

A Primal-Dual SGD Algorithm for Distributed
Nonconvex Optimization

Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, Fellow, IEEE, and Karl Henrik Johansson, Fellow, IEEE

O(1/
√

nT)
O(1/(nT))

 Abstract—The distributed nonconvex optimization problem of
minimizing a global cost function formed by a sum of n local cost
functions by using local information exchange is considered. This
problem is an important component of many machine learning
techniques with data parallelism, such as deep learning and
federated learning. We propose a distributed primal-dual
stochastic gradient descent (SGD) algorithm, suitable for
arbitrarily connected communication networks and any smooth
(possibly nonconvex) cost functions. We show that the proposed
algorithm achieves the linear speedup convergence rate

 for general nonconvex cost functions and the linear
speedup convergence rate when the global cost
function satisfies the Polyak-Łojasiewicz (P-Ł) condition, where T
is the total number of iterations. We also show that the output of
the proposed algorithm with constant parameters linearly
converges to a neighborhood of a global optimum. We
demonstrate through numerical experiments the efficiency of our
algorithm in comparison with the baseline centralized SGD and
recently proposed distributed SGD algorithms.
 Index Terms—Distributed nonconvex optimization, linear speedup,
Polyak-Łojasiewicz (P-Ł) condition, primal-dual algorithm, stochastic
gradient descent.

I. Introduction

fi : Rp→ R
CONSIDER a network of n agents, each of which has a

local smooth (possibly nonconvex) cost function
. All agents collaboratively solve the following

optimization problem:

min
x∈Rp

f (x) :=
1
n

n∑
i=1

fi(x). (1)

fi
Each agent i only has information about its local cost

function and communicates with its neighbors through the

G = (V,E)
V = {1, . . . ,n} E ⊆ V×V
(i, j) ∈ E
Ni = { j ∈ V : (i, j) ∈ E}

underlying communication network. The communication
network is modeled by an undirected graph , where

 is the agent set, is the edge set, and
 if agents i and j communicate with each other. The

set is the neighboring set of agent i.
The optimization problem (1) incorporates many popular
machine learning approaches with data parallelism, such as
deep learning [1] and federated learning [2]. A star graph is a
special undirected graph, in which there is one and only one
agent (hub agent) that connects to all of the other agents (leaf
agents) and each leaf agent only connects to the hub agent.
Such a graph corresponds to the master/worker architecture
adopted by many parallel learning algorithms.

Due to the nonconvexity, convergence results typically
ensure that the distributed algorithms find first-order
stationary points

{x ∈ Rp : ∇ f (x) = 0p}

O(1/T)

which could be local maxima or minima. Global optima are
usually hard to find. For example, in [3]–[9], it was shown
that first-order stationary points can be found with an
convergence rate, i.e.,

1
T

T−1∑
k=0

∥∇ f (x̄k)∥2 = O(
1
T

)

∇ f
x̄k =

1
n
∑n

i=1 xi,k xi,k ∈ Rp
where T is the total number of iterations, denotes the
gradient of f, and with being agent i’s
estimate of the optimal solution at time instant k.

Note that the algorithms proposed in the aforementioned
references use at least gradient information of the cost
functions, and sometimes even the second- or higher-order
information. However, in many applications explicit
expressions of the gradients are often unavailable or difficult
to obtain. In this paper, we consider the case where each agent
can only collect stochastic gradients of its local cost function
and propose a distributed stochastic gradient descent (SGD)
algorithm to solve (1). In general, SGD algorithms are suitable
for scenarios where explicit expressions of the gradients are
unavailable or difficult to obtain. For example, in some big
data applications, such as empirical risk minimization, the
actual gradient is calculated from the entire data set, which
results in a heavy computational burden. A stochastic gradient
can be calculated from a randomly selected subset of the data
and is often an efficient way to replace the actual gradient.
Other examples which SGD algorithms are suitable for
include scenarios where data are arriving sequentially such as
in online learning [10].

Manuscript received February 11, 2022; accepted February 25, 2022. This

work was supported by the Knut and Alice Wallenberg Foundation, the
Swedish Foundation for Strategic Research, the Swedish Research Council,
and the National Natural Science Foundation of China (62133003, 61991403,
61991404, 61991400). Recommended by Associate Editor Qing-Long Han.
(Corresponding author: Tao Yang.)

Citation: X. L. Yi, S. J. Zhang, T. Yang, T. Y. Chai, and K. H. Johansson,
“A primal-dual SGD algorithm for distributed nonconvex optimization,”
IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, May 2022.

X. L. Yi and K. H. Johansson are with the Division of Decision and Control
Systems, School of Electrical Engineering and Computer Science, KTH
Royal Institute of Technology, and also affiliated with the Digital Futures,
Stockholm 10044, Sweden (e-mail: xinleiy@kth.se; kallej@kth.se).

S. J. Zhang is with the Department of Electrical Engineering, University of
North Texas, Denton, TX 76203 USA (e-mail: ShengjunZhang@my.unt.edu).

T. Yang and T. Y. Chai are with the State Key Laboratory of Synthetical
Automation for Process Industries, Northeastern University, Shenyang
110819, China (e-mail: yangtao@mail.neu.edu.cn; tychai@mail.neu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2022.105554

812 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

A. Literature Review

O(1/
√

nT)

O(1/
√

T)

O(1/(nT))

When the communication network is a star graph, various
parallel SGD algorithms have been proposed to solve (1). A
potential performance bottleneck of such algorithms lies on
the communication burden of the master. To overcome this
issue, a promising strand of research is combining parallel
SGD algorithms with communication reduction approaches,
e.g., asynchronous parallel SGD algorithms [11]–[15],
gradient compression based parallel SGD algorithms [12],
[16]–[19], periodic averaging based parallel SGD algorithms
[17], [18], [20]–[24], and parallel SGD algorithm with
dynamic batch sizes [25]. Convergence properties of these
algorithms have been analyzed in detail. In particular, in [17],
[21], [23], [25], an convergence rate has been
established for general nonconvex cost functions. This rate is
n times faster than the well known convergence rate
established by SGD over a single agent, and thus a linear
speedup in the number of agents is achieved. In [24], [25], the
convergence rate has been improved to when the
global cost function satisfies the P-Ł condition, which also
achieves a linear speedup. In addition to the star architecture
restriction, aforementioned parallel SGD algorithms require
certain restrictions on the cost functions, such as bounded
gradients of the local cost functions or bounded difference
between the gradients of the local and global cost functions.

O(1/
√

nT)

D2

O(1/
√

nT)

−1/3

O(1/
√

T)

Distributed algorithms executed over arbitrarily connected
communication networks have been suggested to overcome
communication bottlenecks for parallel SGD algorithms.
Various distributed SGD algorithms have been proposed to
solve (1), e.g., synchronous distributed SGD algorithms [23],
[26]–[28], asynchronous distributed SGD algorithms [29],
[30], compression based distributed SGD algorithms
[31]–[34], and periodic averaging based distributed SGD
algorithm [35]. Convergence properties of these algorithms
have been analyzed and the linear speedup convergence rate

 has been established for general nonconvex cost
functions [23], [27], [30], [31], [33]–[35]. However, similarly
to aforementioned parallel SGD algorithms, these distributed
algorithms require restrictive assumptions on the cost
functions. In order to remove these restrictions, the authors of
[36] proposed a variant of the distributed SGD algorithm
proposed in [27], named , in which each agent stores the
stochastic gradient and its local model in last iteration and
linearly combines them with the current stochastic gradient
and local model. For this algorithm the authors established the
linear speedup convergence rate , but they required
that the eigenvalues of the mixing matrix associated with the
communication network are strictly greater than . The
authors of [37], [38] proposed distributed stochastic gradient
tracking algorithms suitable for arbitrarily connected
communication networks. However, these algorithms only
achieve convergence rate, which is not a speedup.
Moreover, gradient tracking algorithms have the common
potential drawback that in order to track the global gradient, at
each iteration each agent needs to communicate one additional
p-dimensional variable with its neighbors. This results in
heavy communication burden when p is large. Note that all

aforementioned distributed SGD algorithms converge to
stationary points, which may be local or global optima, or
saddle points. None of existing studies on distributed SGD
algorithms consider finding the global optimum when the
global cost function satisfies some additional property, such as
the P-Ł condition studied for the parallel algorithms in [24],
[25]. Noting above, two core theoretical questions arise.

O(1/
√

nT)

Q1) Are there any distributed SGD algorithms that are not
only suitable for arbitrarily connected communication
networks and any smooth cost functions but also find stations
points with the linear speedup convergence rate ?

O(1/(nT))

Q2) If the P-Ł condition holds in addition, can the above
SGD algorithms find the global optimum with the linear
speedup convergence rate as achieved in [24],
[25]?

B. Main Contributions
This paper provides positive answers for the above two

questions. More specifically, the contributions of this paper
are summarized as follows.

i) We propose a distributed primal-dual SGD algorithm to
solve the optimization problem (1). In the proposed algorithm,
each agent maintains the primal and dual variable sequences
and only communicates the primal variable with its neighbors.
This algorithm is suitable for arbitrarily connected communi-
cation networks and any smooth (possibly nonconvex) cost
functions.

O(1/
√

nT)

ii) We show in Corollary 1 that our algorithm finds a
stationary point with the linear speedup convergence rate

 for general nonconvex cost functions, thus answers
Q1). Compared with [17], [21], [23], [25], [27], [30], [31],
[33]–[36], we achieve the same convergence rate but under
weaker assumptions related to network architectures and/or
cost functions, and compared with [37], [38], we not only
establish linear speedup but also just use half communication
in each iteration.

O(1/(nT))
iii) We show in Theorem 3 that our algorithm finds a global

optimum with the linear speedup convergence rate
when the global cost function satisfies the P-Ł condition, thus
answers Q2). Compared with [24], [25], [34], [39]–[41], we
achieve the same convergence rate but under weaker
assumptions related to network architectures and/or cost
functions, and compared with [18], [26], [42]–[46], we not
only establish linear speedup but also relax the strong
convexity by the P-Ł condition.

iv) We show in Theorems 4 and 5 that the output of our
algorithm with constant parameters linearly converges to a
neighborhood of a global optimum when the global cost
function satisfies the P-Ł condition. Compared with [26],
[46]–[49], which used the strong convexity assumption, we
achieve the similar convergence result under weaker
assumptions on the cost function.

The detailed comparison of this paper with other related
studies in the literature is summarized in Table I.

C. Outline
The rest of this paper is organized as follows. Section II

presents the novel distributed primal-dual SGD algorithm.

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 813

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I

Comparison of This Paper to Some Related Works

Reference Problem type Extra
assumption Communication network Communicated variable Communication

rounds Convergence rate

[17] Nonconvex ∥∇ fi −∇ f ∥
Bounded Star graph One quantized variable O(n5/4T 3/4) O(1/

√
nT)

[18]
Nonconvex

∇ fiIdentical Star graph One quantized variable O(T)
O(1/

√
T)

Strongly
convex O(1/T)

[21] Nonconvex ∥∇ fi∥Bounded Star graph One full-information
variable O(n3/4T 3/4) O(1/

√
nT)

[23] Nonconvex ∥∇ fi −∇ f ∥
Bounded Star graph Two full-information

variables
O(n3/4T 3/4)

O(1/
√

nT)
Connected graph O(T)

[24] P-Ł condition ∇ fiIdentical Star graph One full-information
variable O((nT)1/3) O(1/(nT))

[25]
Nonconvex ∇ fiIdentical ,

exponentially
increasing batch

size

Star graph One full-information
variable

O(
√

nT log(T
n)) O(1/

√
nT)

P-Ł condition O(log(T)) O(1/(nT))

[26]

Nonconvex

∥∇ fi∥Bounded Connected graph One full-information
variable O(T)

O(1/T θ), ∀θ ∈ (0,0.5)

Strongly
convex

O(1/T); linearly to a neighbor
of the global optimum (constant

stepsize)

[27] Nonconvex ∥∇ fi −∇ f ∥
Bounded Connected graph One full-information

variable O(T) O(1/
√

nT)

[30] Nonconvex ∥∇ fi −∇ f ∥
Bounded Uniformly jointly strongly

connected digraph
One full-information

variable O(T) O(1/
√

nT)

[31] Nonconvex ∥∇ fi −∇ f ∥
Bounded Connected graph One compressed

variable O(T) O(1/
√

nT)

[33] Nonconvex ∥∇ fi∥Bounded Strongly connected digraph One quantized variable O(T) O(1/
√

nT)

[34]
Nonconvex

∥∇ fi∥Bounded Connected graph One compressed
variable Event-triggered

O(1/
√

nT)
Strongly
convex O(1/(nT))

[35] Nonconvex ∇ fiIdentical Connected graph One full-information
variable O(n3/2

√
T) O(1/

√
nT)

[36] Nonconvex

−1/3

The eigenvalues
of the mixing

matrix are
strictly greater

than

Connected graph One full-information
variable O(T) O(1/

√
nT)

[37], [38] Nonconvex No Connected graph Two full-information
variables O(T) O(1/

√
T)

[39] Strongly
convex ∥∇ fi∥Bounded Star graph One full-information

variable O(
√

T/n) O(1/(nT))

[40] Strongly
convex ∥∇ fi∥Bounded Connected graph One compressed

variable O(T) O(1/(nT))

[41] Strongly
convex No Connected graph Two full-information

variables O(T) O(1/(nT))

[42] Strongly
convex ∇ fiIdentical Connected graph One full-information

variable O(T) O(1/T)

[43] Strongly
convex No Connected graph One full-information

variable O(
√

T) O(1/T)

[44] Strongly
convex ∥∇ fi∥Bounded Uniformly jointly strongly

connected digraph
One full-information

variable O(T) O(1/T)

[45] Strongly
convex No Connected graph in

expectation
One full-information

variable O(T) O(1/T)

[46] Strongly
convex No Connected graph One full-information

variable O(T)
O(1/T); linearly to a neighbor

of the global optimum (constant
stepsize)

[47] Strongly
convex No Connected graph One full-information

variable O(T)
Linearly to a neighbor of the

global optimum (constant
stepsize)

[48] Strongly
convex No Connected graph Two full-information

variables O(T)
Linearly to a neighbor of the

global optimum (constant
stepsize)

[49] Strongly
convex No Strongly connected digraph Two full-information

variables O(T)
Linearly to a neighbor of the

global optimum (constant
stepsize)

This paper

Nonconvex

No
Connected graph One full-information

variable O(T)

O(1/
√

nT)

P-Ł condition

O(1/(T θ)), ∀θ ∈ (0,1);
linearly to a neighbor of the
global optimum (constant

stepsize)

f ∗iBounded O(1/(nT))

 814 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

Section III analyzes its convergence rate. Numerical
experiments are given in Section IV. Finally, concluding
remarks are offered in Section V. To improve the readability,
all the proofs are given in the appendix.

N0 N+
[n] {1, . . . ,n}

n ∈ N+ 1n 0n
col(z1, . . . ,zk)

zi ∈ Rpi , i ∈ [k] ∥ · ∥

Notations: and denote the set of nonnegative and
positive integers, respectively. denotes the sets for
any . () denotes the column one (zero) vector of
dimension n. is the concatenated column vector
of vectors . represents the Euclidean norm
for vectors or the induced 2-norm for matrices.

II. Distributed Primal-Dual SGD Algorithm

In this section, we propose a novel distributed SGD
algorithm based on the primal-dual method.

x = col(x1, . . . , xn) f̃ (x) =
∑n

i=1 fi(xi) L = L⊗ Ip

L = (Li j)
G

null(L) = {1n}
G

Denote , , and ,
where is the weighted Laplacian matrix associated
with the undirected communication graph . Recall that the
Laplacian matrix L is positive semi-definite and
when is connected [50]. The optimization problem (1) is
equivalent to the following constrained optimization problem:

min
x∈Rnp

f̃ (x)

s.t. L1/2x = 0np. (2)
L1/2 = L1/2⊗ Ip L1/2

L1/2x = 0np

x = 1n⊗ x null(L1/2) = null(L) =
{1n}

Here, and is the square root of the
positive semi-definite matrix L . Moreover, is
equivalent to due to the fact that

.
u ∈ RnpLet denote the dual variable. Then the augmented

Lagrangian function associated with (2) is

A(x,u) = f̃ (x)+
α

2
xT Lx+βuT L1/2x (3)

α > 0 β > 0where and are parameters to be designed later.
Based on the primal-dual gradient method, a distributed

SGD algorithm to solve (2) is

xk+1 = xk −ηk(αk Lxk +βk L1/2uk + gu
k) (4a)

uk+1 = uk +ηkβk L1/2xk, ∀x0, u0 ∈ Rnp (4b)
ηk > 0 αk > 0 βk > 0

gu
k = col(gu

1,k, . . . ,g
u
n,k) gu

i,k = gi(xi,k, ξi,k)
fi xi,k ξi,k

vk = col(v1,k, . . . ,vn,k) = L1/2uk

where is the stepsize at iteration k, and
are the values of the parameters α and β at iteration k,
respectively, and with
being the stochastic gradient of at and being a
random variable. Denote . Then
the recursion (4) can be rewritten as

xk+1 = xk −ηk(αk Lxk +βkvk + gu
k) (5a)

vk+1 = vk +ηkβk Lxk, ∀x0 ∈ Rnp,

n∑
j=1

v j,0 = 0p. (5b)

∑n
j=1 v j,0 = 0p

v0 = L1/2u0

vi,0 = 0p, ∀i ∈ [n] vi,0 =
∑n

j=1 Li jx j,0, ∀i ∈ [n]

The initialization condition is derived from
, and it is easy to be satisfied, for example,

, or . Note that (5)
can be written agent-wise as

xi,k+1 = xi,k −ηk
(
αk

n∑
j=1

Li jx j,k +βkvi,k +gu
i,k

)
(6a)

vi,k+1 = vi,k +ηkβk

n∑
j=1

Li jx j,k,

∀xi,0 ∈ Rp, vi,0 = 0p, ∀i ∈ [n]. (6b)
This corresponds to our proposed distributed primal-dual

SGD algorithm, which is presented in pseudo-code as
Algorithm 1.

Algorithm 1 Distributed Primal-Dual SGD Algorithm

{αk} {βk} {ηk} ⊆ (0,+∞)1: Input: parameters , , .
xi,0 ∈ Rp vi,0 = 0p, ∀i ∈ [n]2: Initialize: and .

k = 0,1, . . .3: for do
i = 1, . . . ,n4: 　for in parallel do

xi,k Ni x j,k j ∈ Ni5: 　　Broadcast to and receive from ;
gi(xi,k , ξi,k)6: 　　Sample stochastic gradient ;

xi,k+17: 　　Update by (6a);
vi,k+18: 　　Update by (6b).

9: 　end for
10: end for

{xk}11: Output: .

{αk} {βk} {ηk} x0 v0 v1
{xk}k≥1 {vk}k≥2

Fk
ξ1,k, . . . , ξn,k

Fk =
∪k

s=1Fs xk vk+1

Fk−1 Fs s ≥ k

It should be pointed out that , , , , , and in
Algorithm 1 are deterministic, while and are
random variables generated by Algorithm 1. Let denote the
σ-algebra generated by the random variables and
let . It is straightforward to see that and
depend on and are independent of for all .

III. Convergence Rate Analysis

In this section, we analyze the convergence rate of
Algorithm 1. The following assumptions are made.

GAssumption 1: The undirected communication graph is
connected.

Assumption 2: The minimum function value of the
optimization problem (1) is finite.

fi
L f > 0

Assumption 3: Each local cost function is smooth with
constant , i.e.,

∥∇ fi(x)−∇ fi(y)∥ ≤ L f ∥x− y∥, ∀x,y ∈ Rp. (7)
{ξi,k, i ∈ [n], k ∈ N0}Assumption 4: The random variables

are independent of each other.
gi(x, ξi,k)

i ∈ [n] k ∈ N0 x ∈ Rp
Assumption 5: The stochastic estimate is unbiased,

i.e., for all , , and ,

Eξi,k [gi(x, ξi,k)] = ∇ fi(x). (8)
gi(x, ξi,k)

i ∈ [n] k ∈ N0 x ∈ Rp

Assumption 6: The stochastic estimate has
bounded variance, i.e., there exists a constant σ such that for
all , , and ,

Eξi,k [∥gi(x, ξi,k)−∇ fi(x)∥2] ≤ σ2. (9)

1
n
∑n

i=1 ∥∇ fi(x)−∇ f (x)∥2

Remark 1: The bounded variance assumption (Assumption
6) is weaker than the bounded second moment (or bounded
gradient) assumption made in [11]–[13], [15], [19], [21], [26],
[28], [33], [34], [39], [40], [44], [51]. Moreover, note that we
make no assumption on the boundedness of the deviation
between the gradients of local cost functions. In other words,
we do not assume that is uniformly
bounded, a common assumption made in studies of deep

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 815

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

Eξ[gi(x, ξ)] = ∇ f (x),
∀x ∈ Rp, ∀i ∈ [n]

learning, e.g., [17], [21], [23], [27], [29]–[31]. Also, we do not
assume that the mean of each local stochastic gradient is the
gradient of the global cost function, i.e.,

, which is commonly assumed in studies of
empirical risk minimization and stochastic optimization, e.g.,
[14], [16], [18], [20], [22], [24], [25], [32], [35], [42].

A. Find Stationary Points
Let us consider the case when Algorithm 1 is able to find

stationary points. We have the following convergence results.
{xk}Theorem 1: Suppose Assumptions 1–6 hold. Let be the

sequence generated by Algorithm 1 with

αk = κ1βk, βk = β, ηk =
κ2
βk
, ∀k ∈ N0 (10)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c0(κ1, κ2)
c0(κ1, κ2), c1, c2(κ1) > 0
T ∈ N+

where , , and with
 defined in Appendix B. Then, for any

,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
= O(

1
T

)+O(
1
β2) (11a)

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] = O(
κ2β

T
)+O(

4κ2
nβ

)

+O(
1
T

)+O(
1
β2) (11b)

E[f (x̄T)]− f ∗ = O(1)+O(
T

nβ2)+O(
T
β3) (11c)

f ∗

x̄k =
1
n
∑n

i=1 xi,k

where is the minimum function value of the optimization
problem (1) and .

Proof: The explicit expressions of the right-hand sides of
(11a)–(11c) and the proof are given in Appendix B. It should
be highlighted that the omitted constants in the first two terms
on the right-hand side of (11b) do not depend on any
parameters related to the communication network. ■

f (x̄0)− f ∗ = O(1)

β = κ2
√

T/
√

n

Noting the right-hand side of (11b) and ,
the linear speedup (w.r.t. number of agents) can be established
if we set , as shown in the following.

β = κ2
√

T/
√

n
T >max{n(c0(κ1, κ2)/κ2)2, n3}

Corollary 1 (Linear Speedup): Under the same assumptions
as in Theorem 1, let . Then, for any

,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
= O(

n
T

) (12a)

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] = O(
1
√

nT
)+O(

n
T

) (12b)

E[f (x̄T)]− f ∗ = O(1). (12c)
Remark 2: It should be highlighted that the omitted

constants on the first term in the right-hand side of (12b) do
not depend on any parameters related to the communication
network. The same linear speedup result as in (12b) was also
established by the SGD algorithms proposed in [17], [21],
[23], [25], [27], [30], [31], [33]–[36]. However, in [17], [23],
[27], [30], [31], the additional assumption that the deviation

−1/3

xi,k

O(1/
√

T)

between the gradients of local cost functions is bounded was
made; in [21], [33], [34], it was required that each local
stochastic gradient has bounded second moment; in [25], [35],
it was assumed that the mean of each local stochastic gradient
is the gradient of the global cost function; and in [36], it was
required that the eigenvalues of the mixing matrix are strictly
greater than . Moreover, the algorithms proposed in [17],
[25] are restricted to a star graph; the distributed momentum
SGD algorithm proposed in [23] requires each agent i to
communicate one additional p -dimensional variable besides
the communication of with its neighbors at each iteration;
and the algorithm proposed in [25] requires an exponentially
increasing batch size, which is not favorable in practice.
Under the same conditions, the well known
convergence rate, which is not a speedup, was achieved by the
distributed stochastic gradient tracking algorithm proposed in
[37], [38]. Moreover, similarly to the distributed momentum
SGD algorithm proposed in [23], one potential drawback of
the distributed stochastic gradient tracking algorithms is that
at each iteration each agent needs to communicate one
additional variable. The potential drawbacks of the results
stated in Corollary 1 are that i) we do not consider
communication efficiency, which was considered in [17],
[21], [25], [31], [33]–[35]; and ii) we consider undirected
graphs rather than directed graphs as considered in [30], [33].
We leave the extension to the (time-varying) directed graphs
with communication efficiency as future research directions.

B. Find Global Optimum
Let us next consider the case when Algorithm 1 finds global

optimum. The following assumption is crucial.
f (x)

ν > 0
Assumption 7: The global cost function satisfies the

Polyak-Łojasiewicz (P-Ł) condition with constant , i.e.,

1
2
∥∇ f (x)∥2 ≥ ν(f (x)− f ∗), ∀x ∈ Rp. (13)

It is straightforward to see that every (essentially or weakly)
strongly convex function satisfies the P-Ł condition. The P-Ł
condition implies that every stationary point is a global
minimizer. But unlike (essentially or weak) strong convexity,
the P-Ł condition alone does not imply convexity of f.
Moreover, it does not imply that the global minimizer is
unique either [52], [53].

Various practical applications, such as least squares and
logistic regression, do not always have strongly convex cost
functions. The cost function in least squares problems has the
form

f (x) =
1
2
∥Ax−b∥2

A ∈ Rm×p b ∈ Rm

f (x)
f (x)

f (x) = x2+3sin2(x)

ν = 1/32

where and . Note that if A has full column
rank, then is strongly convex. However, if A is rank
deficient, then is not strongly convex, but it is convex and
satisfies the P-Ł condition. The function
given in [52] is an example of a nonconvex function satisfying the
P-Ł condition with . Moreover, it was shown in [54]
that the loss functions in some applications satisfy the P-Ł
condition in the region near a local minimum. Moreover, [55]

 816 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

proved that the cost function of the policy optimization for the
linear quadratic regulator problem is nonconvex and satisfies
the P-Ł condition. More examples of nonconvex functions
satisfying the P-Ł condition can be found in [52], [53].

Although it is difficult to precisely characterize the general
class of functions for which the P-Ł condition is satisfied, in
[52], one important special class was given as follows:

f (x) = g(Ax) g : Rp→ R
A ∈ Rp×p

Lemma 1: Let , where is a strongly
convex function and is a matrix, then f satisfies the
P-Ł condition.

We have the following global convergence results.

T ≥ (c0(κ1, κ2)/κ2)1/θ {x0, . . . , xT }
Theorem 2: Suppose Assumptions 1–7 hold. For any given

, let be the sequence
generated by Algorithm 1 with

αk = κ1βk, βk = κ2(T +1)θ, ηk =
κ2
βk
, ∀k ≤ T (14)

θ ∈ (0,1) κ1 > c1 κ2 ∈ (0,c2(κ1))where , , . Then,

E
[1
n

n∑
i=1

∥xi,T − x̄T ∥2
]
= O(

1
T 2θ) (15a)

E[f (x̄T)− f ∗] = O(
1

nT θ
)+O(

1
T 2θ). (15b)

Proof: The explicit expressions of the right-hand sides of
(15a) and (15b), and the proof are given in Appendix C. It
should be highlighted that the omitted constants in the first
term on the right-hand side of (15b) do not depend on any
parameters related to the communication network. ■

O(1/(nT))
O(1/(nT))

f ∗i > −∞
f ∗i =minx∈Rp fi(x)

From Theorem 2, we see that the convergence rate is strictly
greater than . In the following we show that the
linear speedup convergence rate can be achieved if
the P-Ł constant ν is known in advance and each ,
where . The total number of iterations T is
not needed.

f ∗i > −∞ {xk}

Theorem 3 (Linear Speedup): Suppose Assumptions 1–7
hold, and the P-Ł constant ν is known in advance, and each

. Let be the sequence generated by Algorithm 1
with

αk = κ1βk, βk = κ0(k+ t1), ηk =
κ2
βk
, ∀k ∈ N0 (16)

κ0 ∈ [ĉ0νκ2/4, νκ2/4) κ1 > c1 κ2 ∈ (0, ĉ2(κ1))
t1 > ĉ3(κ0, κ1, κ2) ĉ0 ∈ (0,1) ĉ2(κ1)
ĉ3(κ0, κ1, κ2) T ∈ N+

where , , , and
 with being a constant, and

 defined in Appendix D. Then, for any ,

E
[1
n

n∑
i=1

∥xi,T − x̄T ∥2
]
= O(

1
T 2) (17a)

E[f (x̄T)− f ∗] = O(
1

nT
)+O(

1
T 2). (17b)

Proof: The explicit expressions of the right-hand sides of
(17a) and (17b), and the proof are given in Appendix D. It
should be highlighted that the omitted constants in the first
term on the right-hand side of (17b) do not depend on any
parameters related to the communication network. ■

O(1/T)Remark 3: It has been shown in [51] that conver-
gence rate is optimal for centralized strongly convex optimi-

O(1/(nT))

zation. This rate has been established by various distributed
SGD algorithms when each local cost function is strongly
convex, e.g., [18], [26], [42]–[46]. In contrast, the linear
speedup convergence rate established in Theorem 3
only requires that the global cost function satisfies the P-Ł
condition, but no convexity assumption is required neither on
the global cost function nor on the local cost functions. The
SGD algorithms in [24], [25], [34], [39]–[41] also achieve the
same linear speedup convergence rate. However, the algori-
thms in [24], [25], [39] are restricted to a star graph, while our
algorithm is applicable to an arbitrarily connected graph.
Moreover, [24], [25] assumed that the mean of each local
stochastic gradient is the gradient of the global cost function,
and T has to be known to choose the algorithm parameters.
The algorithm in [25] furthermore requires an exponentially
increasing batch size, which is not favorable in practice. In
[39], it was assumed that the global cost function is strongly
convex. In [34], [39], it was assumed that each local stochastic
gradient has bounded second moment. In [34], [40], [41], it
was assumed that each local cost function is strongly convex.
It is one of our future research directions to achieve linear
speedup with reduced communication rounds and communi-
cation efficiency for an arbitrarily connected graph.

Theorem 3 shows that the convergence rate to a global
optimum is sublinear when we allow the parameters to be
time-varying. The following theorem establishes that the
output of Algorithm 1 with constant algorithm parameters
linearly converges to a neighborhood of a global optimum.

{xk}Theorem 4: Suppose Assumptions 1–7 hold. Let be the
sequence generated by Algorithm 1 with

αk = α = κ1β, βk = β, ηk = η =
κ2
β
, ∀k ∈ N0 (18)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c0(κ1, κ2)
c0(κ1, κ2), c1, c2(κ1) > 0
where , , and with

 defined in Appendix B. Then,

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2+ f (x̄k)− f ∗
]

≤ (1−ηε)kc4+ c5ησ
2, ∀k ∈ N+ (19)

ε ∈ (0,1/η), c4, c5 > 0where are constants defined in
Appendix E.
 Proof: The proof is given in Appendix E. ■

Remark 4: It should be highlighted the P-Ł constant ν is not
used to design the algorithm parameters. Therefore, the
constant ν does not need to be known in advance. Similar
convergence result as stated in (19) was achieved by the
distributed SGD algorithms proposed in [26], [46]–[49] when
each local cost function is strongly convex, which obviously is
stronger than the P-Ł condition assumed in Theorem 4. In
addition to the strong convexity condition, in [26], it was also
assumed that each local cost function is Lipschitz-continuous.
Some information related to the Lyapunov function and global
parameters, which may be difficult to get, were furthermore
needed to design the stepsize. Moreover, in [46]–[49], the
strong convexity constant was needed to design the stepsize
and in [48], [49], a p-dimensional auxiliary variable, which is
used to track the global gradient, was communicated between

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 817

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

agents. The potential drawbacks of the results stated in
Theorem 4 are that i) we consider undirected graphs rather
than directed graphs as considered in [49]; and ii) we do not
analyze the robustness level to gradient noise as [46] did. We
leave the extension to the (time-varying) directed graphs and
the robustness level analysis as future research directions.

Note that the unbiased assumption, i.e., Assumption 5, can
be removed, as shown in the following.

{xk}
Theorem 5 (Biased SGD): Suppose Assumptions 1–4, 6,

and 7 hold. Let be the sequence generated by Algorithm 1
with

αk = α = κ1β, βk = β, ηk = η =
κ2
β
, ∀k ∈ N0 (20)

κ1 > c1 κ2 ∈ (0,c2(κ1)) β ≥ c̆0(κ1, κ2)
c̆0(κ1, κ2) > 0 c1, c2(κ1) > 0
where , , and with

 and defined in Appendices F and
B, respectively. Then,

E[
1
n

n∑
i=1

∥xi,k − x̄k∥2+ f (x̄k)− f ∗]

≤ (1−ηε)kc4+ c̆5σ
2, ∀k ∈ N+ (21)

ε ∈ (0,1/η), c4 > 0 c̆5 > 0where and are constants defined in
Appendices E and F, respectively.

Proof: The proof is given in Appendix F. ■

O(η) O(1)
σ = 0

Remark 5: By comparing (19) with (21), we can see that no
matter the unbiased assumption holds or not, the output of
Algorithm 1 with constant parameters linearly converges to a
neighborhood of a global optimum, but the size of
neighborhood is different. Specifically, in (19) the size of
neighborhood is in an order of , while it is in (21).
When true gradients are available, i.e., , then from (19)
or (21) we know that a global optimum can be linearly found.
It should be highlighted that this linear convergence result is
established under the P-Ł condition and the P-Ł constant is
not used to design the algorithm parameters. These are two
advantages since in existing studies obtaining linear
convergence for distributed smooth optimization, e.g.,
[56]–[58], it is standard to assume (restricted) strong
convexity, which is stronger than the P-Ł condition, and to use
the convexity parameter.

IV. Simulations

In this section, we evaluate the performance of the proposed
distributed primal-dual SGD algorithm through numerical
experiments. All algorithms and agents are implemented and
simulated in MATLAB R2018b, run on a desktop with Intel
Core i5-9600K processor, Nvidia RTX 2070 super, 32 GB
RAM, Ubuntu 16.04.

A. Neural Networks
We consider the training of neural networks (NN) for image

classification tasks of the database MNIST [59]. The same NN
is adopted as in [28] for each agent and the communication
graph is generated randomly. The graph is shown in Fig. 1 and
the corresponding Laplacian matrix L is given in (22). The
corresponding mixing matrix W is constructed by Metropolis
weights, which is given in (23).

L =

1 −1 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0
0 −1 3 −1 0 0 −1 0 0 0
0 −1 −1 4 −1 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 −1 −1 2 0 0 0 0
0 0 −1 0 0 0 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 1

.

(22)

W =

3/4 1/4 0 0 0
1/4 3/10 1/4 1/5 0
0 1/4 3/10 1/5 0
0 1/5 1/5 1/5 1/5
0 0 0 1/5 7/15
0 0 0 1/5 1/3
0 0 1/4 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 1/4 0 0 0

1/5 0 0 0 0
1/3 0 0 0 0

7/15 0 0 0 0
0 5/12 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3
0 0 0 1/3 2/3

. (23)

Each local neural network consists of a single hidden layer
of 50 neurons, followed by a sigmoid activation layer,
followed by the output layer of 10 neurons and another
sigmoid activation layer. In this experiment, we use a subset
of MNIST data set. Each agent is assigned 2500 data points
randomly, and at each iteration, only one data point is picked
up by the agent following a uniform distribution.

We compare our proposed distributed primal-dual SGD
algorithm with time-varying and fixed parameters (DPD-

1

2 3 7

8

910

6

5

4

Fig. 1. Connection topology.

 818 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

D2

SGD-T and DPD-SGD-F) with state-of-the-art algorithms:
distributed momentum SGD algorithm (DM-SGD) [23],
distributed SGD algorithm (D-SGD-1) [26], [27], distributed
SGD algorithm (D-SGD-2) [28], [36], distributed
stochastic gradient tracking algorithm (D-SGT-1) [37], [49],
distributed stochastic gradient tracking algorithm (D-SGT-2)
[38], [48], and the baseline centralized SGD algorithm (C-
SGD). We list all the parameters1 we choose in the NN
experiment for each algorithm in Table II.

TABLE II

Parameters in Each Algorithm in NN Experiment

Algorithm ηk αk βk

DPD-SGD-T 0.08/k10−5
4k10−5

3k10−5

DPD-SGD-F 0.03 5 20

DM-SGD [23] 0.1 × 0.8

D-SGD-1 [26], [27] 0.1 × ×

D-SGD-2 [28] × 0.1/(10−5k+1) 0.2/(10−5k+1)0.3

D2 [36] 0.01 × ×

D-SGT-1 [37], [49] 0.01 × ×

D-SGT-2 [38], [48] 0.01 × ×

C-SGD 0.1 × ×

We demonstrate the result in terms of the empirical risk
function [60], which is given as

R(z) = −1
n

n∑
i=1

1
mn

mn∑
j=1

9∑
k=0

(tk lnyk(x, z)

+ (1− tk) ln(1− yk(x, z)))
mn tk

z = (z(1),z(2)) z(1)

z(2)

yk ∈ [0,1]
k = 0, . . . ,9

where indicates the size of data set for each agent,
denotes the target (ground truth) of digit k corresponding to a
single image, x is a single image input, with
and being the weights in the 2 layers respectively, and

 is the output which expresses the probability of digit
. The mapping from input to output is given as

yk(x, z) = σ

 50∑
j=0

z(2)
k, jσ

28×28∑
i=0

z(1)
j,i xi

σ(s) = 1
1+exp(−s)where is the sigmoid function.

Fig. 2 shows that the proposed distributed primal-dual SGD
algorithms with time-varying parameters converges almost as
fast as the distributed SGD algorithm in [26], [27] and faster
than the distributed SGD algorithms in [28], [36]–[38], [48],
[49] and the centralized SGD algorithm. Note that our
algorithm converges slower than the distributed momentum
SGD algorithm [23]. This is reasonable since that algorithm is
an accelerated algorithm with extra requirement on the cost
functions, i.e., the deviations between the gradients of local
cost functions are bounded, and it requires each agent to
communicate three p-dimensional variables with its neighbors
at each iteration. The slopes of the curves are however almost
the same. The accuracy of each algorithm is given in Table III.

B. Convolutional Neural Networks
Let us consider the training of a convolutional neural

networks (CNN) model. We build a CNN model for each
agent with five 3×3 convolutional layers using ReLU as
activation function, one average pooling layer with filters of
size 2×2, one sigmoid layer with dimension 360, another
sigmoid layer with dimension 60, one softmax layer with
dimension 10. In this experiment, we use the whole MNIST
data set. We use the same communication graph as in the
above NN experiment. Each agent is assigned 6000 data
points randomly. We set the batch size as 20, which means at
each iteration, 20 data points are chosen by the agent to update
the gradient, which is also following a uniform distribution.
For each algorithm, we do 10 epochs to train the CNN model.

We compare our algorithms DPD-SGD-T and DPD-SGD-F
with the fastest ones for the neural networks case, i.e., DM-
SGD [23], D-SGD-1 [26], [27], and C-SGD. We list all the
parameters we choose in the CNN experiment for each
algorithm in Table IV.

We demonstrate the training loss and the test accuracy of
each algorithm in Figs. 3 and 4 respectively. Here we use
Categorical Cross-Entropy loss, which is a softmax activation
plus a Cross-Entropy loss. We can see that our algorithms
perform almost the same as the DM-SGD and better than the
D-SGD-1 and the centralized C-SGD. The accuracy of each
algorithm is given in Table V.

1 Note: the parameter names are different in each paper.

102

100 101 102 103 104 105 106

100

10−2

10−4

10−6

Iteration k

Em
pi

ric
al

 ri
sk

 fu
nc

tio
n

DPD-SGD-T
DPD-SGD-F
DM-SGD in [23]
D-SGD-1 in [26], [27]
D-SGD-2 in [28]
D2 in [36]
D-SGT-1 in [37], [49]
D-SGT-2 in [38], [48]
C-SGD

Fig. 2. Empirical risk.

TABLE III

Accuracy on Each Algorithm in NN Experiment

Algorithm Accuracy

DPD-SGD-T 93.04%

DPD-SGD-F 92.76%

DM-SGD [23] 93.44%

D-SGD-1 [26], [27] 92.96%

D-SGD-2 [28] 92.88%

D2 [36] 90.44%

D-SGT-1 [37], [49] 92.88%

D-SGT-2 [38], [48] 92.96%

C-SGD 93%

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 819

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

V. Conclusions

In this paper, we studied distributed nonconvex optimiza-
tion. We proposed a distributed primal-dual SGD algorithm
and derived its convergence rate. More specifically, the linear

O(1/
√

nT)

O(1/(nT))

speedup convergence rate was established for
smooth nonconvex cost functions under arbitrarily connected
communication networks. The convergence rate was
improved to the linear speedup convergence rate
when the global cost function additionally satisfies the P-Ł
condition. It was also shown that the output of the proposed
algorithm with constant parameters linearly converges to a
neighborhood of a global optimum. Interesting directions for
future work include achieving linear speedup under the P-Ł
condition while considering communication reduction.

Appendix

A. Notations and Useful Lemmas
In A⊗B

null(A)

M,N M ≥ N M−N ρ(·)
ρ2(·)

∥x∥2A xT Ax ⌈·⌉
⌊·⌋
x ∈ R [x]+ 1(·)

n ∈ N0 n!

 is the n -dimensional identity matrix. The notation
denotes the Kronecker product of matrices A and B. is
the null space of matrix A . Given two symmetric matrices

, means that is positive semi-definite.
stands for the spectral radius of a matrix and indicates the
minimum positive eigenvalue for a matrix having positive
eigenvalues. For any square matrix A, denotes .
and denote the ceiling and floor functions, respectively. For
any , is the positive part of x. is the indicator
function. For any , is the factorial of n.

Kn = In− 1
n 1n1⊤n K = Kn⊗ Ip H = 1

n (1n1T
n ⊗ Ip)

x̄k =
1
n (1T

n ⊗ Ip)xk x̄k = 1n⊗ x̄k gk = ∇ f̃ (xk) ḡk = Hgk

g0
k = ∇ f̃ (x̄k) ḡ0

k = Hg0
k = 1n⊗∇ f (x̄k) ḡu

k = Hgu
k

Denote , , ,
, , , ,

, , and .
The following results are used in the proofs.

f (x) : Rp 7→ R L f > 0
Lemma 2 (Lemma 1.2.3 in [61] and Lemma 3 in [62]): If

the function is smooth with constant ,
then,

| f (y)− f (x)− (y− x)T∇ f (x)| ≤
L f

2
∥y− x∥2 (24a)

∥∇ f (x)∥2 ≤ 2L f (f (x)− f ∗), ∀x,y ∈ Rp (24b)

f ∗ =minx∈Rp f (x)where .

G
null(L) = null(Kn) = {1n} L ≤ ρ(L)In

ρ(Kn) = 1

Lemma 3 (Lemmas 1 and 2 in [63]): Let L be the Laplacian
matrix of the graph . If Assumption 1 holds, then L is
positive semi-definite, , ,

,

KnL = LKn = L (25)

0 ≤ ρ2(L)Kn ≤ L ≤ ρ(L)Kn. (26)
[r R] ∈ Rn×n

r = 1√
n
1n R ∈ Rn×(n−1)

Moreover, there exists an orthogonal matrix
with and such that

RΛ−1
1 R⊤L = LRΛ−1

1 R⊤ = Kn (27)

1
ρ(L)

Kn ≤ RΛ−1
1 R⊤ ≤ 1

ρ2(L)
Kn (28)

Λ1 = diag([λ2, . . . ,λn]) 0 < λ2 ≤ · · · ≤ λnwhere with being the
eigenvalues of the Laplacian matrix L.

a ∈ (0,1)Lemma 4: Let be a constant, then

(1−a)T ≤ k!
(aT)k , ∀k,T ∈ N0. (29)

a ∈ (0,1) ln(1−a) ≤ −aProof: For any constant , we have .
Thus,

TABLE IV

Parameters in Each Algorithm in CNN Experiment

Algorithm ηk αk βk

DPD-SGD-T 0.5/k10−5
0.5k10−5

0.1k10−5

DPD-SGD-F 0.5 0.5 0.1

DM-SGD [23] 0.1 × 0.8

D-SGD-1 [26], [27] 0.1 × ×

C-SGD 0.1 × ×

DPD-SGD-T
DPD-SGD-F
DM-SGD in [23]
D-SGD-1 in [26], [27]
C-SGD

2.5

1 2 3 4 6 75 8 9 10

2.0

1.5

1.0

0

0.5

Epochs

Tr
ai

ni
ng

 lo
ss

Fig. 3. CNN training loss.

DPD-SGD-T
DPD-SGD-F
DM-SGD in [23]
D-SGD-1 in [26], [27]
C-SGD

1.0

1 2 3 4 6 75 8 9 10

0.8

0.6

0.7

0.9

0.4

0.5

0.3

0

0.2

0.1

Epochs

A
cc

ur
ac

y

Fig. 4. CNN accuracy.

TABLE V

Accuracy on Each Algorithm in CNN Experiment

Algorithm Accuracy

DPD-SGD-T 94.75%

DPD-SGD-F 93.17%

DM-SGD [23] 94.29%

D-SGD-1 [26], [27] 92.96%

C-SGD 89.91%

 820 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

(1−a)T ≤ e−aT , ∀T ∈ N0. (30)

x > 0 ex > xk

k! , ∀k ∈ N0For any constant , we have . This
result together with (30) yields (29). ■

{zk} {r1,k} {r2,k}
t1 ∈ N+

Lemma 5: Let , , and be sequences. Suppose
there exists such that

zk ≥ 0 (31a)

zk+1 ≤ (1− r1,k)zk + r2,k (31b)

1 > r1,k ≥
a1

(k+ t1)δ (31c)

r2,k ≤
a2

(k+ t1)2 , ∀k ∈ N0 (31d)

δ ≥ 0 a1 > 0 a2 > 0where , , and are constants.
δ = 1i) If , then,

zk ≤ ϕ1(k, t1,a1,a2,z0), ∀k ∈ N+ (32)
where

ϕ1(k, t1,a1,a2,z0) =
ta1
1 z0

(k+ t1)a1
+

a2

(k+ t1−1)2

+4a2s1(k+ t1) (33)
and

s1(k) =

1
(a1−1)k

, i f a1 > 1

ln(k−1)
k

, i f a1 = 1

−ta1−1
1

(a1−1)ka1
, i f a1 < 1.

δ = 0ii) If , then,

zk ≤ ϕ2(k, t1,a1,a2,z0), ∀k ∈ N+ (34)
where

ϕ2(k, t1,a1,a2,z0)

= (1−a1)kz0+a2(1−a1)k+t1−1
(
[t2− t1]+s2(t1)

+ ([t3− t1]+− [t2− t1]+)s2(t3)
)

+
1(k+t1−1≥t3)2a2

− ln(1−a1)(k+ t1)2(1−a1)
(35)

s2(k) = 1
k2(1−a1)k t2 = ⌈ −2

ln(1−a1) ⌉ t3 = ⌈ −4
ln(1−a1) ⌉, , and .

k ∈ N+Proof: i) From (31a)–(31c), for any , it holds that

zk ≤
k−1∏
τ=0

(1− r1,τ)z0+ r2,k−1+

k−2∑
l=0

k−1∏
τ=l+1

(1− r1,τ)r2,l. (36)

t ∈ [0,1] 1− t ≤ e−t s3(t) = 1−
t− e−t [0,1]

k > l ≥ 0

For any , it holds that since
 is a non-increasing function in the interval . Thus,

for any , it holds that

k−1∏
τ=l

(1− r1,τ) ≤ e−
∑k−1
τ=l r1,τ . (37)

We also have

k−1∑
τ=l

r1,τ ≥
k−1∑
τ=l

a1

τ+ t1
=

k−1+t1∑
τ=l+t1

a1

τ

≥
w k+t1

t=l+t1

a1

t
dt = a1(ln(k+ t1)− ln(l+ t1)) (38)

s4(t) = a1/t
[1,+∞)

where the first inequality holds due to (31c) and the second
inequality holds since is a decreasing function in
the interval .

Hence, (37) and (38) yield

k−1∏
τ=l

(1− r1,τ) ≤ e−
∑k−1
τ=l r1,τ ≤ (l+ t1)a1

(k+ t1)a1
. (39)

We have

k−2∑
l=0

k−1∏
τ=l+1

(1− r1,τ)r2,l ≤
k−2∑
l=0

(l+ t1+1)a1

(k+ t1)a1

a2

(l+ t1)2

≤
k−2∑
l=0

(l+ t1+1)a1

(k+ t1)a1

a2

(t1
t1+1 l+ t1)2

=
(t1+1

t1
)2a2

(k+ t1)a1

k−2∑
l=0

(l+ t1+1)a1

(l+ t1+1)2

=
4a2

(k+ t1)a1

k+t1−1∑
l=t1+1

la1−2 (40)

where the first inequality holds due to (39) and (31d).
From (36), (39), and (40), we have (32).

a = 1−a1 δ = 0
a1 ∈ (0,1) a ∈ (0,1)

ii) Denote . From (31c) and , we know that
. Thus, .

δ1 = 0 k ∈ N+From (31a)–(31d) and , for any , it holds that

zk ≤ (1−a1)kz0+

k−1∑
τ=0

(1−a1)k−1−τr2,τ

≤ akz0+a2ak+t1−1
k−1∑
τ=0

1
(τ+ t1)2aτ+t1

. (41)

We have

k−1∑
τ=0

1
(τ+ t1)2aτ+t1

=

k+t1−1∑
τ=t1

1
τ2aτ

=

t2−1∑
τ=t1

s2(τ)+
t3−1∑
τ=t2

s2(τ)+
k+t1−1∑
τ=t3

s2(τ). (42)

s2(t) = 1/(t2at)
[1, t2−1] [t2,+∞)

We know that is decreasing and increasing
in the intervals and , respectively, since

ds2(t)
dt
= −s2(t)

(2
t
+ ln(a)

)
≤ 0, ∀t ∈

(
0,
−2

ln(a)

]
,

ds2(t)
dt
= −s2(t)

(2
t
+ ln(a)

)
≥ 0, ∀t ∈

[−2
ln(a)

,+∞
)
.

Thus, we have

t2−1∑
τ=k1

s2(τ) ≤ (t2− k1)s2(k1), ∀k1 ∈ [1, t2−1] (43a)

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 821

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

t3−1∑
τ=k2

s2(τ) ≤ (t3− k2)s2(t3), ∀k2 ∈ [t2, t3−1] (43b)

k3∑
τ=t3

s2(τ) ≤
w k3+1

t3
s2(t)dt, ∀k3 ≥ t3. (43c)

b = 1/aDenote . We have
 w k3+1

t3
s2(t)dt =

w k3+1

t3

bt

t2 dt =
w k3+1

t3

1
ln(b)t2 dbt

=
bk3+1

ln(b)(k3+1)2 −
bt3

ln(b)t2
3

+
w k3+1

t3

2bt

ln(b)t3 dt

≤ bk3+1

ln(b)(k3+1)2 +
w k3+1

t3

2
ln(b)t

s2(t)dt

≤ bk3+1

ln(b)(k3+1)2 +
2

ln(b)t3

w k3+1

t3
s2(t)dt

≤ bk3+1

ln(b)(k3+1)2 +
1
2

w k3+1

t3
s2(t)dt

(44)

t3 = ⌈ −4
ln(1−a1) ⌉ ≥

−4
ln(1−a1) =

4
ln(b)

where the last inequality holds due to
.

From (43c) and (44), we have

k3∑
τ=t3

s2(τ) ≤ −2
ln(a)(k3+1)2ak3+1 , ∀k3 ≥ t3. (45)

From (41), (42), (43a), (43b), and (45), we get (34). ■
Lemma 6: Suppose Assumptions 1 and 3–6 hold. Then the

following holds for Algorithm 1:

EFk [W1,k+1] ≤W1,k −∥xk∥2ηkαk L− 1
2 ηk K− 3

2 η
2
kα

2
k L2− 1

2 ηk(1+5ηk)L2
f K

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥23
2 η

2
kβ

2
k K

+2nσ2η2
k (46)

W1,k =
1
2 ∥xk∥2Kwhere .

∇ f̃
L f > 0

Proof: Noting that is Lipschitz-continuous with constant
 since Assumption 3 is satisfied, we have that

∥g0
k − gk∥2 ≤ L2

f ∥x̄k − xk∥2 = L2
f ∥xk∥2K . (47)

From Assumptions 4–6, we know that

EFk [gu
k] = gk (48a)

EFk [∥gu
k − gk∥2] ≤ nσ2. (48b)

From (47), (48b), and the Cauchy-Schwarz inequality, we
have

EFk [∥g0
k − gu

k∥
2] = EFk [∥g0

k − gk + gk − gu
k∥

2]

≤ 2∥g0
k − gk∥2+2EUk [∥gk − gu

k∥
2]

≤ 2L2
f ∥xk∥2K +2nσ2. (49)

We have

EFk [W1,k+1] = EFk

[1
2
∥xk+1∥2K

]
= EFk

[1
2
∥xk −ηk(αk Lxk +βkvk + gu

k)∥2K
]

= EFk

[1
2
∥xk∥2K −ηkαk∥xk∥2L+

1
2
η2

kα
2
k∥xk∥2L2

−ηkβk xT
k (Inp−ηkαk L)K

(
vk +

1
βk

gu
k

)
+

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

gu
k

∥∥∥∥2K]
=

1
2
∥xk∥2K −∥xk∥2ηkαk L− 1

2 η
2
kα

2
k L2 −ηkβk xT

k (Inp

−ηkαk L)K
(
vk +

1
βk

g0
k +

1
βk

gk −
1
βk

g0
k

)
+

1
2
η2

kβ
2
kEFk

[∥∥∥∥vk +
1
βk

g0
k +

1
βk

gu
k −

1
βk

g0
k

∥∥∥∥2K]
≤W1,k −∥xk∥2ηkαk L− 1

2 η
2
kα

2
k L2

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
ηk

2
∥xk∥2K +

ηk

2
∥gk − g0

k∥
2

+
1
2
η2

kα
2
k∥xk∥2L2 +

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

kα
2
k∥xk∥2L2 +

1
2
η2

k∥gk − g0
k∥

2

+η2
kβ

2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +η2
kEFk [∥gu

k − g0
k∥

2]

=W1,k −∥xk∥2ηkαk L− 1
2 ηk K− 3

2 η
2
kα

2
k L2

+
ηk

2
(1+ηk)∥gk − g0

k∥
2+η2

kEFk [∥gu
k − g0

k∥
2]

−ηkβk xT
k K
(
vk +

1
βk

g0
k

)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥23
2 η

2
kβ

2
k K

(50)

xk vk Fk

ρ(K) = 1

where the second equality holds due to (5a); the third equality
holds due to (25) in Lemma 3; the fourth equality holds since

 and are independent of and (48a), respectively; and
the inequality holds due to the Cauchy-Schwarz inequality and

.
 Then, from (47), (49), and (50), we have (46). ■

{βk}Lemma 7: Suppose Assumptions 1 and 3 hold, and is
non-decreasing. Then the following holds for Algorithm 1:

W2,k+1 ≤W2,k + (1+ωk)ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+

1
2

(ηk +ωk +ηkωk)
(1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K
+ ∥xk∥2(1+ωk)η2kβ

2
k (L+κ1 L2)

+
ηk

β2
k

(
ηk +

1
2

)
(1+ωk)

(1
ρ2(L)

+ κ1
)
L2

f ∥ ḡ
u
k∥

2

+
1
2

(1
ρ2(L)

+ κ1
)
(ωk +ω

2
k)∥g0

k+1∥
2 (51)

 822 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

W2,k =
1
2 ∥vk +

1
βk

g0
k∥

2
Q+κ1 K Q = RΛ−1

1 R⊤⊗ Ip

Λ−1
1 ωk =

1
βk
− 1
βk+1

κ1 > 0

where , with
matrices R and given in Lemma 3, , and

 is a constant.
v̄k =

1
n (1T

n ⊗ Ip)vkProof: Denote . Then, from (5b), we know
that

v̄k+1 = v̄k. (52)∑n
i=1 vi,0 = 0pThen, from (52) and , it can be obtained that

v̄k = 0p. (53)
Then, from (53) and (5a), we have

x̄k+1 = x̄k −ηk ḡu
k . (54)

∇ f̃Since is Lipschitz-continuous and (54), we have

∥g0
k+1− g0

k∥
2 ≤ L2

f ∥x̄k+1− x̄k∥2 = η2
k L2

f ∥ ḡ
u
k∥

2. (55)

ωk ≥ 0 {βk}We know that since is non-decreasing. We have

W2,k+1 =
1
2

∥∥∥∥vk+1+
1
βk+1

g0
k+1

∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk+1+
1
βk

g0
k+1+

(1
βk+1
− 1
βk

)
g0

k+1

∥∥∥∥2Q+κ1 K

≤ 1
2

(1+ωk)
∥∥∥∥vk+1+

1
βk

g0
k+1

∥∥∥∥2Q+κ1 K

+
1
2

(ωk +ω
2
k)∥g0

k+1∥
2
Q+κ1 K (56)

where the inequality holds due to the Cauchy-Schwarz
inequality.

For the first term on the right-hand side of (56), we have

1
2

∥∥∥∥vk+1+
1
βk

g0
k+1

∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk +
1
βk

g0
k +ηkβk Lxk +

1
βk

(g0
k+1− g0

k)
∥∥∥∥2Q+κ1 K

=
1
2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2Q+κ1 K

+ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥21

2 η
2
kβ

2
k (L+κ1 L2)

+
1

2β2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
1
βk

(
vk +

1
βk

g0
k +ηkβk Lxk

)T
(Q+ κ1K)(g0

k+1− g0
k)

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥21

2 η
2
kβ

2
k (L+κ1 L2)

+
1

2β2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
ηk

2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2Q+κ1 K
+

1
2ηkβ

2
k

∥g0
k+1− g0

k∥
2
Q+κ1 K

+
1
2
η2

kβ
2
k∥Lxk∥2Q+κ1 K +

1
2β2

k

∥g0
k+1− g0

k∥
2
Q+κ1 K

=W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)

+ ∥xk∥2η2kβ2
k (L+κ1 L2)

+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
1
β2

k

(
1+

1
2ηk

)
∥g0

k+1− g0
k∥

2
Q+κ1 K

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥2η2kβ2

k (L+κ1 L2)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
1
β2

k

(
1+

1
2ηk

)(1
ρ2(L)

+ κ1
)
∥g0

k+1− g0
k∥

2

≤W2,k +ηkβk xT
k (K+ κ1L)

(
vk +

1
βk

g0
k

)
+ ∥xk∥2η2kβ2

k (L+κ1 L2)
+
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2 ηk(Q+κ1 K)

+
ηk

β2
k

(
ηk +

1
2

)(1
ρ2(L)

+ κ1
)
L2

f ∥ ḡ
u
k∥

2 (57)

ρ(Q+ κ1K) ≤ ρ(Q)+ κ1ρ(K) ρ(K) = 1

where the first equality holds due to (5b); the second equality
holds due to (25) and (27) in Lemma 3; the first inequality
holds due to the Cauchy-Schwarz inequality; the last equality
holds due to (25) and (27) in Lemma 3; the second inequality
holds due to , (28), ; and
the last inequality holds due to (55).

For the second term on the right-hand side of (56), we have

∥g0
k+1∥

2
Q+κ1 K ≤

(1
ρ2(L)

+ κ1
)
∥g0

k+1∥
2. (58)

Also note that
 ∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2Q+κ1 K
≤
(1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K . (59)

 Then, from (56)–(59), we have (51). ■
{βk}Lemma 8: Suppose Assumptions 1 and 3–6 hold, and in

non-decreasing. Then the following holds for Algorithm 1:

EFk [W3,k+1] ≤W3,k − (1+ωk)ηkαk xT
k L
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηk(βk L+ 1

2 K)+η2k (1
2α

2
k−αkβk+β

2
k)L2

+ ∥xk∥21
2ωkηkαk L2+ 1

2 ηk(1+3ηk)L2
f K

+
ηk

2β2
k

(1+3ηk)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k−

1
2ωkαk)K

+
1
2
ωkEFk [2W1,k+1+ ∥g0

k+1∥
2] (60)

W3,k = xT
k K(vk +

1
βk

g0
k)where .

Proof: We have

W3,k+1 = xT
k+1K
(
vk+1+

1
βk+1

g0
k+1

)
= xT

k+1K
(
vk+1+

1
βk

g0
k+1+

(1
βk+1
− 1
βk

)
g0

k+1

)

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 823

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

= xT
k+1K
(
vk+1+

1
βk

g0
k+1

)
−ωk xT

k+1K g0
k+1

≤ xT
k+1K
(
vk+1+

1
βk

g0
k+1

)
+

1
2
ωk(∥xk+1∥2K + ∥g0

k+1∥
2). (61)

For the first term on the right-hand side of (61), we have

EFk

[
xT

k+1K
(
vk+1+

1
βk

g0
k+1

)]
= EFk

[
(xk −ηk(αk Lxk +βkvk + g0

k + gu
k − g0

k))T

×K
(
vk +

1
βk

g0
k +ηkβk Lxk +

1
βk

(
g0

k+1− g0
k

))]
= xT

k (K−ηk(αk +ηkβ
2
k)L)
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηkβk(L−ηkαk L2)

+
1
βk

xT
k (K−ηkαk L)EFk [g0

k+1− g0
k]

−ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
−ηk
(
vk +

1
βk

g0
k

)T
KEFk [g0

k+1− g0
k]

−ηk(gk − g0
k)T K

(
vk +

1
βk

g0
k +ηkβk Lxk

)
− 1
βk

EFk [ηk(gu
k − g0

k)T K(g0
k+1− g0

k)]

≤ xT
k (K−ηkαk L)

(
vk +

1
βk

g0
k

)
+

1
2
η2

kβ
2
k∥Lxk∥2

+
1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K + ∥xk∥2ηkβk(L−ηkαk L2)

+
1
2
ηk∥xk∥2K +

1
2ηkβ

2
k

EFk [∥g0
k+1− g0

k∥
2

+
1
2
η2

kα
2
k∥Lxk∥2+

1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

−ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K + 1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

+
1
2
ηk∥gk − g0

k∥
2+

1
2
ηk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K
+

1
2
η2

k∥gk − g0
k∥

2+
1
2
η2

kβ
2
k∥Lxk∥2

+
1
2
η2

kEFk [∥gu
k − g0

k∥
2]+

1
2β2

k

EFk [∥g0
k+1− g0

k∥
2]

= xT
k (K−ηkαk L)

(
vk +

1
βk

g0
k

)

+
1
2

(ηk +η
2
k)∥gk − g0

k∥
2+

1
2
η2

kEFk [∥gu
k − g0

k∥
2]

+ ∥xk∥2ηk(βk L+ 1
2 K)+η2k (1

2α
2
k−αkβk+β

2
k)L2

+
(1
2ηkβ

2
k

+
3

2β2
k

)
EFk [∥g0

k+1− g0
k∥

2]

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k)K

≤ xT
k K
(
vk +

1
βk

g0
k

)
− (1+ωk)ηkαk xT

k L
(
vk +

1
βk

g0
k

)
+ωkηkαk xT

k L
(
vk +

1
βk

g0
k

)
+ ∥xk∥2ηk(βk L+ 1

2 K)+η2k (1
2α

2
k−αkβk+β

2
k)L2+ 1

2 ηk(1+3ηk)L2
f K

+
ηk

2β2
k

(1+3ηk)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
ηk(βk− 1

2−ηkβ
2
k)K

(62)

xk vk Fk

ρ(K) = 1

where the first equality holds due to (5); the second equality
holds since (25) in Lemma 3, and are independent of ,
and (48a); the first inequality holds due to the Cauchy-
Schwarz inequality, (25), , and the Jensen’s
inequality; and the last inequality holds due to (47), (49), and
(55). For the third term on the right-hand side of (62), we have

ωkηkαk xT
k L
(
vk +

1
βk

g0
k

)
= ωkηkαk xT

k LK
(
vk +

1
βk

g0
k

)
≤ ∥xk∥21

2ωkηkαk L2 +
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥21
2ωkηkαk K

. (63)

 Then, from (61)–(63), we have (60). ■
Lemma 9: Suppose Assumptions 2–5 hold. Then the

following holds for Algorithm 1:

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡk∥2+ ∥xk∥2ηk

2 L2
f K

− ηk

4
∥ ḡ0

k∥
2+

1
2
η2

k L f EFk [∥ ḡu
k∥

2] (64)

W4,k = n(f (x̄k)− f ∗) = f̃ (x̄k)−n f ∗where .
W4,k

f ∗ > −∞
Proof: We first note that is well defined due to

 as assumed in Assumption 2.
ρ(H) = 1From (47) and , it can be obtained that

∥ ḡ0
k − ḡk∥2 = ∥H(g0

k − gk)∥2 ≤ ∥g0
k − gk∥2 ≤ L2

f ∥xk∥2K . (65)

From (48a), it can be calculated that

EFk [ḡu
k] = EFk [Hgu

k] = HEFk [gu
k] = ḡk. (66)

We have

EFk [W4,k+1] = EFk [f̃ (x̄k+1)−n f ∗]

= EFk [f̃ (x̄k)−n f ∗+ f̃ (x̄k+1)− f̃ (x̄k)]

 824 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

≤ EFk [f̃ (x̄k)−n f ∗−ηk(ḡu
k)T g0

k +
1
2
η2

k L f ∥ ḡu
k∥

2]

= f̃ (x̄k)−n f ∗−ηk ḡT
k g0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

= f̃ (x̄k)−n f ∗−ηk ḡT
k ḡ0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

=W4,k −
ηk

2
ḡT

k (ḡk + ḡ0
k − ḡk)

− ηk

2
(ḡk − ḡ0

k + ḡ0
k)T ḡ0

k +
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

≤W4,k −
ηk

4
∥ ḡk∥2+

ηk

4
∥ ḡ0

k − ḡk∥2−
ηk

4
∥ ḡ0

k∥
2

+
ηk

4
∥ ḡ0

k − ḡk∥2+
1
2
η2

k L f EFk [∥ ḡu
k∥

2]

=W4,k −
ηk

4
∥ ḡk∥2+

ηk

2
∥ ḡ0

k − ḡk∥2

− ηk

4
∥ ḡ0

k∥
2+

1
2
η2

k L f EFk [∥ ḡu
k∥

2] (67)

f̃
xk vk

Fk

ḡT
k g0

k = gT
k Hg0

k = gT
k HHg0

k = ḡT
k ḡ0

k

where the first inequality holds since that is smooth, (24a)
and (54); the third equality holds since and are
independent of and (66); the fourth equality holds due to

; and the second inequa-
lity holds due to the Cauchy-Schwarz inequality.

Then, from (65) and (67), we have (64). ■

B. Proof of Theorem 1
We denote the following notations:

c0(κ1, κ2) =max{4κ2ε5, ε6}

c1 =
1
ρ2(L)

+1

c2(κ1) =min
{ε1
ε2
,

1
5

}
κ3 =

1
ρ2(L)

+ κ1+1

κ4 =
1
ρ2(L)

+ κ1+
3
2

κ5 =
κ1+1

2
+

1
2ρ2(L)

κ6 =min
{ 1
2ρ(L)

,
κ1−1
2κ1

}
ε1 = (κ1−1)ρ2(L)−1

ε2 = ρ(L)+ (2κ21 +1)ρ(L2)+1

ε3 = ε1κ2−ε2κ22

ε4 =
1
2

(κ2−5κ22)

ε5 = L f +
1
κ2ε6
κ3L2

f +
2
ε26
κ4L2

f

ε6 =max
{1
2

(2+3L2
f), κ3

}
.

To prove Theorem 1, we need the following lemma:

αk = α = κ1β βk = β ≥ c0(κ1, κ2) ηk = η = κ2/β

κ1 > c1 κ2 ∈ (0,c2(κ1)) k ∈ N0

Lemma 10: Suppose Assumptions 1–6 hold. Suppose
, , and , where

 and . Then, for any the following
holds for Algorithm 1:

EFk [Wk+1] ≤Wk −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

− 1
4
η∥ ḡ0

k∥
2+ (ε5+3n)σ2η2 (68a)

EFk [W̆k+1] ≤ W̆k −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K
+2ε5η2∥ ḡ0

k∥
2

+2L2
f ε5η

2∥xk∥2K + (ε5+3n)σ2η2 (68b)

EFk [W4,k+1] ≤W4,k −
1
4
η∥ ḡ0

k∥
2+ ∥xk∥21

2 ηL
2
f K
+L fσ

2η2

(68c)
Wk =

∑4
i=1 Wi,k W̆k =

∑3
i=1 Wi,kwhere and .

αk = α = κ1β βk = β ηk = η

ωk =
1
βk
− 1
βk+1
= 0

Proof: i) Noting that , , , and
, from (46), (51), (60), and (64), we have

EFk [Wk+1] ≤Wk +
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥23
2 η

2β2 K
+2nσ2η2

−∥xk∥2ηαL− 1
2 ηK−

3
2 η

2α2 L2− 1
2 η(1+5η)L2

f K

+ ∥xk∥2η2β2(L+κ1 L2)+
1
2
η
(1
ρ2(L)

+ κ1
)∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2K
+
η

β2

(
η+

1
2

)(1
ρ2(L)

+ κ1
)
L2

f EFk [∥ ḡu
k∥

2]

+ ∥xk∥2η(βL+ 1
2 K)+η2(1

2α
2−αβ+β2)L2+ 1

2 η(1+3η)L2
f K

+
η

2β2 (1+3η)L2
f EFk [∥ ḡu

k∥
2]+nσ2η2

−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
η(β− 1

2−ηβ2)K
− 1

4
η∥ ḡk∥2

+ ∥xk∥21
2 ηL

2
f K
− 1

4
η∥ ḡ0

k∥
2+

1
2
η2L f EFk [∥ ḡu

k∥
2].

(69)
Note that

EFk [∥ ḡu
k∥

2] = EFk [∥ ḡu
k − ḡk + ḡk∥2]

≤ 2EFk [∥ ḡu
k − ḡk∥2]+2∥ ḡk∥2

= 2nEFk [∥1
n

n∑
i=1

(gu
i,k −gi,k)∥2]+2∥ ḡk∥2

=
2
n

EFk [∥
n∑

i=1

(gu
i,k −gi,k)∥2]+2∥ ḡk∥2

=
2
n

n∑
i=1

EFk [∥gu
i,k −gi,k∥2]+2∥ ḡk∥2

≤ 2σ2+2∥ ḡk∥2 (70)

{gu
i,k, i ∈ [n]}

where the first inequality holds due to the Cauchy-Schwarz
inequality; the last equality holds since are

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 825

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

xk
vk Fk EFk [gu

i,k] = gi,k

independent of each other as assumed in Assumption 4, and
 are independent of , and as assumed in

Assumption 5; and the last inequality holds due to (48b).
α = κ1βFrom (69), (70), and , we have

EFk [Wk+1] ≤Wk −∥xk∥2ηM1−η2 M2
−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
b1,k K

−b2,kη∥ ḡk∥2−
1
4
η∥ ḡ0

k∥
2+b3,kσ

2η2+3nσ2η2

(71)
where

M1 = (α−β)L− 1
2

(2+3L2
f)K

M2 = β
2L+ (2α2+β2)L2+4L2

f K

b1,k =
1
2

(2β− κ3)η− 5
2
β2η2

b2,k =
1
4
−b3,kη

b3,k = L f +
1
β2η
κ3L2

f +
2
β2 κ4L2

f .

α = κ1β κ1 > c1 > 1 η = κ2/β β ≥ c0(κ1, κ2) ≥
ε6 ≥ (2+3L2

f)/2
From (26), , , , and

, we have

ηM1 ≥ ε1κ2K. (72)

α = κ1β β ≥ 1
2 (2+3L2

f) > 2L fFrom (26), , and , one can have

η2 M2 ≤ ε2κ22 K. (73)

β ≥ κ3From , it can be obtained that

b1,k ≥ε4. (74)
κ1 > c1 = 1/ρ2(L)+1From , it can be derived that

ε1 > 0. (75)
κ2 ∈ (0,min{ ε1ε2 ,

1
5 })From (75) and , we have

ε3 > 0 (76a)

ε4 > 0. (76b)
β ≥ 4κ2ε5From (76a), (76b), and , we have

b3,k = L f +
1
β2ηk
κ3L2

f +
2
β2 κ4L2

f ≤ ε5 (77a)

b2,k =
1
4
−b3,kη ≥

1
4
− κ2
β
ε5 ≥ 0. (77b)

From (71)–(74), (77a), and (77b), we have (68a).
ii) Similarly, the way to get (68a), we know that

EFk [W̆k+1] ≤ W̆k −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

+ε5η
2∥ ḡk∥2+ (ε5+3n)σ2η2. (78)

We have

∥ ḡk∥2 = ∥ ḡk − ḡ0
k + ḡ0

k∥
2

≤ 2∥ ḡk − ḡ0
k∥

2+2∥ ḡ0
k∥

2 ≤ 2L2
f ∥xk∥2K +2∥ ḡ0

k∥
2 (79)

where the last inequality holds due to (65).
From (78) and (79), we have (68b).

iii) From (64) and (70), we have

EFk [W4,k+1] ≤W4,k −
1
4
η∥ ḡk∥2+ ∥xk∥21

2 ηL
2
f K

− 1
4
η∥ ḡ0

k∥
2+η2L f (σ2+ ∥ ḡk∥2). (80)

η = κ2/β β ≥ 4κ2ε5 > 4κ2L fFrom and , we have

ηL f <
1
4
. (81)

 From (80) and (81), we have (68c). ■
Now we are ready to prove Theorem 1.
Denote

V̂k = ∥xk∥2K +
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K +n(f (x̄k)− f ∗).

We have

Wk =
1
2
∥xk∥2K +

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2Q+κ1 K

+ xT
k K
(
vk +

1
β

g0
k

)
+n(f (x̄k)− f ∗)

≥ 1
2
∥xk∥2K +

1
2

(1
ρ(L)

+ κ1
)∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2K
− 1

2κ1
∥xk∥2K −

κ1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2K +n(f (x̄k)− f ∗)

≥ κ6
(
∥xk∥2K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2K)+n(f (x̄k)− f ∗) (82)

≥ κ6V̂k ≥ 0 (83)

0 < κ6 < 0.5

where the first inequality holds due to (28) and the Cauchy-
Schwarz inequality; and the last inequality holds due to

. Similarly, we have

Wk ≤ κ5V̂k. (84)
From (68a) and (76b), we have

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
κ2
4β
∥ ḡ0

k∥
2+

(ε5+3n)κ22σ
2

β2 . (85)

FT
k ∈ [0,T]

Then, taking expectation in and summing (85) over
 yield

E[WT+1]+
T∑

k=0

E
[
ε3∥xk∥2K +

κ2
4β
∥ ḡ0

k∥
2
]

≤W0+
(T +1)(ε5+3n)κ22σ

2

β2 . (86)

From (86), (83), and (76a), we have

1
T +1

T∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]
=

1
n(T +1)

T∑
k=0

E[∥xk∥2K]

≤ W0

nε3(T +1)
+

(ε5+3n)κ22σ
2

nε3β2 .

(87)
W0 = O(n)Noting that , from (87), we have (11a).

FT k ∈ [0,T]Taking expectation in and summing (68c) over

 826 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

yield

1
4

n
T∑

k=0

E[∥∇ f (x̄k)∥2] =
1
4

T∑
k=0

E[∥ ḡ0
k∥

2]

≤ W4,0

η
+

1
2

L2
f

T∑
k=0

E[∥xk∥2K]+ (T +1)L fσ
2η. (88)

η = κ2/β =
√

n/
√

TFrom (88), , and (87), we have

1
T

T−1∑
k=0

E[∥∇ f (x̄k)∥2] ≤ 4β
κ2T

(f (x̄0)− f ∗)+
4L fσ

2κ2

nβ

+O(
1
T

)+O(
1
β2)

which gives (11b).
FT k ∈ [0,T]Taking expectation in and summing (68c) over

yield

n(E[f (x̄T+1)]− f ∗) = E[W4,T+1]

≤W4,0+
1
2
ηL2

f

T∑
k=0

E[∥xk∥2K]+L fσ
2η2(T +1). (89)

η = κ2/β From (86), (89), and , we have (11c). ■

C. Proof of Theorem 2
In addition to the notations defined in Appendix B, we also

denote

ε7 =
1
κ5

min
{
ε3, ε4,

ν

2(T +1)θ
}
.

From the conditions in Theorem 2, we know that all
conditions needed in Lemma 10 are satisfied, so (68a)–(68c)
still hold.

From Assumptions 2 and 7 as well as (13), we have that

∥ ḡ0
k∥

2 = n∥∇ f (x̄k)∥2 ≥ 2νn(f (x̄k)− f ∗) = 2νW4,k. (90)

From (83), we have

∥xk∥2K +W4,k ≤ V̂k ≤
Wk

κ6
. (91)

From (68a), (90), (83), (84), and (14), we have

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −ε4
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2K
− 1

2
ηνW4,k + (ε5+3n)σ2η2

≤Wk −
1
κ5

min
{
ε3, ε4,

νη

2

}
Wk + (ε5+3n)σ2η2.

(92)
From (92) and (14), we have

EFk [Wk+1] ≤Wk −ε7Wk +
(ε5+3n)σ2

(T +1)2θ , ∀k ≤ T. (93)

κ1 > 1 ρ2(L) > 0 κ5 =
κ1+1

2 +
1

2ρ2(L) > 1
0 < κ2 < c2(κ1) =min{ ε1ε2 ,

1
5 } < 1/5 ε4 = (κ2−

5κ22)/2 ≤maxκ2∈(0,1/5)(κ2−5κ22)/2 = 1/40

From and , we have .
From , we have

. Thus,

0 < ε7 =
1
κ5

min
{
ε3, ε4,

ν

2(T +1)θ
}
≤ ε4
κ5
≤ 1

40
. (94)

Then, from (93), (83), and (94), we have

E[Wk+1] ≤ (1−ε7)k+1W0+
(ε5+3n)σ2

(T +1)2θ

k∑
l=0

(1−ε7)l

≤ (1−ε7)k+1W0+
(ε5+3n)σ2

ε7(T +1)2θ , ∀k ≤ T. (95)

ε7 = O(1/(T +1)θ) θ ∈ (0,1)Then, noting that and , from
(95), (29), and (91), we have

E[∥xk∥2K +W4,k] = O(
n

T θ
), ∀k ≤ T. (96)

c f > 0Thus, there exists a constant such that

E[∥xk∥2K +W4,k] ≤ nc f , ∀k ≤ T. (97)

From (82) and (84), we have

0 ≤ 2κ6(W1,k +W2,k) ≤ W̆k ≤ 2κ5(W1,k +W2,k). (98)
From (24b), we have

∥ ḡ0
k∥

2 = n∥∇ f (x̄k)∥2 ≤ 2L f n(f (x̄k)− f ∗) = 2L f W4,k. (99)
z̆k = E[W̆k]Denote . From (68b) and (97)–(99), we have

z̆k+1 ≤ (1−a1)z̆k +a2η
2, ∀k ≤ T (100)

a1 =min{ε3, ε4}/κ5 a2 = n(4ε5L f c f +2ε5L2
f c f+

(ε5+3)σ2)
where and

.
From (94), we have

a1 ≤
ε4
κ5
≤ 1

40
. (101)

From (100) and (101), we have

z̆k+1 ≤ (1−a1)k+1z̆0+
a2η

2

a1
, ∀k ≤ T

which yields (15a).
From (68c) and (90), we have

EFk [W4,k+1] ≤
(
1− νη

2

)
W4,k +

1
2
ηL2

f ∥xk∥2K +L fσ
2η2

≤
(
1− νη

2

)k+1
W4,0+

1
ν

(L2
f ∥xk∥2K +2L fσ

2η).
(102)

η = 1/(T +1)θNoting , from (102), (29), and (15a), we have
(15b). ■

D. Proof of Theorem 3
In addition to the notations defined in Appendix B, we also

give the following notations:

c̃0(κ1, κ2) =max
{
4ε11, ε6,

ε10

ε4

}
ĉ2(κ1) =min

{ε1
ε2
,
ε8
ε9
,

1
5

}
ĉ3(κ0, κ1, κ2) =max

{ c̃0(κ1, κ2)
κ0

,
8L f κ3

νκ2
,

16L f (κ3−1)
νκ0κ2

}
σ̃2 = 2L f f ∗−2L f

1
n

n∑
i=1

f ∗i

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 827

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

ε8 = κ1ρ2(L)−1

ε9 =
1
2

(3κ1+2)κ1ρ(L2)+ρ(L)+1

ε10 = κ2(κ3−1)+ κ1κ2+ κ3−1+3κ22

ε11 = κ2L f + (2κ3−1+ κ2(10κ3−4))L2
f

ε12 = 3+L f +
κ3L2

f

κ0κ2t1
+

2κ4L2
f

κ20t2
1

+
2+2κ3L2

f

κ0t2
1

+
(κ3−1)L2

f

κ20κ2t3
1

+
(κ3−1)L2

f

κ20t4
1

(2
κ0
+2
)

ε13 =
κ0κ3

κ22
+
κ3−1
κ22t2

1

ε14 = ε12σ
2+ε13σ̃

2

ε15 =
1
κ5

min
{ε3κ0t1
κ2
,
ε4κ0t1

2κ2
,
ν

8

}
ε16 =

4L fσ
2κ22

κ20(νκ22κ0
−1)
.

To prove Theorem 3, we need the following lemma.
αk = κ1βk

βk = κ0(k+ t1) ηk = κ2/βk κ0 ≥ c̃0(κ1, κ2)/t1
κ1 > c1 κ2 ∈ (0, ĉ2(κ1)) t1 ≥ 1 k ∈ N0

Lemma 11: Suppose Assumptions 1–6 hold. Let ,
, and , where ,

, , and . Then, for any the
following holds for Algorithm 1:

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K − 1
4
ηk∥ ḡ0

k∥
2

+2L f b8,kη
2
kW4,k +nε14η

2
k (103a)

EFk [W̆k+1] ≤ W̆k −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +nε14η
2
k

+2ε12L2
f η

2
k∥xk∥2K +2(2ε12+ε13)L f η

2
kW4,k

(103b)

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡ0

k∥
2+ ∥xk∥21

2 L2
f ηk K
+η2

k L fσ
2

(103c)

b8,k = κ3
ωk
η2k
+ (κ3−1)

ω2
k
η2k

where .
Proof: i) We have

∥g0
k∥

2 =

n∑
i=1

∥∇ fi(x̄k)∥2 ≤
n∑

i=1

2L f (fi(x̄k)− f ∗i)

= 2L f n(f (x̄k)− f ∗)+nσ̃2 (104)

where the inequality holds due to (24b).
From the Cauchy-Schwarz inequality, (55), and (104), we

have

∥g0
k+1∥

2 = ∥g0
k+1− g0

k + g0
k∥

2 ≤ 2(∥g0
k+1− g0

k∥
2+ ∥g0

k∥
2)

≤ 2(η2
k L2

f ∥ ḡ
u
k∥

2+2L f W4,k +nσ̃2). (105)

αk = κ1βk

ηk = κ2/βk

From (46), (51), (60), (64), (70), (105), , and
, we have

EFk [Wk+1] ≤Wk −∥xk∥2ηk M3,k−η2k M4,k− 1
2 κ1κ2ωk+ηkωk M5,k−η2kωk M6,k

−
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2
b0

4,k K
−ηkb5,k∥ ḡk∥2−

1
4
ηk∥ ḡ0

k∥
2

+η2
k(b6,k +b7,kn)σ2+η2

kb8,k(2L f W4,k +nσ̃2)
(106)

where

M3,k = (αk −βk)L− 1
2

(2+3L2
f)K

M4,k = β
2
k L+ (2α2

k +β
2
k)L2+4L2

f K

M5,k = αk L− 1
2

(1+L2
f)K

M6,k =
3
2
α2

k L2+β2
k(L+ κ1L2)+

5
2

L2
f K

b0
4,k =

1
2
ηk(2βk − κ3)− 5

2
η2

kβ
2
k −

1
2
ωkηk(κ3−1)

− 1
2
ωk(ηkαk + κ3−1+3η2

kβ
2
k)

b5,k =
1
4
−ηkb6,k

b6,k = L f +
1
β2

kηk
κ3L2

f +
2
β2

k

κ4L2
f +2κ3L2

fωk

+ωk
(1
β2

kηk
+

2
β2

k

+2ωk
)
(κ3−1)L2

f

b7,k = 3+2ωk.

αk = κ1βk κ1 > 1 βk ≥ κ0t1 ≥ c̃0(κ1, κ2) ≥ ε6 ≥
(2+3L2

f)/2 ηk = κ2/βk

From (26), , ,
, and , we have

ηk M3,k ≥ ε1κ2K. (107)

αk = κ1βk βk ≥ (2+3L2
f)/2 > 2L f

ηk = κ2/βk

From (26), , , and
, we have

η2
k M4,k ≤ ε2κ22 K. (108)

αk = κ1βk βk ≥ (2+3L2
f)/2 > (1+L2

f)/2
ηk = κ2/βk

From (26), , , and
, we have

ηk M5,k ≥ ε8κ2K. (109)
αk = κ1βk βk > 2L f >

√
10L f /2 ηk = κ2/βkFrom (26), , , and ,

we have

η2
k M6,k ≤ ε9κ22 K. (110)

αk = κ1βk βk ≥ κ3 ηk = κ2/βkFrom , , and , we have

b0
4,k ≥b4,k (111)

b4,k = ε4− 1
2ωkηk(κ3−1)− 1

2ωk(κ1κ2+ κ3−1+3κ22)where .
κ1 > c1 = 1/ρ2(L)+1From , we have

ε1 > 0 and ε8 > 0. (112)
κ2 ∈ (0,min{ ε1ε2 ,

ε8
ε9
, 1

5 })From (112) and , we have

ε3 > 0 (113a)

ε8κ2−ε9κ22 > 0 (113b)

 828 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

ε4 > 0. (113c)
βk = κ0(k+ t1)From , we have

ωk =
1
βk
− 1
βk+1

=
1
κ0

(1
k+ t1

− 1
k+ t1+1

)
=

1
κ0(k+ t1)(k+ t1+1)

≤ κ0
β2

k

. (114)

κ0 ≥max{ 4ε11
t1
,
ε10
ε4t1
}From (113a)–(114), and , we have

b4,k ≥ ε4−
ε10

2κ0t2
1

≥ ε4−
ε10

2κ0t1
≥ 1

2
ε4 > 0 (115a)

b5,k ≥
1
4
− ε11

κ0t1
≥ 0. (115b)

βk = κ0(k+ t1) ≥ κ0t1From (114) and , we have

b6,k +b7,k ≤ ε12 (116a)

b8,k ≤ ε13. (116b)
From (106)–(111), (113a)–(113c), and (115a)–(116b), we

have (103a).
ii) Similarly, the way to get (103a), we have

EFk [W̆k+1] ≤ W̆k −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +ε12η
2
k∥ ḡk∥2

+2L f ε13η
2
kW4,k +nε14η

2
k , ∀k ∈ N0.

(117)
From (117), (79), and (99), we have (103b).
iii) From (64) and (70), we have

EFk [W4,k+1] ≤W4,k −
ηk

4
∥ ḡk∥2+ ∥xk∥21

2 L2
f ηk K

− ηk

4
∥ ḡ0

k∥
2+η2

k L f (σ2+ ∥ ḡk∥2). (118)

0 < ηk ≤ κ2/(κ0t1) κ0t1 ≥ c̃0(κ1, κ2) ≥ 4ε11 > 4κ2L fFrom and ,
we have

η2
k L f <

1
4
ηk. (119)

From (118) and (119), we have (103c). ■
Now we are ready to prove Theorem 3.

t1 > ĉ3(κ0, κ1, κ2) ≥ c̃0(κ1, κ2)/κ0From , we have

κ0 >
c̃0(κ1, κ2)

t1
.

Thus, all conditions needed in Lemma 11 are satisfied, so
(103a)–(103c) hold.

From (103a) and (90), we have

EFk [Wk+1] ≤Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K − ηkν

2
W4,k

+2L f b8,kη
2
kW4,k +nε14η

2
k

=Wk −ε3∥xk∥2K −
1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2K +nε14η
2
k

−2
(1
4
− 1
ν

L f b8,kηk
)
νηkW4,k, ∀k ∈ N0. (120)

t1 > ĉ3(κ0, κ1, κ2) ≥ 8L f κ3/(νκ2)From , we have

1
4
−

L f κ3

νκ2t1
≥ 1

8
. (121)

κ0 > c̃0(κ1, κ2)/t1 ≥ 16L f (κ3−1)/
(νκ2t1)

From (114), (121), and
, we have

1
4
− 1
ν

L f b8,kηk ≥
1
4
−

L f κ0κ3

νκ2βk
−

L f κ
2
0(κ3−1)

νκ2β
3
k

≥ 1
4
−

L f κ3

νκ2t1
−

L f (κ3−1)

νκ2κ0t3
1

≥ 1
8
−

L f (κ3−1)
νκ2κ0t1

≥ 1
16
. (122)

From (120), (83), and (84), we have

EFk [Wk+1] ≤Wk −
ηk

κ5
min
{ε3
ηk
,
ε4
2ηk
,
ν

8

}
Wk +nε14η

2
k

≤Wk −ε15ηkWk +nε14η
2
k , ∀k ∈ N0. (123)

zk = E[Wk] r1,k = ε15ηk r2,k = nε14η
2
kDenote , , and , then

from (123), we have

zk+1 ≤ (1− r1,k)zk + r2,k, ∀k ∈ N0. (124)
From (16), we have

r1,k = ηkε15 =
a3

k+ t1
(125a)

r2,k = η
2
kε14nσ2 =

a4

(k+ t1)2 (125b)

a3 = κ2ε15/κ0 a4 = nκ22ε14/κ
2
0where and .

From (94), we have

r1,k ≤
ε4
2κ5
≤ 1

80
. (126)

Then, from (124)–(126) and (32), we have

zk ≤ ϕ1(k, t1,a3,a4,z0), ∀k ∈ N+ (127)
ϕ1where the function is defined in (33).

κ0 ≥ ĉ0νκ2/4From , we have

ϕ1(k, t1,a3,a4,2,z0) =

O(
n
k

), if a3 > 1

O(
n ln(k−1)

k
), if a3 = 1

O(
n

ka3
), if a3 < 1.

(128)

c f > 0
From (127), (128), and (91), we know that there exists a

constant such that

E[∥xk∥2K +W4,k] ≤ nc f . (129)

From (103b), (129), (98), and (16), we have

z̆k+1 ≤ (1−a5)z̆k +
a6

(t+ t1)2 (130)

a5 =min{ε3, ε4/2}/κ5 a6 = n(2ε12L2
f c f +2(2ε12+

ε13)L f c f +ε14)κ22/κ
2
0

where and
.

From (94), we have

a5 ≤
ε4
2κ5
≤ 1

80
. (131)

From (113a) and (113c), we know that

a5 > 0 and a6 > 0. (132)

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 829

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

From (130)–(132) and (34), we have

z̆k ≤ ϕ2(k, t1,a5,a6, z̆0) = O(
n
k2), ∀k ∈ N+ (133)

ϕ2where the function is defined in (35).
From (35), (98), and (133), we have

E[∥xk∥2K] ≤ 1
κ6

z̆k ≤
1
κ6
ϕ2(k, t1,a5,a6, z̆0) = O(

n
k2). (134)

From (134), we have (17a).
From (103c) and (90), we have

E[W4,k+1] ≤ (1− ν
2
ηk)E[W4,k]+ ∥xk∥21

2 L2
f ηk K
+L fσ

2η2
k . (135)

κ0 < νκ2/4From , we have

νκ2
2κ0
> 2. (136)

Similarly, the way to prove (32), from (134)–(136), we have

E[f (x̄T)− f ∗] ≤ ε16

n(T + t1)
+O(

1
(T + t1)2) (137)

ε16where is determined by the last terms in (33) and (135).
κ0 ≥ ĉ0νκ2/4From , we have

ε16 =
4L fσ

2κ22

κ20(νκ22κ0
−1)
≤

4L fσ
2κ22

κ20(νκ22κ0
− νκ24κ0

)

=
16L fσ

2κ2

νκ0
≤

64L fσ
2

ĉ0ν2
. (138)

 From (137) and (138), we have (17b). ■

E. Proof of Theorem 4
In addition to the notations defined in Appendices B and C,

we also denote the following notations:

ε =
1
κ5

min
{ε3
η
,
ε4
η
,
ν

2

}
c4 =

W0

nκ6

c5 =
ε5+3n
nεκ6

.

From the conditions in Theorem 4, we know that (92) holds.
Thus,

EFk [Wk+1] ≤Wk −ηεWk + (ε5+3n)σ2η2. (139)

Similarly, the way to get (94), we have

0 < ηε < 1. (140)
From (139) and (140), we have

E[Wk+1] ≤ (1−ηε)E[Wk]+ (ε5+3n)σ2η2

≤ (1−ηε)k+1W0+ (ε5+3n)σ2η2
k∑
τ=0

(1−ηε)τ

≤ (1−ηε)k+1W0+
η(ε5+3n)σ2

ε
. (141)

 Hence, (141) and (91) give (19). ■

F. Proof of Theorem 5
In addition to the notations defined in Appendices C, B, and

E, we also denote the following notations:

c̆0(κ1, κ2) =max{4κ2ε5, ε̆6}
ε̆6 =max{1+3L2

f , κ3}

c̆5 =
3+5η
εκ6
.

Without unbiased assumption, we know that (57) still holds.
Similarly, the way to get (46), (62), and (64), we have

EFk [W1,k+1] ≤W1,k −∥xk∥2
ηαL− η2 K− 3η2α2

2 L2−η(1+3η)L2
f K

−ηβxT
k K
(
vk +

1
β

g0
k

)
+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥23η2β2
2 K

+η(1+3η)nσ2 (142a)

EFk [W3,k+1] ≤W3,k −ηαxT
k L
(
vk +

1
β

g0
k

)
+ ∥xk∥2

η(βL+ 1
2 K)+η2(α

2
2 −αβ+β2)L2+η(1+2η)L2

f K

+
η

2β2 (1+3η)L2
f EFk [∥ ḡu

k∥
2]+η(1+2η)nσ2

−
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
η(β− 1

2−ηβ2)K
(142b)

EFk [W4,k+1] ≤W4,k −
η

4
(1−2ηL f)EFk [∥ ḡu

k∥
2]

+ ∥xk∥2ηL2
f K −
η

4
∥ ḡ0

k∥
2+nσ2η. (142c)

Then, similarly, the way to get (68a), from (57) and
(142a)–(142c), we have

EFk [Wk+1] ≤Wk −∥xk∥2ε3 K −
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2
ε4 K

− 1
4
η∥ ḡ0

k∥
2+η(3+5η)nσ2. (143)

 Then, similarly, the way to get (19), from (143) and (90),
we have (21). ■

References

 J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems, 2012, pp. 1223–1231.

[1]

 H. B. McMahan, E. Moore, D. Ramage, et al., “Communication-
efficient learning of deep networks from decentralized data,” in Proc.
Int. Conf. Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[2]

 T. Tatarenko and B. Touri, “ Non-convex distributed optimization,”
IEEE Trans. Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.

[3]

 M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in Proc. Int. Conf. Machine Learning, 2017,
pp. 1529–1538.

[4]

 830 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

 A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order
guarantees of gradient algorithms over networks,” in Proc. Annual
Allerton Conf. Communication, Control, and Computing, 2018, pp.
359–365.

[5]

 H. Sun and M. Hong, “Distributed non-convex first-order optimization
and information processing: Lower complexity bounds and rate optimal
algorithms,” arXiv preprint arXiv: 1804.02729, 2018.

[6]

 D. Hajinezhad and M. Hong, “ Perturbed proximal primal-dual
algorithm for nonconvex nonsmooth optimization,” Mathematical
Programming, vol. 176, no. 1, pp. 207–245, 2019.

[7]

 H. Sun and M. Hong, “Distributed non-convex first-order optimization
and information processing: Lower complexity bounds and rate optimal
algorithms,” IEEE Trans. Signal Processing , vol. 67, no. 22, pp. 5912–
5928, 2019.

[8]

 H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized
Frank-Wolfe algorithm for convex and nonconvex problems,” IEEE
Trans. Automatic Control, vol. 62, no. 11, pp. 5522–5537, 2017.

[9]

 J. Langford, L. Li, and T. Zhang, “Sparse online learning via truncated
gradient,” Journal of Machine Learning Research, vol. 10, no. 3,
pp. 777–801, 2009.

[10]

 B. Recht, C. Re, S. Wright, and F. Niu, “ Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2011, pp. 693–701.

[11]

 C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild: A
unified analysis of hogwild-style algorithms,” in Advances in Neural
Information Processing Systems, 2015, pp. 2674–2682.

[12]

 X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural
Information Processing Systems, 2015, pp. 2737–2745.

[13]

 X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A
comprehensive linear speedup analysis for asynchronous stochastic
parallel optimization from zeroth-order to first-order,” in Advances in
Neural Information Processing Systems, 2016, pp. 3054–3062.

[14]

 Z. Zhou, P. Mertikopoulos, N. Bambos, P. Glynn, Y. Ye, L.-J. Li, and
F.-F. Li, “ Distributed asynchronous optimization with unbounded
delays: How slow can you go?” in Proc. Int. Conf. Machine Learning,
2018, pp. 5970–5979.

[15]

 J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SignSGD: Compressed optimisation for non-convex problems,” in
Proc. Int. Conf. Machine Learning, 2018, pp. 560–569.

[16]

 P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2525–2536.

[17]

 A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R.
Pedarsani, “ FedPAQ: A communication-efficient federated learning
method with periodic averaging and quantization,” in Proc. Int. Conf.
Artificial Intelligence and Statistics, 2020, pp. 2021–2031.

[18]

 D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification and local
computations,” in Advances in Neural Information Processing Systems,
2019, pp. 14668–14679.

[19]

 J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proc. Conf.
Machine Learning and Systems, 2019, pp. 212–229.

[20]

 H. Yu, S. Yang, and S. Zhu, “ Parallel restarted SGD with faster[21]

convergence and less communication: Demystifying why model
averaging works for deep learning,” in Proc. AAAI Conf. Artificial
Intelligence, 2019, pp. 5693–5700.

 F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe,
“Trading redundancy for communication: Speeding up distributed SGD
for nonconvex optimization,” in Proc. Int. Conf. Machine Learning,
2019, pp. 2545–2554.

[22]

 H. Yu, R. Jin, and S. Yang, “ On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in Proc. Int. Conf. Machine Learning, 2019, pp.
7184–7193.

[23]

 F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Local
SGD with periodic averaging: Tighter analysis and adaptive
synchronization,” in Advances in Neural Information Processing
Systems, 2019, pp. 11080–11092.

[24]

 H. Yu and R. Jin, “On the computation and communication complexity
of parallel SGD with dynamic batch sizes for stochastic non-convex
optimization,” in Proc. Int. Conf. Machine Learning, 2019, pp.
7174–7183.

[25]

 Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning
in fixed topology networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 5904–5914.

[26]

 X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradient descent,” in
Advances in Neural Information Processing Systems, 2017, pp.
5330–5340.

[27]

 J. George, T. Yang, H. Bai, and P. Gurram, “ Distributed stochastic
gradient method for non-convex problems with applications in
supervised learning,” in Proc. IEEE Conf. Decision and Control, 2019,
pp. 5538–5543.

[28]

 X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. Int. Conf. Machine
Learning, 2018, pp. 3043–3052.

[29]

 M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” in Proc. Int. Conf. Machine
Learning, 2019, pp. 344–353.

[30]

 H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication
compression for decentralized training,” in Advances in Neural
Information Processing Systems, 2018, pp. 7652–7662.

[31]

 A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani,
“Robust and communication-efficient collaborative learning,” in
Advances in Neural Information Processing Systems, 2019, pp.
8386–8397.

[32]

 H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized
decentralized stochastic learning over directed graphs,” in Proc. Int.
Conf. Machine Learning, 2020, pp. 9324–9333.

[33]

 N. Singh, D. Data, J. George, and S. Diggavi, “SQuARM-SGD:
Communication-efficient momentum SGD for decentralized
optimization,” IEEE Journal on Selected Areas in Information Theory,
vol. 2, no. 3, pp. 954–969, 2021.

[34]

 J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,”
Journal of Machine Learning Research, vol. 22, no. 213, pp. 1–50, 2021.

[35]

 H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2 : Decentralized
training over decentralized data,” in Proc. Int. Conf. Machine Learning,

[36]

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 831

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

2018, pp. 4848–4856.

 S. Lu, X. Zhang, H. Sun, and M. Hong, “ GNSD: A gradient-tracking
based nonconvex stochastic algorithm for decentralized optimization,”
in Proc. IEEE Data Science Workshop, 2019, pp. 315–321.

[37]

 J. Zhang and K. You, “ Decentralized stochastic gradient tracking for
empirical risk minimization,” arXiv preprint arXiv: 1909.02712, 2019.

[38]

 S. U. Stich, “ Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learning Representations, 2019.

[39]

 A. Koloskova, S. Stich, and M. Jaggi, “ Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
in Proc. Int. Conf. Machine Learning, 2019, pp. 3478–3487.

[40]

 S. Pu, A. Olshevsky, and I. C. Paschalidis, “ A sharp estimate on the
transient time of distributed stochastic gradient descent,” IEEE
Transactions on Automatic Control, 2021. DOI: 10.1109/TAC.2021.
3126253

[41]

 M. Rabbat, “ Multi-agent mirror descent for decentralized stochastic
optimization,” in Proc. Int. Workshop on Computational Advances in
Multi-Sensor Adaptive Processing, 2015, pp. 517–520.

[42]

 G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for
decentralized and stochastic optimization,” Mathematical
Programming, vol. 180, no. 1, pp. 237–284, 2020.

[43]

 D. Yuan, Y. Hong, D. W. Ho, and G. Jiang, “ Optimal distributed
stochastic mirror descent for strongly convex optimization,”
Automatica, vol. 90, pp. 196–203, 2018.

[44]

 D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar, “Convergence rates
for distributed stochastic optimization over random networks,” in Proc.
IEEE Conf. Decision and Control, 2018, pp. 4238–4245.

[45]

 A. Fallah, M. Gurbuzbalaban, A. Ozdaglar, U. Simsekli, and L. Zhu,
“Robust distributed accelerated stochastic gradient methods for
multiagent networks,” arXiv preprint arXiv: 1910.08701, 2019.

[46]

 S. Pu and A. Garcia, “ Swarming for faster convergence in stochastic
optimization,” SIAM Journal on Control and Optimization , vol. 56,
no. 4, pp. 2997–3020, 2018.

[47]

 S. Pu and A. Nedić, “A distributed stochastic gradient tracking method,”
in Proc. IEEE Conf. Decision and Control, 2018, pp. 963–968.

[48]

 R. Xin, A. K. Sahu, U. A. Khan, and S. Kar, “ Distributed stochastic
optimization with gradient tracking over strongly-connected networks,”
in Proc. IEEE Conf. Decision and Control, 2019, pp. 8353–8358.

[49]

 M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[50]

 A. Rakhlin, O. Shamir, and K. Sridharan, “ Making gradient descent
optimal for strongly convex stochastic optimization,” in Proc. Int. Conf.
Machine Learning, 2012, pp. 1571–1578.

[51]

 H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the Polyak-Łojasiewicz
condition,” in Proc. Joint European Conf. Machine Learning and
Knowledge Discovery in Databases, 2016, pp. 795–811.

[52]

 H. Zhang and L. Cheng, “ Restricted strong convexity and its
applications to convergence analysis of gradient-type methods in
convex optimization,” Optimization Letters , vol. 9, no. 5, pp. 961–979,
2015.

[53]

 Z. Li and J. Li, “ A simple proximal stochastic gradient method for
nonsmooth nonconvex optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 5569–5579.

[54]

 M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Proc. Int.
Conf. Machine Learning, 2018, pp. 1467–1476.

[55]

 W. Shi, Q. Ling, G. Wu, and W. Yin, “ EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[56]

 A. Nedić, A. Olshevsky, and W. Shi, “ Achieving geometric
convergence for distributed optimization over time-varying graphs,”
SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[57]

 H. Li and Z. Lin, “Revisiting extra for smooth distributed optimization,”
SIAM Journal on Optimization, vol. 30, no. 3, pp. 1795–1821, 2020.

[58]

 Y. LeCun, C. Cortes, and C. Burges, “ MNIST handwritten digit
database,” [Online] Available: http://yann.lecun.com/exdb/mnist, 2010.

[59]

 L. Bottou, “ Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade. Springer, 2012, pp. 421–436.

[60]

 Y. Nesterov, Lectures on Convex Optimization, 2nd ed. Springer Int.
Publishing, 2018.

[61]

 Y. Tang, J. Zhang, and N. Li, “ Distributed zero-order algorithms for
nonconvex multiagent optimization,” IEEE Trans. Control of Network
Systems, vol. 8, no. 1, pp. 269–281, 2020.

[62]

 X. Yi, L. Yao, T. Yang, J. George, and K. H. Johansson, “Distributed
optimization for second-order multi-agent systems with dynamic
eventtriggered communication,” in Proc. IEEE Conf. Decision and
Control, 2018, pp. 3397–3402.

[63]

Xinlei Yi received the Ph.D. degree in electrical
engineering from the School of Electrical Enginee-
ring and Computer Science, KTH Royal Institute of
Technology in 2020 and now is a Postdoc at the
same university. He received B.S. and M.S. degrees
in mathematics from China University of Geoscience
and Fudan University in 2011 and 2014, respec-
tively. His current research interests include online
optimization, distributed optimization, and event-
triggered control.

Shengjun Zhang received the B.Eng. degree in
automation of honors program from China Agricul-
tural University in 2014, and the M.S. degree in
electrical engineering from New York University,
USA, in 2017. He is currently working toward the
Ph.D. degree with the Department of Electrical
Engineering in the College of Engineering, Univer-
sity of North Texas, USA. His current research
interests include distributed optimization, statistical
learning, and Sparse PCA.

Tao Yang is a Professor at the State Key Laboratory
of Synthetical Automation for Process Industries,
Northeastern University. He was an Assistant Profe-
ssor at the Department of Electrical Engineering,
University of North Texas, USA, from 2016–2019.
He received the Ph.D. degree in electrical
engineering from Washington State University in
2012. Between August 2012 and August 2014, he
was an ACCESS Post-Doctoral Researcher with the
ACCESS Linnaeus Centre, Royal Institute of

Technology, Sweden. He then joined the Pacific Northwest National
Laboratory as a Postdoc, and was promoted to Scientist/Engineer II in 2015.
His research interests include industrial artificial intelligence, integrated
optimization and control, distributed control and optimization with
applications to process industries, cyber-physical systems, and networked
control systems. He is an Associate Editor for IEEE Transactions on Control
Systems Technology, IEEE Transactions on Neural Networks and Learning

 832 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

Systems, and IEEE/CAA Journal of Automatica Sinica. He is members of
several technical committees of the IEEE Control Systems Society and IFAC.
He received Ralph E. Powe Junior Faculty Enhancement Award and Best
Student Paper award (as an advisor) of the 14th IEEE International
Conference on Control & Automation in 2018.

Tianyou Chai (Fellow, IEEE) received the Ph.D.
degree in control theory and engineering in 1985
from Northeastern University where he became a
Professor in 1988. He is the Founder and Director of
the Center of Automation, which became a National
Engineering and Technology Research Center and a
State Key Laboratory. He is a Member of Chinese
Academy of Engineering, IFAC Fellow, and IEEE
Fellow. He has served as Director of Department of
Information Science of National Natural Science

Foundation of China from 2010 to 2018. His current research interests include
modeling, control, optimization and integrated automation of complex
industrial processes.
 He has published 297 peer reviewed international journal papers. His
paper titled Hybrid intelligent control for optimal operation of shaft furnace
roasting process was selected as one of three best papers for the Control
Engineering Practice Paper Prize for 2011–2013. He has developed control
technologies with applications to various industrial processes. For his
contributions, he has won 5 prestigious awards of National Natural Science,

National Science and Technology Progress and National Technological
Innovation, the 2007 Industry Award for Excellence in Transitional Control
Research from IEEE Multiple-conference on Systems and Control, and the
2017 Wook Hyun Kwon Education Award from Asian Control Association.

Karl Henrik Johansson (Fellow, IEEE) is Professor
at the School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology. He
received M.Sc. and Ph.D. degrees from Lund
University. He has held visiting positions at UC
Berkeley, Caltech, NTU, HKUST Institute of
Advanced Studies, and NTNU. His research interests
are in networked control systems, cyber-physical
systems, and applications in transportation, energy,
and automation. He has served on the IEEE Control

Systems Society Board of Governors, the IFAC Executive Board, and the
European Control Association Council. He has received several best paper
awards and other distinctions from IEEE and ACM. He has been awarded
Distinguished Professor with the Swedish Research Council and Wallenberg
Scholar with the Knut and Alice Wallenberg Foundation. He has received the
Future Research Leader Award from the Swedish Foundation for Strategic
Research and the triennial Young Author Prize from IFAC. He is Fellow of
the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is
IEEE Control Systems Society Distinguished Lecturer.

YI et al.: A PRIMAL-DUAL SGD ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION 833

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 15:26:25 UTC from IEEE Xplore. Restrictions apply.

