration, only one data point is picked
up by the agent following a uniform distribution.

We  compare  our  proposed  distributed  primal-dual  SGD
algorithm  with  time-varying  and  fixed  parameters  (DPD-
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Fig. 1.     Connection topology.
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D2

SGD-T  and  DPD-SGD-F)  with  state-of-the-art  algorithms:
distributed  momentum  SGD  algorithm  (DM-SGD)  [23],
distributed  SGD  algorithm  (D-SGD-1)  [26],  [27],  distributed
SGD  algorithm  (D-SGD-2)  [28],  [36 ],  distributed
stochastic  gradient  tracking  algorithm  (D-SGT-1)  [37],  [49],
distributed  stochastic  gradient  tracking  algorithm  (D-SGT-2)
[38],  [48],  and  the  baseline  centralized  SGD  algorithm  (C-
SGD).  We  list  all  the  parameters1 we  choose  in  the  NN
experiment for each algorithm in Table II.
 

TABLE II 

Parameters in Each Algorithm in NN Experiment

Algorithm ηk αk βk

DPD-SGD-T 0.08/k10−5
4k10−5

3k10−5

DPD-SGD-F 0.03 5 20

DM-SGD [23] 0.1 × 0.8

D-SGD-1 [26], [27] 0.1 × ×

D-SGD-2 [28] × 0.1/(10−5k+1) 0.2/(10−5k+1)0.3

D2 [36] 0.01 × ×

D-SGT-1 [37], [49] 0.01 × ×

D-SGT-2 [38], [48] 0.01 × ×

C-SGD 0.1 × ×

 
 

We  demonstrate  the  result  in  terms  of  the  empirical  risk
function [60], which is given as
 

R(z) = −1
n

n∑
i=1

1
mn

mn∑
j=1

9∑
k=0

(tk lnyk(x, z)

+ (1− tk) ln(1− yk(x, z)))
mn tk

z = (z(1),z(2)) z(1)

z(2)

yk ∈ [0,1]
k = 0, . . . ,9

where  indicates  the  size  of  data  set  for  each  agent, 
denotes the target (ground truth) of digit k corresponding to a
single image, x is a single image input,  with 
and  being  the  weights  in  the  2  layers  respectively,  and

 is the output which expresses the probability of digit
. The mapping from input to output is given as

 

yk(x, z) = σ

 50∑
j=0

z(2)
k, jσ

28×28∑
i=0

z(1)
j,i xi




σ(s) = 1
1+exp(−s)where  is the sigmoid function.

Fig. 2 shows that the proposed distributed primal-dual SGD
algorithms with time-varying parameters converges almost as
fast  as the distributed SGD algorithm in [26],  [27] and faster
than  the  distributed  SGD algorithms  in  [28],  [36]–[38],  [48],
[49]  and  the  centralized  SGD  algorithm.  Note  that  our
algorithm  converges  slower  than  the  distributed  momentum
SGD algorithm [23]. This is reasonable since that algorithm is
an  accelerated  algorithm  with  extra  requirement  on  the  cost
functions,  i.e.,  the  deviations  between  the  gradients  of  local
cost  functions  are  bounded,  and  it  requires  each  agent  to
communicate three p-dimensional variables with its neighbors
at each iteration. The slopes of the curves are however almost
the same. The accuracy of each algorithm is given in Table III.  

B.  Convolutional Neural Networks
Let  us  consider  the  training  of  a  convolutional  neural

networks  (CNN)  model.  We  build  a  CNN  model  for  each
agent  with  five  3×3  convolutional  layers  using  ReLU  as
activation  function,  one  average  pooling  layer  with  filters  of
size  2×2,  one  sigmoid  layer  with  dimension  360,  another
sigmoid  layer  with  dimension  60,  one  softmax  layer  with
dimension  10.  In  this  experiment,  we  use  the  whole  MNIST
data  set.  We  use  the  same  communication  graph  as  in  the
above  NN  experiment.  Each  agent  is  assigned 6000  data
points randomly. We set the batch size as 20, which means at
each iteration, 20 data points are chosen by the agent to update
the  gradient,  which  is  also  following  a  uniform  distribution.
For each algorithm, we do 10 epochs to train the CNN model.

We compare our algorithms DPD-SGD-T and DPD-SGD-F
with  the  fastest  ones  for  the  neural  networks  case,  i.e.,  DM-
SGD  [23],  D-SGD-1  [26],  [27],  and  C-SGD.  We  list  all  the
parameters  we  choose  in  the  CNN  experiment  for  each
algorithm in Table IV.

We  demonstrate  the  training  loss  and  the  test  accuracy  of
each  algorithm  in Figs. 3  and  4  respectively.  Here  we  use
Categorical Cross-Entropy loss, which is a softmax activation
plus  a  Cross-Entropy  loss.  We  can  see  that  our  algorithms
perform almost the same as the DM-SGD and better than the
D-SGD-1  and  the  centralized  C-SGD.  The  accuracy  of  each
algorithm is given in Table V.  

  
1 Note: the parameter names are different in each paper.

 

102

100 101 102 103 104 105 106

100

10−2

10−4

10−6

Iteration k

Em
pi

ric
al

 ri
sk

 fu
nc

tio
n

DPD-SGD-T
DPD-SGD-F
DM-SGD in [23]
D-SGD-1 in [26], [27]
D-SGD-2 in [28]
D2 in [36]
D-SGT-1 in [37], [49]
D-SGT-2 in [38], [48]
C-SGD

 
Fig. 2.     Empirical risk.
 

 

TABLE III 

Accuracy on Each Algorithm in NN Experiment

Algorithm Accuracy

DPD-SGD-T 93.04%

DPD-SGD-F 92.76%

DM-SGD [23] 93.44%

D-SGD-1 [26], [27] 92.96%

D-SGD-2 [28] 92.88%

D2 [36] 90.44%

D-SGT-1 [37], [49] 92.88%

D-SGT-2 [38], [48] 92.96%

C-SGD 93%
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V.  Conclusions

In  this  paper,  we  studied  distributed  nonconvex  optimiza-
tion.  We  proposed  a  distributed  primal-dual  SGD  algorithm
and derived its convergence rate. More specifically, the linear

O(1/
√

nT )

O(1/(nT ))

speedup  convergence  rate  was  established  for
smooth nonconvex cost  functions  under  arbitrarily  connected
communication  networks.  The  convergence  rate  was
improved  to  the  linear  speedup  convergence  rate 
when  the  global  cost  function  additionally  satisfies  the  P-Ł
condition.  It  was  also  shown  that  the  output  of  the  proposed
algorithm  with  constant  parameters  linearly  converges  to  a
neighborhood  of  a  global  optimum.  Interesting  directions  for
future  work  include  achieving  linear  speedup  under  the  P-Ł
condition while considering communication reduction.  

Appendix
  

A.  Notations and Useful Lemmas
In A⊗B

null(A)

M,N M ≥ N M−N ρ(·)
ρ2(·)

∥x∥2A xT Ax ⌈·⌉
⌊·⌋
x ∈ R [x]+ 1(·)

n ∈ N0 n!

 is  the n -dimensional  identity  matrix.  The  notation 
denotes the Kronecker product of matrices A and B.  is
the  null  space  of  matrix A .  Given  two  symmetric  matrices

,  means that  is positive semi-definite. 
stands for the spectral radius of a matrix and  indicates the
minimum  positive  eigenvalue  for  a  matrix  having  positive
eigenvalues. For any square matrix A,   denotes . 
and  denote the ceiling and floor functions, respectively. For
any ,  is  the  positive  part  of x.   is  the  indicator
function. For any ,  is the factorial of n.

Kn = In− 1
n 1n1⊤n K = Kn⊗ Ip H = 1

n (1n1T
n ⊗ Ip)

x̄k =
1
n (1T

n ⊗ Ip)xk x̄k = 1n⊗ x̄k gk = ∇ f̃ (xk) ḡk = Hgk

g0
k = ∇ f̃ (x̄k) ḡ0

k = Hg0
k = 1n⊗∇ f (x̄k) ḡu

k = Hgu
k

Denote , , ,
, , , ,

, , and .
The following results are used in the proofs.

f (x) : Rp 7→ R L f > 0
Lemma  2  (Lemma  1.2.3  in  [61]  and  Lemma  3  in  [62]): If

the  function  is  smooth  with  constant ,
then,
 

| f (y)− f (x)− (y− x)T∇ f (x)| ≤
L f

2
∥y− x∥2 (24a)

 

∥∇ f (x)∥2 ≤ 2L f ( f (x)− f ∗), ∀x,y ∈ Rp (24b)

f ∗ =minx∈Rp f (x)where .

G
null(L) = null(Kn) = {1n} L ≤ ρ(L)In

ρ(Kn) = 1

Lemma 3 (Lemmas 1 and 2 in [63]): Let L be the Laplacian
matrix  of  the  graph .  If  Assumption  1  holds,  then L  is
positive  semi-definite, , ,

,
 

KnL = LKn = L (25)
 

0 ≤ ρ2(L)Kn ≤ L ≤ ρ(L)Kn. (26)
[r R] ∈ Rn×n

r = 1√
n
1n R ∈ Rn×(n−1)

Moreover,  there  exists  an  orthogonal  matrix 
with  and  such that
 

RΛ−1
1 R⊤L = LRΛ−1

1 R⊤ = Kn (27)
 

1
ρ(L)

Kn ≤ RΛ−1
1 R⊤ ≤ 1

ρ2(L)
Kn (28)

Λ1 = diag([λ2, . . . ,λn]) 0 < λ2 ≤ · · · ≤ λnwhere  with   being  the
eigenvalues of the Laplacian matrix L.

a ∈ (0,1)Lemma 4: Let  be a constant, then
 

(1−a)T ≤ k!
(aT )k , ∀k,T ∈ N0. (29)

a ∈ (0,1) ln(1−a) ≤ −aProof: For  any  constant ,  we  have .
Thus,

 

TABLE IV 

Parameters in Each Algorithm in CNN Experiment

Algorithm ηk αk βk

DPD-SGD-T 0.5/k10−5
0.5k10−5

0.1k10−5

DPD-SGD-F 0.5 0.5 0.1

DM-SGD [23] 0.1 × 0.8

D-SGD-1 [26], [27] 0.1 × ×

C-SGD 0.1 × ×
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Fig. 3.     CNN training loss.
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Fig. 4.     CNN accuracy.
 

 

TABLE V 

Accuracy on Each Algorithm in CNN Experiment

Algorithm Accuracy

DPD-SGD-T 94.75%

DPD-SGD-F 93.17%

DM-SGD [23] 94.29%

D-SGD-1 [26], [27] 92.96%

C-SGD 89.91%
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(1−a)T ≤ e−aT , ∀T ∈ N0. (30)

x > 0 ex > xk

k! , ∀k ∈ N0For  any  constant ,  we  have .  This
result together with (30) yields (29). ■

{zk} {r1,k} {r2,k}
t1 ∈ N+

Lemma 5: Let  , ,  and  be  sequences.  Suppose
there exists  such that
 

zk ≥ 0 (31a)
 

zk+1 ≤ (1− r1,k)zk + r2,k (31b)
 

1 > r1,k ≥
a1

(k+ t1)δ (31c)

 

r2,k ≤
a2

(k+ t1)2 , ∀k ∈ N0 (31d)

δ ≥ 0 a1 > 0 a2 > 0where , , and  are constants.
δ = 1i) If , then,

 

zk ≤ ϕ1(k, t1,a1,a2,z0), ∀k ∈ N+ (32)
where
 

ϕ1(k, t1,a1,a2,z0) =
ta1
1 z0

(k+ t1)a1
+

a2

(k+ t1−1)2

+4a2s1(k+ t1) (33)
and
 

s1(k) =



1
(a1−1)k

, i f a1 > 1

ln(k−1)
k

, i f a1 = 1

−ta1−1
1

(a1−1)ka1
, i f a1 < 1.

δ = 0ii) If , then,
 

zk ≤ ϕ2(k, t1,a1,a2,z0), ∀k ∈ N+ (34)
where
 

ϕ2(k, t1,a1,a2,z0)

= (1−a1)kz0+a2(1−a1)k+t1−1
(
[t2− t1]+s2(t1)

+ ([t3− t1]+− [t2− t1]+)s2(t3)
)

+
1(k+t1−1≥t3)2a2

− ln(1−a1)(k+ t1)2(1−a1)
(35)

s2(k) = 1
k2(1−a1)k t2 = ⌈ −2

ln(1−a1) ⌉ t3 = ⌈ −4
ln(1−a1) ⌉, , and .

k ∈ N+Proof: i) From (31a)–(31c), for any , it holds that
 

zk ≤
k−1∏
τ=0

(1− r1,τ)z0+ r2,k−1+

k−2∑
l=0

k−1∏
τ=l+1

(1− r1,τ)r2,l. (36)

t ∈ [0,1] 1− t ≤ e−t s3(t) = 1−
t− e−t [0,1]

k > l ≥ 0

For  any ,  it  holds  that  since  
 is a non-increasing function in the interval . Thus,

for any , it holds that
 

k−1∏
τ=l

(1− r1,τ) ≤ e−
∑k−1
τ=l r1,τ . (37)

We also have 

k−1∑
τ=l

r1,τ ≥
k−1∑
τ=l

a1

τ+ t1
=

k−1+t1∑
τ=l+t1

a1

τ

≥
w k+t1

t=l+t1

a1

t
dt = a1(ln(k+ t1)− ln(l+ t1)) (38)

s4(t) = a1/t
[1,+∞)

where  the  first  inequality  holds  due  to  (31c)  and  the  second
inequality  holds  since  is  a  decreasing function in
the interval .

Hence, (37) and (38) yield
 

k−1∏
τ=l

(1− r1,τ) ≤ e−
∑k−1
τ=l r1,τ ≤ (l+ t1)a1

(k+ t1)a1
. (39)

We have
 

k−2∑
l=0

k−1∏
τ=l+1

(1− r1,τ)r2,l ≤
k−2∑
l=0

(l+ t1+1)a1

(k+ t1)a1

a2

(l+ t1)2

≤
k−2∑
l=0

(l+ t1+1)a1

(k+ t1)a1

a2

( t1
t1+1 l+ t1)2

=
( t1+1

t1
)2a2

(k+ t1)a1

k−2∑
l=0

(l+ t1+1)a1

(l+ t1+1)2

=
4a2

(k+ t1)a1

k+t1−1∑
l=t1+1

la1−2 (40)

where the first inequality holds due to (39) and (31d).
From (36), (39), and (40), we have (32).

a = 1−a1 δ = 0
a1 ∈ (0,1) a ∈ (0,1)

ii)  Denote .  From  (31c)  and ,  we  know  that
. Thus, .

δ1 = 0 k ∈ N+From (31a)–(31d) and , for any , it holds that
 

zk ≤ (1−a1)kz0+

k−1∑
τ=0

(1−a1)k−1−τr2,τ

≤ akz0+a2ak+t1−1
k−1∑
τ=0

1
(τ+ t1)2aτ+t1

. (41)

We have
 

k−1∑
τ=0

1
(τ+ t1)2aτ+t1

=

k+t1−1∑
τ=t1

1
τ2aτ

=

t2−1∑
τ=t1

s2(τ)+
t3−1∑
τ=t2

s2(τ)+
k+t1−1∑
τ=t3

s2(τ). (42)

s2(t) = 1/(t2at)
[1, t2−1] [t2,+∞)

We  know  that  is  decreasing  and  increasing
in the intervals  and , respectively, since
 

ds2(t)
dt
= −s2(t)

(2
t
+ ln(a)

)
≤ 0, ∀t ∈

(
0,
−2

ln(a)

]
,

ds2(t)
dt
= −s2(t)

(2
t
+ ln(a)

)
≥ 0, ∀t ∈

[ −2
ln(a)

,+∞
)
.

Thus, we have
 

t2−1∑
τ=k1

s2(τ) ≤ (t2− k1)s2(k1), ∀k1 ∈ [1, t2−1] (43a)
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t3−1∑
τ=k2

s2(τ) ≤ (t3− k2)s2(t3), ∀k2 ∈ [t2, t3−1] (43b)

 

k3∑
τ=t3

s2(τ) ≤
w k3+1

t3
s2(t)dt, ∀k3 ≥ t3. (43c)

b = 1/aDenote . We have
 w k3+1

t3
s2(t)dt =

w k3+1

t3

bt

t2 dt =
w k3+1

t3

1
ln(b)t2 dbt

=
bk3+1

ln(b)(k3+1)2 −
bt3

ln(b)t2
3

+
w k3+1

t3

2bt

ln(b)t3 dt

≤ bk3+1

ln(b)(k3+1)2 +
w k3+1

t3

2
ln(b)t

s2(t)dt

≤ bk3+1

ln(b)(k3+1)2 +
2

ln(b)t3

w k3+1

t3
s2(t)dt

≤ bk3+1

ln(b)(k3+1)2 +
1
2

w k3+1

t3
s2(t)dt

(44)

t3 = ⌈ −4
ln(1−a1) ⌉ ≥

−4
ln(1−a1) =

4
ln(b)

where the last inequality holds due to 
.

From (43c) and (44), we have
 

k3∑
τ=t3

s2(τ) ≤ −2
ln(a)(k3+1)2ak3+1 , ∀k3 ≥ t3. (45)

From (41), (42), (43a), (43b), and (45), we get (34). ■
Lemma 6: Suppose Assumptions 1 and 3–6 hold.  Then the

following holds for Algorithm 1:
 

EFk [W1,k+1] ≤W1,k −∥xk∥2ηkαk L− 1
2 ηk K− 3

2 η
2
kα

2
k L2− 1

2 ηk(1+5ηk)L2
f K

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥23
2 η

2
kβ

2
k K

+2nσ2η2
k (46)

W1,k =
1
2 ∥xk∥2Kwhere .

∇ f̃
L f > 0

Proof: Noting that  is Lipschitz-continuous with constant
 since Assumption 3 is satisfied, we have that

 

∥g0
k − gk∥2 ≤ L2

f ∥x̄k − xk∥2 = L2
f ∥xk∥2K . (47)

From Assumptions 4–6, we know that
 

EFk [gu
k] = gk (48a)

 

EFk [∥gu
k − gk∥2] ≤ nσ2. (48b)

From  (47),  (48b),  and  the  Cauchy-Schwarz  inequality,  we
have
 

EFk [∥g0
k − gu

k∥
2] = EFk [∥g0

k − gk + gk − gu
k∥

2]

≤ 2∥g0
k − gk∥2+2EUk [∥gk − gu

k∥
2]

≤ 2L2
f ∥xk∥2K +2nσ2. (49)

We have
 

EFk [W1,k+1] = EFk

[1
2
∥xk+1∥2K

]
= EFk

[1
2
∥xk −ηk(αk Lxk +βkvk + gu

k)∥2K
]

= EFk

[1
2
∥xk∥2K −ηkαk∥xk∥2L+

1
2
η2

kα
2
k∥xk∥2L2

−ηkβk xT
k (Inp−ηkαk L)K

(
vk +

1
βk

gu
k

)
+

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

gu
k

∥∥∥∥2K]
=

1
2
∥xk∥2K −∥xk∥2ηkαk L− 1

2 η
2
kα

2
k L2 −ηkβk xT

k (Inp

−ηkαk L)K
(
vk +

1
βk

g0
k +

1
βk

gk −
1
βk

g0
k

)
+

1
2
η2

kβ
2
kEFk

[∥∥∥∥vk +
1
βk

g0
k +

1
βk

gu
k −

1
βk

g0
k

∥∥∥∥2K]
≤W1,k −∥xk∥2ηkαk L− 1

2 η
2
kα

2
k L2

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
ηk

2
∥xk∥2K +

ηk

2
∥gk − g0

k∥
2

+
1
2
η2

kα
2
k∥xk∥2L2 +

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

kα
2
k∥xk∥2L2 +

1
2
η2

k∥gk − g0
k∥

2

+η2
kβ

2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +η2
kEFk [∥gu

k − g0
k∥

2]

=W1,k −∥xk∥2ηkαk L− 1
2 ηk K− 3

2 η
2
kα

2
k L2

+
ηk

2
(1+ηk)∥gk − g0

k∥
2+η2

kEFk [∥gu
k − g0

k∥
2]

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥23
2 η

2
kβ

2
k K

(50)

xk vk Fk

ρ(K) = 1

where the second equality holds due to (5a); the third equality
holds due to (25) in Lemma 3; the fourth equality holds since

 and   are  independent  of  and  (48a),  respectively;  and
the inequality holds due to the Cauchy-Schwarz inequality and

.
    Then, from (47), (49), and (50), we have (46). ■

{βk}Lemma  7: Suppose  Assumptions  1  and  3  hold,  and  is
non-decreasing. Then the following holds for Algorithm 1:
 

W2,k+1 ≤W2,k + (1+ωk)ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+

1
2

(ηk +ωk +ηkωk)
( 1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K
+ ∥xk∥2(1+ωk)η2kβ

2
k (L+κ1 L2)

+
ηk

β2
k

(
ηk +

1
2

)
(1+ωk)

( 1
ρ2(L)

+ κ1
)
L2

f ∥ ḡ
u
k∥

2

+
1
2

( 1
ρ2(L)

+ κ1
)
(ωk +ω

2
k)∥g0

k+1∥
2 (51)
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W2,k =
1
2 ∥vk +

1
βk

g0
k∥

2
Q+κ1 K Q = RΛ−1

1 R⊤⊗ Ip

Λ−1
1 ωk =

1
βk
− 1
βk+1

κ1 > 0

where ,  with
matrices R  and   given  in  Lemma  3, ,  and

 is a constant.
v̄k =

1
n (1T

n ⊗ Ip)vkProof: Denote . Then, from (5b), we know
that
 

v̄k+1 = v̄k. (52)∑n
i=1 vi,0 = 0pThen, from (52) and , it can be obtained that

 

v̄k = 0p. (53)
Then, from (53) and (5a), we have

 

x̄k+1 = x̄k −ηk ḡu
k . (54)

∇ f̃Since  is Lipschitz-continuous and (54), we have
 

∥g0
k+1− g0

k∥
2 ≤ L2

f ∥x̄k+1− x̄k∥2 = η2
k L2

f ∥ ḡ
u
k∥

2. (55)

ωk ≥ 0 {βk}We know that  since  is non-decreasing. We have
 

W2,k+1 =
1
2

∥∥∥∥vk+1+
1
βk+1

g0
k+1

∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk+1+
1
βk

g0
k+1+

( 1
βk+1
− 1
βk

)
g0

k+1

∥∥∥∥2Q+κ1 K

≤ 1
2

(1+ωk)
∥∥∥∥vk+1+

1
βk

g0
k+1

∥∥∥∥2Q+κ1 K

+
1
2

(ωk +ω
2
k)∥g0

k+1∥
2
Q+κ1 K (56)

where  the  inequality  holds  due  to  the  Cauchy-Schwarz
inequality.

For the first term on the right-hand side of (56), we have
 

1
2

∥∥∥∥vk+1+
1
βk

g0
k+1

∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk +
1
βk

g0
k +ηkβk Lxk +

1
βk

(g0
k+1− g0

k)
∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2Q+κ1 K

+ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥21

2 η
2
kβ

2
k (L+κ1 L2)

+
1

2β2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
1
βk

(
vk +

1
βk

g0
k +ηkβk Lxk

)T
(Q+ κ1K)(g0

k+1− g0
k)

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥21

2 η
2
kβ

2
k (L+κ1 L2)

+
1

2β2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
ηk

2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2Q+κ1 K
+

1
2ηkβ

2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
1
2
η2

kβ
2
k∥Lxk∥2Q+κ1 K +

1
2β2

k

∥g0
k+1− g0

k∥
2
Q+κ1 K

=W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)

 

+ ∥xk∥2η2kβ2
k (L+κ1 L2)

+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
1
β2

k

(
1+

1
2ηk

)
∥g0

k+1− g0
k∥

2
Q+κ1 K

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥2η2kβ2

k (L+κ1 L2)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
1
β2

k

(
1+

1
2ηk

)( 1
ρ2(L)

+ κ1
)
∥g0

k+1− g0
k∥

2

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥2η2kβ2

k (L+κ1 L2)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
ηk

β2
k

(
ηk +

1
2

)( 1
ρ2(L)

+ κ1
)
L2

f ∥ ḡ
u
k∥

2 (57)

ρ(Q+ κ1K) ≤ ρ(Q)+ κ1ρ(K) ρ(K) = 1

where the first equality holds due to (5b); the second equality
holds  due  to  (25)  and  (27)  in  Lemma  3;  the  first  inequality
holds due to the Cauchy-Schwarz inequality; the last equality
holds due to (25) and (27) in Lemma 3; the second inequality
holds  due  to ,  (28), ;  and
the last inequality holds due to (55).

For the second term on the right-hand side of (56), we have
 

∥g0
k+1∥

2
Q+κ1 K ≤

( 1
ρ2(L)

+ κ1
)
∥g0

k+1∥
2. (58)

Also note that
 ∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2Q+κ1 K
≤
( 1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K . (59)

    Then, from (56)–(59), we have (51). ■
{βk}Lemma 8: Suppose Assumptions 1 and 3–6 hold, and  in

non-decreasing. Then the following holds for Algorithm 1:
 

EFk [W3,k+1] ≤W3,k − (1+ωk)ηkαk xT
k L
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηk(βk L+ 1

2 K)+η2k ( 1
2α

2
k−αkβk+β

2
k )L2

+ ∥xk∥21
2ωkηkαk L2+ 1

2 ηk(1+3ηk)L2
f K

+
ηk

2β2
k

(1+3ηk)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k−

1
2ωkαk)K

+
1
2
ωkEFk [2W1,k+1+ ∥g0

k+1∥
2] (60)

W3,k = xT
k K(vk +

1
βk

g0
k)where .

Proof: We have
 

W3,k+1 = xT
k+1K
(
vk+1+

1
βk+1

g0
k+1

)
= xT

k+1K
(
vk+1+

1
βk

g0
k+1+

( 1
βk+1
− 1
βk

)
g0

k+1

)
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= xT
k+1K
(
vk+1+

1
βk

g0
k+1

)
−ωk xT

k+1K g0
k+1

≤ xT
k+1K
(
vk+1+

1
βk

g0
k+1

)
+

1
2
ωk(∥xk+1∥2K + ∥g0

k+1∥
2). (61)

For the first term on the right-hand side of (61), we have
 

EFk

[
xT

k+1K
(
vk+1+

1
βk

g0
k+1

)]
= EFk

[
(xk −ηk(αk Lxk +βkvk + g0

k + gu
k − g0

k))T

×K
(
vk +

1
βk

g0
k +ηkβk Lxk +

1
βk

(
g0

k+1− g0
k

))]
= xT

k (K−ηk(αk +ηkβ
2
k)L)
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηkβk(L−ηkαk L2)

+
1
βk

xT
k (K−ηkαk L)EFk [g0

k+1− g0
k]

−ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
−ηk
(
vk +

1
βk

g0
k

)T
KEFk [g0

k+1− g0
k]

−ηk(gk − g0
k)T K

(
vk +

1
βk

g0
k +ηkβk Lxk

)
− 1
βk

EFk [ηk(gu
k − g0

k)T K(g0
k+1− g0

k)]

≤ xT
k (K−ηkαk L)

(
vk +

1
βk

g0
k

)
+

1
2
η2

kβ
2
k∥Lxk∥2

+
1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K + ∥xk∥2ηkβk(L−ηkαk L2)

+
1
2
ηk∥xk∥2K +

1
2ηkβ

2
k

EFk [∥g0
k+1− g0

k∥
2

 

+
1
2
η2

kα
2
k∥Lxk∥2+

1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

−ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K + 1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

+
1
2
ηk∥gk − g0

k∥
2+

1
2
ηk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

k∥gk − g0
k∥

2+
1
2
η2

kβ
2
k∥Lxk∥2

+
1
2
η2

kEFk [∥gu
k − g0

k∥
2]+

1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

= xT
k (K−ηkαk L)

(
vk +

1
βk

g0
k

)
 

+
1
2

(ηk +η
2
k)∥gk − g0

k∥
2+

1
2
η2

kEFk [∥gu
k − g0

k∥
2]

+ ∥xk∥2ηk(βk L+ 1
2 K)+η2k ( 1

2α
2
k−αkβk+β

2
k )L2

+
( 1
2ηkβ

2
k

+
3

2β2
k

)
EFk [∥g0

k+1− g0
k∥

2]

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k )K

≤ xT
k K
(
vk +

1
βk

g0
k

)
− (1+ωk)ηkαk xT

k L
(
vk +

1
βk

g0
k

)
+ωkηkαk xT

k L
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηk(βk L+ 1

2 K)+η2k ( 1
2α

2
k−αkβk+β

2
k )L2+ 1

2 ηk(1+3ηk)L2
f K

+
ηk

2β2
k

(1+3ηk)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k )K

(62)

xk vk Fk

ρ(K) = 1

where  the  first  equality  holds  due  to  (5);  the  second equality
holds since (25) in Lemma 3,  and  are independent of ,
and  (48a);  the  first  inequality  holds  due  to  the  Cauchy-
Schwarz  inequality,  (25), ,  and  the  Jensen’s
inequality; and the last inequality holds due to (47), (49), and
(55). For the third term on the right-hand side of (62), we have
 

ωkηkαk xT
k L
(
vk +

1
βk

g0
k

)
= ωkηkαk xT

k LK
(
vk +

1
βk

g0
k

)
≤ ∥xk∥21

2ωkηkαk L2 +
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2ωkηkαk K

. (63)

    Then, from (61)–(63), we have (60). ■
Lemma  9: Suppose  Assumptions  2–5  hold.  Then  the

following holds for Algorithm 1:
 

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡk∥2+ ∥xk∥2ηk

2 L2
f K

− ηk

4
∥ ḡ0

k∥
2+

1
2
η2

k L f EFk [∥ ḡu
k∥

2] (64)

W4,k = n( f (x̄k)− f ∗) = f̃ (x̄k)−n f ∗where .
W4,k

f ∗ > −∞
Proof: We  first  note  that  is  well  defined  due  to

 as assumed in Assumption 2.
ρ(H) = 1From (47) and , it can be obtained that

 

∥ ḡ0
k − ḡk∥2 = ∥H(g0

k − gk)∥2 ≤ ∥g0
k − gk∥2 ≤ L2

f ∥xk∥2K . (65)

From (48a), it can be calculated that
 

EFk [ ḡu
k] = EFk [Hgu

k] = HEFk [gu
k] = ḡk. (66)

We have
 

EFk [W4,k+1] = EFk [ f̃ (x̄k+1)−n f ∗]

= EFk [ f̃ (x̄k)−n f ∗+ f̃ (x̄k+1)− f̃ (x̄k)]
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≤ EFk [ f̃ (x̄k)−n f ∗−ηk( ḡu
k)T g0

k +
1
2
η2

k L f ∥ ḡu
k∥

2]

= f̃ (x̄k)−n f ∗−ηk ḡT
k g0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

= f̃ (x̄k)−n f ∗−ηk ḡT
k ḡ0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

=W4,k −
ηk

2
ḡT

k ( ḡk + ḡ0
k − ḡk)

− ηk

2
( ḡk − ḡ0

k + ḡ0
k)T ḡ0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

≤W4,k −
ηk

4
∥ ḡk∥2+

ηk

4
∥ ḡ0

k − ḡk∥2−
ηk

4
∥ ḡ0

k∥
2

+
ηk

4
∥ ḡ0

k − ḡk∥2+
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

=W4,k −
ηk

4
∥ ḡk∥2+

ηk

2
∥ ḡ0

k − ḡk∥2

− ηk

4
∥ ḡ0

k∥
2+

1
2
η2

k L f EFk [∥ ḡu
k∥

2] (67)

f̃
xk vk

Fk

ḡT
k g0

k = gT
k Hg0

k = gT
k HHg0

k = ḡT
k ḡ0

k

where the first  inequality holds since that  is  smooth,  (24a)
and  (54);  the  third  equality  holds  since  and   are
independent  of  and  (66);  the  fourth  equality  holds  due  to

;  and  the  second  inequa-
lity holds due to the Cauchy-Schwarz inequality.

Then, from (65) and (67), we have (64). ■  

B.  Proof of Theorem 1
We denote the following notations:

 

c0(κ1, κ2) =max{4κ2ε5, ε6}

c1 =
1
ρ2(L)

+1

c2(κ1) =min
{ε1
ε2
,

1
5

}
κ3 =

1
ρ2(L)

+ κ1+1

κ4 =
1
ρ2(L)

+ κ1+
3
2

κ5 =
κ1+1

2
+

1
2ρ2(L)

κ6 =min
{ 1
2ρ(L)

,
κ1−1
2κ1

}
ε1 = (κ1−1)ρ2(L)−1

ε2 = ρ(L)+ (2κ21 +1)ρ(L2)+1

ε3 = ε1κ2−ε2κ22

ε4 =
1
2

(κ2−5κ22)

ε5 = L f +
1
κ2ε6
κ3L2

f +
2
ε26
κ4L2

f

ε6 =max
{1
2

(2+3L2
f ), κ3

}
.

To prove Theorem 1, we need the following lemma:

αk = α = κ1β βk = β ≥ c0(κ1, κ2) ηk = η = κ2/β

κ1 > c1 κ2 ∈ (0,c2(κ1)) k ∈ N0

Lemma  10: Suppose  Assumptions  1–6  hold.  Suppose
, ,  and ,  where

 and . Then, for any  the following
holds for Algorithm 1:
 

EFk [Wk+1] ≤Wk −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

− 1
4
η∥ ḡ0

k∥
2+ (ε5+3n)σ2η2 (68a)

 

EFk [W̆k+1] ≤ W̆k −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K
+2ε5η2∥ ḡ0

k∥
2

+2L2
f ε5η

2∥xk∥2K + (ε5+3n)σ2η2 (68b)
 

EFk [W4,k+1] ≤W4,k −
1
4
η∥ ḡ0

k∥
2+ ∥xk∥21

2 ηL
2
f K
+L fσ

2η2

(68c)
Wk =

∑4
i=1 Wi,k W̆k =

∑3
i=1 Wi,kwhere  and .

αk = α = κ1β βk = β ηk = η

ωk =
1
βk
− 1
βk+1
= 0

Proof: i)  Noting  that , , ,  and
, from (46), (51), (60), and (64), we have

 

EFk [Wk+1] ≤Wk +
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥23
2 η

2β2 K
+2nσ2η2

−∥xk∥2ηαL− 1
2 ηK−

3
2 η

2α2 L2− 1
2 η(1+5η)L2

f K

+ ∥xk∥2η2β2(L+κ1 L2)+
1
2
η
( 1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2K
+
η

β2

(
η+

1
2

)( 1
ρ2(L)

+ κ1
)
L2

f EFk [∥ ḡu
k∥

2]

+ ∥xk∥2η(βL+ 1
2 K)+η2( 1

2α
2−αβ+β2)L2+ 1

2 η(1+3η)L2
f K

+
η

2β2 (1+3η)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
η(β− 1

2−ηβ2)K
− 1

4
η∥ ḡk∥2

+ ∥xk∥21
2 ηL

2
f K
− 1

4
η∥ ḡ0

k∥
2+

1
2
η2L f EFk [∥ ḡu

k∥
2].

(69)
Note that

 

EFk [∥ ḡu
k∥

2] = EFk [∥ ḡu
k − ḡk + ḡk∥2]

≤ 2EFk [∥ ḡu
k − ḡk∥2]+2∥ ḡk∥2

= 2nEFk [∥1
n

n∑
i=1

(gu
i,k −gi,k)∥2]+2∥ ḡk∥2

=
2
n

EFk [∥
n∑

i=1

(gu
i,k −gi,k)∥2]+2∥ ḡk∥2

=
2
n

n∑
i=1

EFk [∥gu
i,k −gi,k∥2]+2∥ ḡk∥2

≤ 2σ2+2∥ ḡk∥2 (70)

{gu
i,k, i ∈ [n]}

where  the  first  inequality  holds  due  to  the  Cauchy-Schwarz
inequality;  the  last  equality  holds  since  are
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xk
vk Fk EFk [gu

i,k] = gi,k

independent of each other as assumed in Assumption 4,  and
 are  independent  of ,  and  as  assumed  in

Assumption 5; and the last inequality holds due to (48b).
α = κ1βFrom (69), (70), and , we have

 

EFk [Wk+1] ≤Wk −∥xk∥2ηM1−η2 M2
−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
b1,k K

−b2,kη∥ ḡk∥2−
1
4
η∥ ḡ0

k∥
2+b3,kσ

2η2+3nσ2η2

(71)
where
 

M1 = (α−β)L− 1
2

(2+3L2
f )K

M2 = β
2L+ (2α2+β2)L2+4L2

f K

b1,k =
1
2

(2β− κ3)η− 5
2
β2η2

b2,k =
1
4
−b3,kη

b3,k = L f +
1
β2η
κ3L2

f +
2
β2 κ4L2

f .

α = κ1β κ1 > c1 > 1 η = κ2/β β ≥ c0(κ1, κ2) ≥
ε6 ≥ (2+3L2

f )/2
From (26), , , , and 

, we have
 

ηM1 ≥ ε1κ2K. (72)

α = κ1β β ≥ 1
2 (2+3L2

f ) > 2L fFrom (26), , and , one can have
 

η2 M2 ≤ ε2κ22 K. (73)

β ≥ κ3From , it can be obtained that
 

b1,k ≥ε4. (74)
κ1 > c1 = 1/ρ2(L)+1From , it can be derived that

 

ε1 > 0. (75)
κ2 ∈ (0,min{ ε1ε2 ,

1
5 })From (75) and , we have

 

ε3 > 0 (76a)
 

ε4 > 0. (76b)
β ≥ 4κ2ε5From (76a), (76b), and , we have

 

b3,k = L f +
1
β2ηk
κ3L2

f +
2
β2 κ4L2

f ≤ ε5 (77a)

 

b2,k =
1
4
−b3,kη ≥

1
4
− κ2
β
ε5 ≥ 0. (77b)

From (71)–(74), (77a), and (77b), we have (68a).
ii) Similarly, the way to get (68a), we know that

 

EFk [W̆k+1] ≤ W̆k −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

+ε5η
2∥ ḡk∥2+ (ε5+3n)σ2η2. (78)

We have
 

∥ ḡk∥2 = ∥ ḡk − ḡ0
k + ḡ0

k∥
2

≤ 2∥ ḡk − ḡ0
k∥

2+2∥ ḡ0
k∥

2 ≤ 2L2
f ∥xk∥2K +2∥ ḡ0

k∥
2 (79)

where the last inequality holds due to (65).
From (78) and (79), we have (68b).

iii) From (64) and (70), we have
 

EFk [W4,k+1] ≤W4,k −
1
4
η∥ ḡk∥2+ ∥xk∥21

2 ηL
2
f K

− 1
4
η∥ ḡ0

k∥
2+η2L f (σ2+ ∥ ḡk∥2). (80)

η = κ2/β β ≥ 4κ2ε5 > 4κ2L fFrom  and , we have
 

ηL f <
1
4
. (81)

    From (80) and (81), we have (68c). ■
Now we are ready to prove Theorem 1.
Denote

 

V̂k = ∥xk∥2K +
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K +n( f (x̄k)− f ∗).

We have
 

Wk =
1
2
∥xk∥2K +

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2Q+κ1 K

+ xT
k K
(
vk +

1
β

g0
k

)
+n( f (x̄k)− f ∗)

≥ 1
2
∥xk∥2K +

1
2

( 1
ρ(L)

+ κ1
)∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2K
− 1

2κ1
∥xk∥2K −

κ1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2K +n( f (x̄k)− f ∗)

≥ κ6
(
∥xk∥2K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2K)+n( f (x̄k)− f ∗) (82)

 

≥ κ6V̂k ≥ 0 (83)

0 < κ6 < 0.5

where  the  first  inequality  holds  due  to  (28)  and  the  Cauchy-
Schwarz  inequality;  and  the  last  inequality  holds  due  to

. Similarly, we have
 

Wk ≤ κ5V̂k. (84)
From (68a) and (76b), we have

 

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
κ2
4β
∥ ḡ0

k∥
2+

(ε5+3n)κ22σ
2

β2 . (85)

FT
k ∈ [0,T ]

Then,  taking  expectation  in  and  summing  (85)  over
 yield

 

E[WT+1]+
T∑

k=0

E
[
ε3∥xk∥2K +

κ2
4β
∥ ḡ0

k∥
2
]

≤W0+
(T +1)(ε5+3n)κ22σ

2

β2 . (86)

From (86), (83), and (76a), we have
 

1
T +1

T∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
=

1
n(T +1)

T∑
k=0

E[∥xk∥2K]

≤ W0

nε3(T +1)
+

(ε5+3n)κ22σ
2

nε3β2 .

(87)
W0 = O(n)Noting that , from (87), we have (11a).

FT k ∈ [0,T ]Taking expectation in  and summing (68c) over 
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yield
 

1
4

n
T∑

k=0

E[∥∇ f (x̄k)∥2] =
1
4

T∑
k=0

E[∥ ḡ0
k∥

2]

≤ W4,0

η
+

1
2

L2
f

T∑
k=0

E[∥xk∥2K]+ (T +1)L fσ
2η. (88)

η = κ2/β =
√

n/
√

TFrom (88), , and (87), we have
 

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] ≤ 4β
κ2T

( f (x̄0)− f ∗)+
4L fσ

2κ2

nβ

+O(
1
T

)+O(
1
β2 )

which gives (11b).
FT k ∈ [0,T ]Taking expectation in  and summing (68c) over 

yield
 

n(E[ f (x̄T+1)]− f ∗) = E[W4,T+1]

≤W4,0+
1
2
ηL2

f

T∑
k=0

E[∥xk∥2K]+L fσ
2η2(T +1). (89)

η = κ2/β    From (86), (89), and , we have (11c). ■  

C.  Proof of Theorem 2
In addition to the notations defined in Appendix B, we also

denote
 

ε7 =
1
κ5

min
{
ε3, ε4,

ν

2(T +1)θ
}
.

From  the  conditions  in  Theorem  2,  we  know  that  all
conditions  needed  in  Lemma 10  are  satisfied,  so  (68a)–(68c)
still hold.

From Assumptions 2 and 7 as well as (13), we have that
 

∥ ḡ0
k∥

2 = n∥∇ f (x̄k)∥2 ≥ 2νn( f (x̄k)− f ∗) = 2νW4,k. (90)

From (83), we have
 

∥xk∥2K +W4,k ≤ V̂k ≤
Wk

κ6
. (91)

From (68a), (90), (83), (84), and (14), we have
 

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −ε4
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K
− 1

2
ηνW4,k + (ε5+3n)σ2η2

≤Wk −
1
κ5

min
{
ε3, ε4,

νη

2

}
Wk + (ε5+3n)σ2η2.

(92)
From (92) and (14), we have

 

EFk [Wk+1] ≤Wk −ε7Wk +
(ε5+3n)σ2

(T +1)2θ , ∀k ≤ T. (93)

κ1 > 1 ρ2(L) > 0 κ5 =
κ1+1

2 +
1

2ρ2(L) > 1
0 < κ2 < c2(κ1) =min{ ε1ε2 ,

1
5 } < 1/5 ε4 = (κ2−

5κ22)/2 ≤maxκ2∈(0,1/5)(κ2−5κ22)/2 = 1/40

From  and  ,  we  have .
From ,  we  have 

. Thus,
 

0 < ε7 =
1
κ5

min
{
ε3, ε4,

ν

2(T +1)θ
}
≤ ε4
κ5
≤ 1

40
. (94)

Then, from (93), (83), and (94), we have
 

E[Wk+1] ≤ (1−ε7)k+1W0+
(ε5+3n)σ2

(T +1)2θ

k∑
l=0

(1−ε7)l

≤ (1−ε7)k+1W0+
(ε5+3n)σ2

ε7(T +1)2θ , ∀k ≤ T. (95)

ε7 = O(1/(T +1)θ) θ ∈ (0,1)Then,  noting  that  and  ,  from
(95), (29), and (91), we have
 

E[∥xk∥2K +W4,k] = O(
n

T θ
), ∀k ≤ T. (96)

c f > 0Thus, there exists a constant  such that
 

E[∥xk∥2K +W4,k] ≤ nc f , ∀k ≤ T. (97)

From (82) and (84), we have
 

0 ≤ 2κ6(W1,k +W2,k) ≤ W̆k ≤ 2κ5(W1,k +W2,k). (98)
From (24b), we have

 

∥ ḡ0
k∥

2 = n∥∇ f (x̄k)∥2 ≤ 2L f n( f (x̄k)− f ∗) = 2L f W4,k. (99)
z̆k = E[W̆k]Denote . From (68b) and (97)–(99), we have

 

z̆k+1 ≤ (1−a1)z̆k +a2η
2, ∀k ≤ T (100)

a1 =min{ε3, ε4}/κ5 a2 = n(4ε5L f c f +2ε5L2
f c f+

(ε5+3)σ2)
where  and  

.
From (94), we have

 

a1 ≤
ε4
κ5
≤ 1

40
. (101)

From (100) and (101), we have
 

z̆k+1 ≤ (1−a1)k+1z̆0+
a2η

2

a1
, ∀k ≤ T

which yields (15a).
From (68c) and (90), we have

 

EFk [W4,k+1] ≤
(
1− νη

2

)
W4,k +

1
2
ηL2

f ∥xk∥2K +L fσ
2η2

≤
(
1− νη

2

)k+1
W4,0+

1
ν

(L2
f ∥xk∥2K +2L fσ

2η).
(102)

η = 1/(T +1)θNoting ,  from  (102),  (29),  and  (15a),  we  have
(15b). ■  

D.  Proof of Theorem 3
In addition to the notations defined in Appendix B, we also

give the following notations:
 

c̃0(κ1, κ2) =max
{
4ε11, ε6,

ε10

ε4

}
ĉ2(κ1) =min

{ε1
ε2
,
ε8
ε9
,

1
5

}
ĉ3(κ0, κ1, κ2) =max

{ c̃0(κ1, κ2)
κ0

,
8L f κ3

νκ2
,

16L f (κ3−1)
νκ0κ2

}
σ̃2 = 2L f f ∗−2L f

1
n

n∑
i=1

f ∗i
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ε8 = κ1ρ2(L)−1

ε9 =
1
2

(3κ1+2)κ1ρ(L2)+ρ(L)+1

ε10 = κ2(κ3−1)+ κ1κ2+ κ3−1+3κ22

ε11 = κ2L f + (2κ3−1+ κ2(10κ3−4))L2
f

ε12 = 3+L f +
κ3L2

f

κ0κ2t1
+

2κ4L2
f

κ20t2
1

+
2+2κ3L2

f

κ0t2
1

+
(κ3−1)L2

f

κ20κ2t3
1

+
(κ3−1)L2

f

κ20t4
1

( 2
κ0
+2
)

ε13 =
κ0κ3

κ22
+
κ3−1
κ22t2

1

ε14 = ε12σ
2+ε13σ̃

2

ε15 =
1
κ5

min
{ε3κ0t1
κ2
,
ε4κ0t1

2κ2
,
ν

8

}
ε16 =

4L fσ
2κ22

κ20( νκ22κ0
−1)
.

To prove Theorem 3, we need the following lemma.
αk = κ1βk

βk = κ0(k+ t1) ηk = κ2/βk κ0 ≥ c̃0(κ1, κ2)/t1
κ1 > c1 κ2 ∈ (0, ĉ2(κ1)) t1 ≥ 1 k ∈ N0

Lemma 11: Suppose Assumptions 1–6 hold.  Let ,
,  and ,  where ,

, ,  and .  Then,  for  any  the
following holds for Algorithm 1:
 

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K − 1
4
ηk∥ ḡ0

k∥
2

+2L f b8,kη
2
kW4,k +nε14η

2
k (103a)

 

EFk [W̆k+1] ≤ W̆k −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +nε14η
2
k

+2ε12L2
f η

2
k∥xk∥2K +2(2ε12+ε13)L f η

2
kW4,k

(103b)
 

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡ0

k∥
2+ ∥xk∥21

2 L2
f ηk K
+η2

k L fσ
2

(103c)

b8,k = κ3
ωk
η2k
+ (κ3−1)

ω2
k
η2k

where .
Proof: i) We have

 

∥g0
k∥

2 =

n∑
i=1

∥∇ fi(x̄k)∥2 ≤
n∑

i=1

2L f ( fi(x̄k)− f ∗i )

= 2L f n( f (x̄k)− f ∗)+nσ̃2 (104)

where the inequality holds due to (24b).
From  the  Cauchy-Schwarz  inequality,  (55),  and  (104),  we

have
 

∥g0
k+1∥

2 = ∥g0
k+1− g0

k + g0
k∥

2 ≤ 2(∥g0
k+1− g0

k∥
2+ ∥g0

k∥
2)

≤ 2(η2
k L2

f ∥ ḡ
u
k∥

2+2L f W4,k +nσ̃2). (105)

αk = κ1βk

ηk = κ2/βk

From  (46),  (51),  (60),  (64),  (70),  (105), ,  and
, we have

 

EFk [Wk+1] ≤Wk −∥xk∥2ηk M3,k−η2k M4,k− 1
2 κ1κ2ωk+ηkωk M5,k−η2kωk M6,k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
b0

4,k K
−ηkb5,k∥ ḡk∥2−

1
4
ηk∥ ḡ0

k∥
2

+η2
k(b6,k +b7,kn)σ2+η2

kb8,k(2L f W4,k +nσ̃2)
(106)

where
 

M3,k = (αk −βk)L− 1
2

(2+3L2
f )K

M4,k = β
2
k L+ (2α2

k +β
2
k)L2+4L2

f K

M5,k = αk L− 1
2

(1+L2
f )K

M6,k =
3
2
α2

k L2+β2
k(L+ κ1L2)+

5
2

L2
f K

b0
4,k =

1
2
ηk(2βk − κ3)− 5

2
η2

kβ
2
k −

1
2
ωkηk(κ3−1)

− 1
2
ωk(ηkαk + κ3−1+3η2

kβ
2
k)

b5,k =
1
4
−ηkb6,k

b6,k = L f +
1
β2

kηk
κ3L2

f +
2
β2

k

κ4L2
f +2κ3L2

fωk

+ωk
( 1
β2

kηk
+

2
β2

k

+2ωk
)
(κ3−1)L2

f

b7,k = 3+2ωk.

αk = κ1βk κ1 > 1 βk ≥ κ0t1 ≥ c̃0(κ1, κ2) ≥ ε6 ≥
(2+3L2

f )/2 ηk = κ2/βk

From  (26), , , 
, and , we have

 

ηk M3,k ≥ ε1κ2K. (107)

αk = κ1βk βk ≥ (2+3L2
f )/2 > 2L f

ηk = κ2/βk

From  (26), , ,  and
, we have

 

η2
k M4,k ≤ ε2κ22 K. (108)

αk = κ1βk βk ≥ (2+3L2
f )/2 > (1+L2

f )/2
ηk = κ2/βk

From  (26), , ,  and
, we have

 

ηk M5,k ≥ ε8κ2K. (109)
αk = κ1βk βk > 2L f >

√
10L f /2 ηk = κ2/βkFrom (26), , , and ,

we have
 

η2
k M6,k ≤ ε9κ22 K. (110)

αk = κ1βk βk ≥ κ3 ηk = κ2/βkFrom , , and , we have
 

b0
4,k ≥b4,k (111)

b4,k = ε4− 1
2ωkηk(κ3−1)− 1

2ωk(κ1κ2+ κ3−1+3κ22)where .
κ1 > c1 = 1/ρ2(L)+1From , we have

 

ε1 > 0 and ε8 > 0. (112)
κ2 ∈ (0,min{ ε1ε2 ,

ε8
ε9
, 1

5 })From (112) and , we have
 

ε3 > 0 (113a)
 

ε8κ2−ε9κ22 > 0 (113b)
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ε4 > 0. (113c)
βk = κ0(k+ t1)From , we have

 

ωk =
1
βk
− 1
βk+1

=
1
κ0

( 1
k+ t1

− 1
k+ t1+1

)
=

1
κ0(k+ t1)(k+ t1+1)

≤ κ0
β2

k

. (114)

κ0 ≥max{ 4ε11
t1
,
ε10
ε4t1
}From (113a)–(114), and , we have

 

b4,k ≥ ε4−
ε10

2κ0t2
1

≥ ε4−
ε10

2κ0t1
≥ 1

2
ε4 > 0 (115a)

 

b5,k ≥
1
4
− ε11

κ0t1
≥ 0. (115b)

βk = κ0(k+ t1) ≥ κ0t1From (114) and , we have
 

b6,k +b7,k ≤ ε12 (116a)
 

b8,k ≤ ε13. (116b)
From  (106)–(111),  (113a)–(113c),  and  (115a)–(116b),  we

have (103a).
ii) Similarly, the way to get (103a), we have

 

EFk [W̆k+1] ≤ W̆k −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +ε12η
2
k∥ ḡk∥2

+2L f ε13η
2
kW4,k +nε14η

2
k , ∀k ∈ N0.

(117)
From (117), (79), and (99), we have (103b).
iii) From (64) and (70), we have

 

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡk∥2+ ∥xk∥21

2 L2
f ηk K

− ηk

4
∥ ḡ0

k∥
2+η2

k L f (σ2+ ∥ ḡk∥2). (118)

0 < ηk ≤ κ2/(κ0t1) κ0t1 ≥ c̃0(κ1, κ2) ≥ 4ε11 > 4κ2L fFrom  and ,
we have
 

η2
k L f <

1
4
ηk. (119)

From (118) and (119), we have (103c). ■
Now we are ready to prove Theorem 3.

t1 > ĉ3(κ0, κ1, κ2) ≥ c̃0(κ1, κ2)/κ0From , we have
 

κ0 >
c̃0(κ1, κ2)

t1
.

Thus,  all  conditions  needed  in  Lemma  11  are  satisfied,  so
(103a)–(103c) hold.

From (103a) and (90), we have
 

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K − ηkν

2
W4,k

+2L f b8,kη
2
kW4,k +nε14η

2
k

=Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +nε14η
2
k

−2
(1
4
− 1
ν

L f b8,kηk
)
νηkW4,k, ∀k ∈ N0. (120)

t1 > ĉ3(κ0, κ1, κ2) ≥ 8L f κ3/(νκ2)From , we have 

1
4
−

L f κ3

νκ2t1
≥ 1

8
. (121)

κ0 > c̃0(κ1, κ2)/t1 ≥ 16L f (κ3−1)/
(νκ2t1)

From  (114),  (121),  and 
, we have

 

1
4
− 1
ν

L f b8,kηk ≥
1
4
−

L f κ0κ3

νκ2βk
−

L f κ
2
0(κ3−1)

νκ2β
3
k

≥ 1
4
−

L f κ3

νκ2t1
−

L f (κ3−1)

νκ2κ0t3
1

≥ 1
8
−

L f (κ3−1)
νκ2κ0t1

≥ 1
16
. (122)

From (120), (83), and (84), we have
 

EFk [Wk+1] ≤Wk −
ηk

κ5
min
{ε3
ηk
,
ε4
2ηk
,
ν

8

}
Wk +nε14η

2
k

≤Wk −ε15ηkWk +nε14η
2
k , ∀k ∈ N0. (123)

zk = E[Wk] r1,k = ε15ηk r2,k = nε14η
2
kDenote , ,  and ,  then

from (123), we have
 

zk+1 ≤ (1− r1,k)zk + r2,k, ∀k ∈ N0. (124)
From (16), we have

 

r1,k = ηkε15 =
a3

k+ t1
(125a)

 

r2,k = η
2
kε14nσ2 =

a4

(k+ t1)2 (125b)

a3 = κ2ε15/κ0 a4 = nκ22ε14/κ
2
0where  and .

From (94), we have
 

r1,k ≤
ε4
2κ5
≤ 1

80
. (126)

Then, from (124)–(126) and (32), we have
 

zk ≤ ϕ1(k, t1,a3,a4,z0), ∀k ∈ N+ (127)
ϕ1where the function  is defined in (33).

κ0 ≥ ĉ0νκ2/4From , we have
 

ϕ1(k, t1,a3,a4,2,z0) =



O(
n
k

), if a3 > 1

O(
n ln(k−1)

k
), if a3 = 1

O(
n

ka3
), if a3 < 1.

(128)

c f > 0
From  (127),  (128),  and  (91),  we  know  that  there  exists  a

constant  such that
 

E[∥xk∥2K +W4,k] ≤ nc f . (129)

From (103b), (129), (98), and (16), we have
 

z̆k+1 ≤ (1−a5)z̆k +
a6

(t+ t1)2 (130)

a5 =min{ε3, ε4/2}/κ5 a6 = n(2ε12L2
f c f +2(2ε12+

ε13)L f c f +ε14)κ22/κ
2
0

where  and  
.

From (94), we have
 

a5 ≤
ε4
2κ5
≤ 1

80
. (131)

From (113a) and (113c), we know that
 

a5 > 0 and a6 > 0. (132)
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From (130)–(132) and (34), we have
 

z̆k ≤ ϕ2(k, t1,a5,a6, z̆0) = O(
n
k2 ), ∀k ∈ N+ (133)

ϕ2where the function  is defined in (35).
From (35), (98), and (133), we have

 

E[∥xk∥2K] ≤ 1
κ6

z̆k ≤
1
κ6
ϕ2(k, t1,a5,a6, z̆0) = O(

n
k2 ). (134)

From (134), we have (17a).
From (103c) and (90), we have

 

E[W4,k+1] ≤ (1− ν
2
ηk)E[W4,k]+ ∥xk∥21

2 L2
f ηk K
+L fσ

2η2
k . (135)

κ0 < νκ2/4From , we have
 

νκ2
2κ0
> 2. (136)

Similarly, the way to prove (32), from (134)–(136), we have
 

E[ f (x̄T )− f ∗] ≤ ε16

n(T + t1)
+O(

1
(T + t1)2 ) (137)

ε16where  is determined by the last terms in (33) and (135).
κ0 ≥ ĉ0νκ2/4From , we have

 

ε16 =
4L fσ

2κ22

κ20( νκ22κ0
−1)
≤

4L fσ
2κ22

κ20( νκ22κ0
− νκ24κ0

)

=
16L fσ

2κ2

νκ0
≤

64L fσ
2

ĉ0ν2
. (138)

    From (137) and (138), we have (17b). ■  

E.  Proof of Theorem 4
In addition to the notations defined in Appendices B and C,

we also denote the following notations:
 

ε =
1
κ5

min
{ε3
η
,
ε4
η
,
ν

2

}
c4 =

W0

nκ6

c5 =
ε5+3n
nεκ6

.

From the conditions in Theorem 4, we know that (92) holds.
Thus,
 

EFk [Wk+1] ≤Wk −ηεWk + (ε5+3n)σ2η2. (139)

Similarly, the way to get (94), we have
 

0 < ηε < 1. (140)
From (139) and (140), we have

 

E[Wk+1] ≤ (1−ηε)E[Wk]+ (ε5+3n)σ2η2

≤ (1−ηε)k+1W0+ (ε5+3n)σ2η2
k∑
τ=0

(1−ηε)τ

≤ (1−ηε)k+1W0+
η(ε5+3n)σ2

ε
. (141)

    Hence, (141) and (91) give (19). ■  

F.  Proof of Theorem 5
In addition to the notations defined in Appendices C, B, and

E, we also denote the following notations:
 

c̆0(κ1, κ2) =max{4κ2ε5, ε̆6}
ε̆6 =max{1+3L2

f , κ3}

c̆5 =
3+5η
εκ6
.

Without unbiased assumption, we know that (57) still holds.
Similarly, the way to get (46), (62), and (64), we have
 

EFk [W1,k+1] ≤W1,k −∥xk∥2
ηαL− η2 K− 3η2α2

2 L2−η(1+3η)L2
f K

−ηβxT
k K
(
vk +

1
β

g0
k

)
+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥23η2β2
2 K

+η(1+3η)nσ2 (142a)
 

EFk [W3,k+1] ≤W3,k −ηαxT
k L
(
vk +

1
β

g0
k

)
+ ∥xk∥2

η(βL+ 1
2 K)+η2( α

2
2 −αβ+β2)L2+η(1+2η)L2

f K

+
η

2β2 (1+3η)L2
f EFk [∥ ḡu

k∥
2]+η(1+2η)nσ2

−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
η(β− 1

2−ηβ2)K
(142b)

 

EFk [W4,k+1] ≤W4,k −
η

4
(1−2ηL f )EFk [∥ ḡu

k∥
2]

+ ∥xk∥2ηL2
f K −
η

4
∥ ḡ0

k∥
2+nσ2η. (142c)

Then,  similarly,  the  way  to  get  (68a),  from  (57)  and
(142a)–(142c), we have
 

EFk [Wk+1] ≤Wk −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

− 1
4
η∥ ḡ0

k∥
2+η(3+5η)nσ2. (143)

    Then,  similarly,  the  way  to  get  (19),  from (143)  and  (90),
we have (21). ■
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