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Abstract: In this paper, we consider the unconstrained distributed optimization problem, in
which the exchange of information in the network is captured by a directed graph topology,
thus, nodes can only communicate with their neighbors. Additionally, in our problem, the
communication channels among the nodes have limited bandwidth. In order to alleviate
this limitation, quantized messages should be exchanged among the nodes. For solving this
distributed optimization problem, we combine a gradient descent method with a distributed
quantized consensus algorithm (which requires the nodes to exchange quantized messages and
converges in a finite number of steps). Specifically, at every optimization step, each node (i)
performs a gradient descent step (i.e., subtracts the scaled gradient from its current estimate),
and (ii) performs a finite-time calculation of the quantized average of every node’s estimate in
the network. As a consequence, this algorithm approximately mimics the centralized gradient
descent algorithm. We show that our algorithm asymptotically converges to a neighborhood of
the optimal solution with linear convergence rate. The performance of the proposed algorithm
is demonstrated via simple illustrative examples.

Keywords: Distributed optimization, quantized communication, directed graphs, finite-time
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1. INTRODUCTION

The problem of distributed optimization has received
extensive attention over the recent years from the control
and machine learning communities, due to the wide area of
applications in research areas such as resource allocation
(Rikos et al., 2021; Doostmohammadian et al., 2022),
sensor networks (Zhu et al., 2013), smart grids (Cady et al.,
2015), and federated learning (Reisizadeh et al., 2020).
The main idea is to optimize a global objective function
by utilizing multiple nodes over a distributed network.
Specifically, each node has access to a local function which
is part of the global objective function. Each node aims to
optimize the global objective function by optimizing its
own local objective function and then coordinating with
other nodes in the network. The distributed optimization
problem can be defined formally as following:

⋆ This work was supported by the Knut and Alice Wallenberg Foun-
dation and the Swedish Research Council. It was also partly sup-
ported by the project MINERVA, funded by the European Research
Council (ERC) under the European Union’s Horizon 2022 research
and innovation programme (Grant agreement No. 101044629).

min
x∈Rp

F (x) =

n∑
i=1

fi(x), (1)

where n is the number of nodes in the network, x ∈ Rp is
the decision variable that all nodes are trying to optimize,
fi : Rp 7→ R, is the local cost function for every node
vi = {1, 2, ..., n}, and F : Rp 7→ R, is the global cost
function. Note that due to the distributed nature of the
problem, each node communicates only with its neighbors
in the underlying network. This means that each node is
required to perform only local operations such as sensing,
communication, and computation in order to cooperatively
solve the problem in (1).

For solving the distributed problem in (1), there are two
main optimization methods: (i) primal-based, and (ii)
dual-based. Examples of algorithms which rely on primal-
based optimization methods are gradient/subgradient de-
scent (see, e.g., Nedic and Ozdaglar (2009)). Examples of
algorithms that rely on dual-based optimization methods
are alternating direction method of multipliers (ADMM)
algorithms (see, e.g., Makhdoumi and Ozdaglar (2017);
Khatana and Salapaka (2020); Jiang and Charalambous
(2021) and references therein). In this paper, we focus on
primal-based optimization algorithms.



There have been various primal-based approaches for
distributed optimization in the literature. In Nedic and
Ozdaglar (2009), the authors present a distributed opti-
mization algorithm known as distributed gradient / sub-
gradient descent. This work converges to the optimal
solution with sub-linear convergence rate due to the di-
minishing step size. Improving convergence rate of Nedic
and Ozdaglar (2009) is possible by utilizing a constant
step size. However, utilizing a constant step size leads to
convergence to a neighborhood of the optimal solution.
In Chen and Ozdaglar (2012); Jakovetic et al. (2014),
the authors presented distributed optimization algorithms
which execute multiple average consensus steps between
each gradient descent update. In this way, they achieved
faster convergence rate. A major drawback of this tech-
nique is that the average consensus steps achieve only
asymptotic convergence and impose heavy communication
requirements over the nodes and the network. Qu and
Li (2018) presented a distributed optimization algorithm
which achieves linear convergence rate. In order to achieve
linear convergence rate, each node relies on historic gra-
dient information and executes one dynamic average con-
sensus step after each gradient descent update. In Nedic
et al. (2017), the authors present the DIGing algorithm
which achieves geometric convergence rate as long as some
constraints over the fixed step size are fulfilled. In Shi
et al. (2015), the authors present the EXTRA algorithm
which uses a gradient difference strategy and achieves a
geometric convergence rate. In Xin and Khan (2018), the
authors present a distributed algorithm that geometrically
converges to the global minimizer with a sufficiently small
step-size. The proposed algorithm is based on an inexact
gradient method and a gradient estimation technique. In
Pu et al. (2021), the authors present the Push–Pull algo-
rithm which converges to the optimal solution in a linear
fashion. The Push–Pull algorithm pushes the information
about the gradients to its neighbors, and pulls information
about the decision variable from them.

It is important to note that most algorithms in current
literature (and all the aforementioned works) assume the
processing and exchange of real-valued messages between
the nodes in the network. For large-scale networks with
possibly limited bandwidth capacity, the communication
overhead during each iteration becomes a major bottle-
neck. Quantization of information is one of the major
approaches to overcome this issue. The main idea of
quantization is that nodes transmit a compressed value
(i.e., quantized) of their stored information as they re-
quire a few bits for representation compared to the non-
compressed ones (i.e., real values) which in theory require
infinite number of bits. For this reason, communication
efficient distributed optimization has received significant
attention recently in the control and machine learning
communities. Specifically, in Pu et al. (2015), the au-
thors present a distributed optimization algorithm with
progressive quantization. They improve the convergence
speed via a warm-starting strategy, and show that there
exists a trade-off between accuracy and required number
of iterations for convergence. In Koloskova et al. (2019) the
authors present a gossip-based stochastic gradient descent
algorithm, which utilizes arbitrary compressed messages
and exhibits linear convergence. In Basu et al. (2019),
the authors present a distributed optimization algorithm

which combines aggressive sparsification with quantiza-
tion. The algorithm keeps track of the difference between
the true and compressed gradients, and converges with
equal convergence rate as its non-quantized version. In
Ivkin et al. (2019), the authors introduce SKETCHED-
SGD. This algorithm performs distributed sub-gradient
decent (SGD) by communicating sketches instead of full
gradients. In Reisizadeh et al. (2020), the authors present
a communication-efficient federated learning algorithm,
which relies on periodic averaging and quantized message-
passing, and achieves near-optimal theoretical guarantees.
In Li et al. (2020), the authors present a distributed
optimization algorithm which employs stochastic variance
reduction and achieves linear convergence rate. In Khatana
et al. (2020), the authors present a distributed optimiza-
tion algorithm, called gradient-consensus. In this algo-
rithm an approximate finite-time consensus protocol is
combined with gradient descent. In Jiang and Charalam-
bous (2022) the authors propose a distributed algorithm
which combines gradient descent and finite-time exact
ratio consensus. Both Khatana et al. (2020); Jiang and
Charalambous (2022) achieve linear convergence rate.

We emphasize that most current approaches mainly fo-
cused on methods which are mainly quantizing values of
an asymptotic coordination algorithm and are only able
to exhibit asymptotic convergence to the consensus value,
rendering them inappropriate for use in consensus-based
distributed optimization methods. Notwithstanding this,
the problem of how to design communication-efficient algo-
rithms suitable for consensus-based distributed optimiza-
tion still remains largely unexplored.

Main Contributions. It is often assumed that the ex-
change of information among agents is seamless and the
exact value is communicated. However, in most cases, the
exact value is an irrational number, whose transmission
would require an infinite number of bits. Hence, if the
channel has limited capacity, most of the current dis-
tributed approaches are impractical. Additionally, most
quantized consensus methods are mainly quantizing values
of an asymptotic consensus algorithm and, as a result,
they do not converge in a finite number of steps. In this
paper, a quantized consensus approach is combined with a
gradient decent algorithm yielding the following appealing
characteristics:
• exchange of quantized information, which complies with

channels of limited bandwidth;
• the operation of the proposed algorithm relies on a

novel finite-time quantized averaging strategy. The av-
eraging strategy adjusts to the required quantization
level and exhibits distributed stopping capabilites. Our
algorithm’s performance is equivalent to approximate
centralized gradient descent iteration to solve the dis-
tributed optimization problem.

The main idea behind our proposed algorithm is the fol-
lowing. Initially, each node stores its quantized estimation
regarding the optimal solution. During the algorithm’s
operation, each node performs a gradient descent step (i.e.,
subtracts the scaled gradient from its current estimate).
Then, each node performs a finite-time calculation of the
quantized average of every node’s estimate in the network.
This operation allows our algorithm to asymptotically



converge to a neighborhood of the optimal solution with
linear convergence rate.

This work was inspired by Khatana et al. (2020); Jiang
and Charalambous (2022). However, our algorithm is sub-
stantially different than Jiang and Charalambous (2022);
Khatana et al. (2020) in terms of operation and op-
erational advantages. Specifically, the operation of our
proposed algorithm relies on a novel quantized averag-
ing algorithm adjusted to the desired quantization level.
Furthermore, due to its quantized operation, in practical
scenarios our proposed algorithm may exhibit (i) reduced
complexity (i.e., quantized values can be represented us-
ing fewer bits than real values), (ii) faster computation
(i.e., operating on quantized values can be faster than
operating on real values because the former requires fewer
computational resources), and (iii) improved accuracy in
certain cases such as processing signals that have low
signal-to-noise ratios (i.e., in some cases, using quantized
values can actually improve the accuracy of the algorithm,
e.g., when processing signals that have low signal-to-noise
ratios, quantization can help to reduce the effects of noise
and improve the signal quality).

2. NOTATION AND BACKGROUND

Notation. We denote the following sets of numbers: real
R, rational Q, integer Z, and natural N. The set of
nonnegative integers is denoted as Z≥0. The set of positive
rationals is denoted as Q>0. For any a ∈ R, the greatest
integer less than or equal to a is denoted ⌊a⌋, and the
least integer greater than or equal to a is denoted as ⌈a⌉.
Matrices are denoted with capital letters (e.g., A), and
vectors with small letters (e.g., x). The transpose of matrix
A and vector x are denoted as A⊤, x⊤, respectively. The
Euclidean norm of a vector is denoted as ∥x∥. By 1 we
denote the all-ones vector and by I we denote the identity
matrix (of appropriate dimensions). By ∇ we denote the
standard derivative of a function.

Graph Theory. The communication topology of the
network consists of n (n ≥ 2) nodes communicating only
with their immediate neighbors. This can be captured by
a directed graph (digraph) defined as G = (V, E). In G, the
set of nodes is denoted as V = {v1, v2, . . . , vn}, and the set
of edges as E ⊆ V ×V ∪ {(vj , vj) | vj ∈ V} (note that each
node has also a virtual self-edge). The cardinality of the
set of nodes is denoted as |V| = n, and the cardinality
of the set of edges as m = |E|. A directed edge from

node vi to node vj is denoted by mji ≜ (vj , vi) ∈ E ,
and captures the fact that node vj can receive information
from node vi (but not the other way around). The subset
of nodes that can directly transmit information to node vj
is called the set of in-neighbors of vj and is represented by
N−

j = {vi ∈ V | (vj , vi) ∈ E}. The cardinality of N−
j is

called the in-degree of vj and is denoted by D−
j = |N−

j |.
The subset of nodes that can directly receive information
from node vj is called the set of out-neighbors of vj and
is represented by N+

j = {vl ∈ V | (vl, vj) ∈ E}. The

cardinality of N+
j is called the out-degree of vj and is

denoted by D+
j = |N+

j |. A directed path of length t
from vi to vj exists if we can find a sequence of nodes
vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ ) ∈ E for

τ = 0, 1, . . . , t − 1. The diameter D of a digraph is the
longest shortest path between any two nodes vj , vi ∈ V in
the network.

Node Operation. At each time step k ∈ Z≥0 each node

vj maintains: (i) its local estimate variable x
[k]
j ∈ Q which

is used to calculate the optimal solution, (ii) the stopping
variables Mj , mj ∈ Q, which are used to determine
whether convergence has been achieved, (iii) the mass

variables y
[k]
j ∈ Q and z

[k]
j ∈ Q, which are used to

communicate with other nodes by either transmitting or

receiving messages, and (iv) the state variables y
[k]
j,(s) ∈ Q,

z
[k]
j,(s) ∈ Q and q

[k]
j,(s) = y

[k]
j,(s)/z

[k]
j,(s), which are used to

store the received messages and calculate the result of the
optimization operation.

Synchronous max/min - Consensus. The distributed
max-consensus algorithm computes the maximum value
of the network in a finite number of time steps (see
Cortés (2008)). Every node vj ∈ V updates its state in
a synchronous fashion with the following update rule:

q
[k+1]
j = max

vi∈N−
j
∪{vj}

{q[k]i }. (2)

The max-consensus algorithm converges to the maximum
value among all nodes in a finite number of steps sm, where
sm ≤ D (see, (Giannini et al., 2013, Theorem 5.4)). Similar
results hold for the min-consensus algorithm.

Asymmetric Quantizer. In distributed networks, quan-
tization is a common procedure to reduce the required
communication bandwidth and to increase power and com-
putation efficiency. Quantization lessens the number of
bits needed to represent information. It is mainly used
to describe communication constraints and imperfect in-
formation exchanges between nodes (Wei et al., 2019).
The three main types of quantizers are (i) uniform, (ii)
asymmetric, and (iii) logarithmic. In this paper we rely on
asymmetric quantizers to lessen the number of bits needed
to represent information (but the results can also be ex-
tended to logarithmic and uniform quantizers). Assymetric
quantizers are defined as

qa∆(ξ) =
⌊ ξ

∆

⌋
∆, (3)

where ξ ∈ R is the value to be quantized, qa∆(ξ) ∈ Q is
the quantized version of ξ, and ∆ ∈ Q is the quantization
level.

3. PROBLEM FORMULATION

Let us consider a digraph G = (V, E) with n = |V| nodes.
Each node vj is endowed with a local cost function fj(x) :
RP 7→ R only known to node vj . We aim to develop a
distributed algorithm which allows nodes to cooperatively
solve the following optimization problem P1:

min
x∈X

F (x1, x2, ..., xn) ≡
n∑

i=1

fi(xi), (4a)

s.t. xi = xj ,∀vi, vj ,∈ V, (4b)

x
[0]
i ∈ X ⊂ Q≥0,∀vi ∈ V, (4c)

nodes communicate with quantized values. (4d)



We denote X the set of feasible values of parameter x,
and x∗ the optimal solution of the optimization problem.
Eq. (4a) means that we aim to minimize the global cost
function which is defined as the sum of the local cost
functions in the network. Eq. (4b) means that nodes need
to calculate equal optimal solutions. Eq. (4c) means that
the initial estimations of nodes belong in a common set.
Note that it is not necessary for the initial values of nodes

to be rational numbers, i.e., x
[0]
i ∈ X ⊂ Q≥0. However,

nodes can generate a quantized version of their initial
states by utilizing the Asymetric Quantizer presented in
Section 2. Eq. (4d) means that nodes are transmitting and
receiving quantized values with their neighbors.

4. FINITE TIME DISTRIBUTED OPTIMIZATION
WITH AVERAGED QUANTIZED GRADIENTS

In this section we present a distributed algorithm which
solves the problem described in Section 3. Our distributed
algorithm is detailed below as Algorithm 1 (with name
QuAGD). Before presenting QuAGD, we consider the
following assumptions for the development of the results
in this paper.

Assumption 1. We assume G is strongly connected. This
means that there exists a directed path from vi to vj , for
every vj , vi ∈ {V | vj ̸= vi}.
Assumption 2. For every node vj , the local cost function
fj(x) is smooth and strongly convex. This means that for
every node vj , for every x1, x2,∈ X ,

• there exists positive constant Lj such that

∥∇fj(x1)−∇fj(x2)∥2 ≤ Lj∥x1 − x2∥2, (5)

• there exists positive constant µj such that

fj(x2) ≥ fj(x1)+∇fj(x1)
⊤(x2−x1)+

µj

2
∥x2−x1∥22.

(6)

This means that the Lipschitz-continuity and strong-
convexity constants of the global cost function F (see (4a))
are L, µ, respectively (L, µ are defined later in Theorem 1).

Assumption 3. Every node vj ∈ V knows the diameter of
the network D or an upper bound D′ (i.e., D′ ≥ D), and
a common quantization level ∆.

Assumption 1 is a necessary condition so that each node
is able to calculate the optimal solution x∗ of P1.

In assumption 2, Lipschitz-continuity (see (5)) is a nec-
essary condition that guarantees the existence of the so-
lution. Lipschitz-continuity is a standard assumption in
distributed first-order optimization problems (see Xu et al.
(2018); Qu and Li (2018)) and guarantees that nodes are
able to calculate the global optimal minimizer x∗ for (4a).
Also, strong-convexity (see (6)) is useful for guaranteeing
a linear convergence rate and that the global function F
has no more than one minimum.

Assumption 3 allows each node to determine whether
it has calculated the quantized average of every node’s
estimate of the optimal solution in finite time (and then
proceed to perform gradient descent).

4.1 Quantized Averaged Gradient Descent Algorithm

The details of the distributed optimization algorithm can
be seen in Algorithm 1.

Algorithm 1 Quantized Averaged Gradient Descent
(QuAGD)

Input: A strongly connected digraph G with n = |V|
nodes and m = |E| edges. Static step-size α ∈ R, digraph
diameter D, initial value x

[0]
j , local cost function fj ,

quantization level ∆ ∈ Q, for every node vj ∈ V.
Iteration: For k = 0, 1, 2, . . . , each node vj ∈ V does:

1) x
[k+ 1

2 ]
j = x

[k]
j − α∇fj(x

[k]
j );

2) x
[k+1]
j = Algorithm 1a(x

[k+ 1
2 ]

j , D,∆);
Output: Each node vj ∈ V calculates x∗ which solves
problem P1 in Section 3.

The intuition of Algorithm 1 (QuAGD) is the following.
Initially, each node maintains an estimate of the optimal
solution, and the desired quantization level. Quantization
level (i) is the same for every node, (ii) allows quantized
communication between nodes, and (iii) determines the
desired precision of the solution. At each time step k,
each node updates the estimate of the optimal solution
by performing a gradient descent step. This step is per-
formed towards the negative direction the node’s gradient.
Then, each node utilizes a fast asymmetrically quantized
averaging algorithm 1 Algorithm 1a (FAQuA). FAQuA
allows each node to update its estimate of the optimal
solution. Specifically, FAQuA allows each node to calculate
the quantized average of each node’s estimate in finite
time by processing and transmitting quantized messages,
with precision determined by the quantization level. The
intuition of FAQuA is explained below.

The intuition of Algorithm 1a (FAQuA) is the following.
FAQuA algorithm utilizes (i) asymmetric quantization,
(ii) quantized averaging, and (iii) a stopping strategy.
Specifically, each node vj uses an asymmetric quantizer
to its state and doubles its mass variables (this change has
no effect on the average calculation). Then, at each time
step λ, each node vj checks if zj [λ] > 1 (i) it updates its
state variables to be equal to the mass variables and (ii) it
splits yj [λ] into zj [λ] equal integer pieces (the value of some
pieces might be greater than others by one). It chooses
one piece with minimum y-value and transmits it to itself,
and it transmits each of the remaining zj [λ] − 1 pieces
to randomly selected out-neighbors or to itself. It receives
the values yi[λ] and zi[λ] from its in-neighbors, sums them
with its stored yj [λ] and zj [λ] values and repeats the
operation. Every D time steps performs a max and min
consensus operation. If the stopping condition holds, it
scales the solution according to the quantization level.

4.2 Convergence of Algorithm 1

We now analyze the convergence of Algorithm 1. Specifi-
cally, we show that during the operation of Algorithm 1,
1 Algorithm 1a (FAQuA) runs between every two consecutive op-
timization steps k and k + 1 of Algorithm 1 (QuAGD). For this
reason Algorithm 1a uses a different time index λ (and not k as
Algorithm 1).



Algorithm 1a FAQuA

Input: x
[k+ 1

2 ]
j , D,∆. Output: x

[k+1]
j .

Initialization: Each node vj ∈ V does the following:
1) Assigns a nonzero probability blj to each of its outgoing

edges mlj , where vl ∈ N+
j ∪ {vj}, as follows

blj =


1

1 +D+
j

, if l = j or vl ∈ N+
j ,

0, if l ̸= j and vl /∈ N+
j ,

2) flagj = 0, z
[1]
j = 2, y

[1]
j = 2

⌊
x
[k+1

2
]

j

∆

⌋
,

3) y
[1]
j,(s) := y

[1]
j , z

[1]
j,(s) = z

[1]
j , q

[1]
j,(s) := y

[1]
j,(s)/z

[1]
j,(s),

4) chooses vl ∈ N+
j ∪ {vj} randomly according to blj , and

transmits y
[1]
j and z

[1]
j towards vl.

Iteration: For λ = 1, 2, . . . , each node vj ∈ V, does:
1) if λ mod D = 1 then sets Mj = ⌈y[λ]j,(s)/z

[λ]
j,(s)⌉, mj =

⌊y[λ]j,(s)/z
[λ]
j,(s)⌋;

2) broadcasts Mj , mj to every vl ∈ N+
j ;

3) receives Mi, mi from every vi ∈ N−
j ;

4) sets Mj = maxvi∈N−
j
∪{vj} Mi,

mj = minvi∈N−
j
∪{vj} mi;

5) if z
[λ]
j > 1, then

5.1) sets z
[λ]
j,(s) = z

[λ]
j , y

[λ]
j,(s) = y

[λ]
j , q

[λ]
j,(s) =

⌊
y
[λ]

j,(s)

z
[λ]

j,(s)

⌋
;

5.2) sets (i) masy,[λ] = y
[λ]
j , masz,[λ] = z

[λ]
j ; (ii) c

y,[λ]
lj =

0, c
z,[λ]
lj = 0, for every vl ∈ N+

j ∪ {vj}; (iii) δ =

⌊masy[λ]/masz,[λ]⌋, masrem,[λ] = y
[λ]
j − δ masz,[λ];

5.3) while masz,[λ] > 1, then
5.3a) chooses vl ∈ N+

j ∪ {vj} randomly according to
blj ;

5.3b) sets (i) c
z,[λ]
lj := c

z,[λ]
lj +1, c

y,[λ]
lj := c

y,[λ]
lj + δ; (ii)

masz,[λ] := masz,[λ] − 1, masy,[λ] := masy,[λ] − δ.

5.3c) If masrem,[λ] > 1, sets c
y,[λ]
lj := c

y,[λ]
lj + 1,

masrem,[λ] := masrem,[λ] − 1;

5.4) sets c
y,[λ]
jj := c

y,[λ]
jj + masy,[λ], c

z,[λ]
jj := c

z,[λ]
jj +

masz,[λ];

5.5) for every vl ∈ N+
j , if c

z,[λ]
lj > 0 transmits c

y,[λ]
lj ,

c
z,[λ]
lj to out-neighbor vl;

• else if z
[λ]
j ≤ 1, sets c

y,[λ]
jj = y

[λ]
j , c

z,[λ]
jj = z

[λ]
j ;

6) receives c
y,[λ]
ji , c

z,[λ]
ji from vi ∈ N−

j and sets

y
[λ+1]
j = c

y,[λ]
jj +

n∑
i=1

w
[λ]
ji c

y,[λ]
ji , (7)

z
[λ+1]
j = c

z,[λ]
jj +

n∑
i=1

w
[λ]
ji c

z,[λ]
ji , (8)

where w
[λ]
ji = 1 if node vj receives c

y,[λ]
jj , c

z,[λ]
jj from

vi ∈ N−
j at iteration k (otherwise w

[λ]
ji = 0);

7) if λ mod D = 0 then, if Mj − mj ≤ 1 then sets

x
[k+1]
j = mj∆ and stops operation.

the variable x
[k]
i of each node vi ∈ V converges to a neigh-

borhood of the optimal solution x∗ with linear convergence
rate. In Step 1) of Algorithm 1, for the convenience of
presentation of mathematics in this section, we denote

z
[k+1]
i := x

[k+ 1
2 ]

i . Thus, the Steps 1) and 2) in Algorithm 1
are changed to:

z
[k+1]
i =x

[k]
i − α∇fi(x

[k]
i ), (9)

x
[k+1]
i =Algorithm 1a(z

[k+1]
i , D,∆). (10)

From (10) and the property of Algorithm 1a, we have

x
[k+1]
i =

1

n

n∑
i=1

∆
⌊z[k+1]

i

∆

⌋
+ ϱ

[k+1]
i , where ∥ϱ[k+1]

i ∥ ≤ ∆,

(11)

for every k ≥ 0, where ϱ
[k+1]
i is the total error due to

Algorithm 1a calculating the quantized average of the
node’s initial quantized states at optimization step k.

In addition, from the quantization definition, we have

x
[k]
i =∆

⌊x[k]
i

∆

⌋
+ ϵ

[k]
i , where 0 ≤ ϵ

[k]
i ≤ ∆, (12)

for every vi ∈ V, where ϵ
[k]
i is the error due to applying

asymmetric quantization to the value x
[k]
i (see Section 2)

at time step k. Denote

ẑ[k+1] :=
1

n

n∑
i=1

z
[k+1]
i , x̂[k+1] :=

1

n

n∑
i=1

x
[k+1]
i , k ≥ 0.

Based on the quantizer property (12), it is easy to have

ẑ[k+1] − x
[k+1]
i =

1

n

n∑
i=1

z
[k+1]
i − 1

n

n∑
i=1

∆
⌊z[k+1]

i

∆

⌋
− ϱ

[k+1]
i

=
1

n

n∑
i=1

ϵ
[k+1]
i − ϱ

[k+1]
i ≤ 2∆. (13)

Lemma 1. For k ≥ 1, the following inequalities hold:

∥x̂[k] − ẑ[k]∥ ≤2∆, (14)

∥x[k]
i − x̂[k]∥ ≤4∆. (15)

Proof. From (11), we have

∥x̂[k] − ẑ[k]∥ =∥ 1
n

n∑
i=1

(x
[k]
i − z

[k]
i )∥

=∥ 1
n

n∑
i=1

(ϱ
[k]
i − z

[k]
i +

1

n

n∑
i=1

∆
⌊z[k]i

∆

⌋
)∥

≤∥ 1
n

n∑
i=1

ϱ
[k]
i ∥+ ∥ 1

n

n∑
i=1

(∆
⌊z[k]i

∆

⌋
− z

[k]
i )∥

≤2∆, (16)

which proves (14).

Based on (13) and (14), we have

∥x[k]
i − x̂[k]∥ ≤ ∥x[k]

i − ẑ[k]∥+ ∥ẑ[k] − x̂[k]∥ ≤ 4∆,

which can prove (15). The proof is finished.

Denote

u[k] :=

n∑
i=1

∇fi(x
[k]
i ), û[k] :=

n∑
i=1

∇fi(x̂
[k]).



From Assumption 2 with (15), we have

∥∇fi(x
[k]
i )−∇fi(x̂

[k])∥ ≤ Li∥x[k]
i − x̂[k]∥ ≤ 4Li∆ (17)

∥u[k] − û[k]∥ ≤
n∑

i=1

∥∇fi(x
[k]
i )−∇fi(x̂

[k])∥

≤
n∑

i=1

Li∥x[k]
i − x̂[k]∥ ≤ 4nL∆, L = max{Li}. (18)

Denote e[k] = x̂[k] − ẑ[k], α̂ := α
n . From (14) we have

∥e[k]∥ ≤ 2∆. From (9) we get x̂[k+1] = ẑ[k+1] + e[k+1] =
1
n

∑n
i=1(x

[k]
i − α∇fi(x

[k]
i )) + e[k+1] = x̂[k] − α̂u[k] +

e[k+1], k ≥ 1.

At present, we are ready to provide the result of the step-
size upper bound and algorithm convergence rate in the
following theorem. However, due to space limitations we
omit the proof of Theorem 1. It will be available at an
extended version of our paper.

Theorem 1. Under Assumptions 1–3, when the step-size

α satisfies α ∈ (n(µ+L)
4µL , 2n

µ+L ) and δ ∈ (0, n[4αµL−n(µ+L)]
2α[n(µ+L)−2αµL] )

where L = max{Li}, µ = min{µi}, Algorithm 1 generates

a sequence of points {x[k]} (i.e., the variable x
[k]
i of each

node vi ∈ V) which satisfy

∥x̂[k+1] − x∗∥2 < ϑ∥x̂[k] − x∗∥2 +O(∆2), (19)

where ∆ is the quantizer and

ϑ :=2(1 +
αδ

n
)(1− 2αµL

n(µ+ L)
) ∈ (0, 1), (20a)

O(∆2) =(8 + 32n2α̂2L2 +
32n2α̂L2

δ
)∆2. (20b)

Theorem 1 shows that Algorithm 1 converges linearly to a
neighborhood of the optimal solution. This neighborhood
is determined by the quantization level ∆.

Remark 1. Based on the Theorem 1, if we have that α ∈
(n(µ+L)

4µL , 2n
µ+L ), then we always have n[4αµL−n(µ+L)]

2α[n(µ+L)−2αµL] > 0,

thus, δ exists. Also, we always have ϑ ∈ (0, 1). For the

step-size interval α ∈ (n(µ+L)
4µL , 2n

µ+L ) to be always not

empty, we need n(µ+L)
4µL < 2n

µ+L . This means that we need

(L − µ)2 < 4µL. Herein, we could provide a sufficient
condition to have this interval be always available. Due
to µ ≤ L, if we get (L− µ)2 < 4µ2, then, we always have
(L−µ)2 < 4µL. This means that when L < 3µ, the interval
for the step-size α is always not empty.

5. SIMULATION RESULTS

In this section, we present simulation results in order
to demonstrate the operation of Algorithm 1. We focus
on a random digraph of 20 nodes and show how the
nodes’ states converge to the optimal solution for various
quantization levels. Furthermore, we present comparisons
against existing algorithms, and we emphasize on the
improvements introduced by Algorithm 1.

In Fig. 1, we compare the operation of Algorithm 1 for
different quantization levels with Jiang and Charalambous
(2022); Khatana et al. (2020). We plot the error e[k] in a
logarithmic scale against the number of iterations. The
error e[k] is defined as
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Fig. 1. Comparison of Algorithm 1 for different quanti-
zation levels with Jiang and Charalambous (2022);
Khatana et al. (2020).

e[k] =

√√√√ n∑
j=1

(x
[k]
j − x∗)2

(x
[0]
j − x∗)2

, (21)

where x∗ is the optimal solution of the optimization
problem P1.

We can see that Algorithm 1 exhibits almost equal perfor-
mance compared with Khatana et al. (2020), for the case
where the quantization level is equal to the pre-specified
tolerance value ρ (see Khatana et al. (2020)). However, our
proposed algorithm uses quantized values and hence can be
used in channels with limited/finite capacity. Furthermore,
Algorithm 1 exhibits comparable performance compared
with Jiang and Charalambous (2022), even though the
results of Jiang and Charalambous (2022) do not have
an error floor. Note, however, that Algorithm 1 is able
to approximate the optimal solution with precision that
depends on the quantization level. This means that if we
reduce the value of the quantization level, nodes are able
to approximate the optimal solution with higher precision.
Specifically, for the method in Jiang and Charalambous
(2022), forming the Hankel matrix and performing addi-
tional computations when the matrix loses rank, requires
the exact values from each node. This translates to nodes
exchanging messages of infinite capacity. Thus, the main
advantage of Algorithm 1 compared to Jiang and Char-
alambous (2022) is that nodes operate with quantized
values (while in Jiang and Charalambous (2022) nodes
exchange values of infinite prevision).

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we focused on designing a communication-
efficient algorithm for the unconstrained distributed op-
timization problem. Specifically, each node performs a
gradient descent step, and then performs a finite-time cal-
culation of the quantized average of every node’s estimate
in the network. This algorithm, to the best of the authors’
knowledge, is the first distributed optimization algorithm



which relies on a finite time quantized coordination mecha-
nism which operates over directed graphs, and the only one
with quantization used in this context of approximating
the centralized gradient decent algorithm.
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