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Abstract: This paper considers the distributed optimization problem of minimizing a global
cost function formed by a sum of local smooth cost functions by using local information
exchange. A standard assumption for proving exponential/linear convergence of existing
distributed first-order methods is strong convexity of the cost functions. This does not hold for
many practical applications. In this paper, we propose a continuous-time distributed primal-dual
gradient descent algorithm and show that it converges exponentially to a global minimizer under
the assumption that the global cost function satisfies the restricted secant inequality condition.
This condition is weaker than strong convexity and the global minimizer is not necessarily
unique. Moreover, a discrete-time distributed primal-dual algorithm is developed from the
continuous-time algorithm by Euler’s approximation method, which also linearly converges to a
global minimizer under the same condition. The theoretical results are illustrated by numerical
simulations.
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1. INTRODUCTION

Distributed optimization has a long history, which can be
traced back to Tsitsiklis (1984); Tsitsiklis et al. (1986);
Bertsekas and Tsitsiklis (1989). It has gained renewed
interests in recent years due to its wide applications in
power systems, machine learning, sensor networks, and
cyber-physical systems, just to name a few, see Nedić
(2015); Yang et al. (2019); Yuan et al. (2019).

When the cost functions are convex, various distributed
optimization algorithms have been developed in both
discrete- and continuous-time. Most existing discrete-
time distributed algorithms are based on consensus and
(sub)gradient descent method, see, e.g., Johansson et al.
(2008); Nedić and Ozdaglar (2009); Zhu and Mart́ınez
(2011); Tsianos et al. (2012); Nedić and Olshevsky (2014);
Yang et al. (2017). Distributed (sub)gradient descent al-
gorithms have at most sub-linear convergence rate for
diminishing stepsizes. With fixed stepsizes, distributed
(sub)gradient descent algorithms converge faster, but only
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to a neighborhood of an optimal point, see, e.g., Matei
and Baras (2011); Yuan et al. (2015). Recent accelerated
algorithms with fixed stepsizes use some sort of historical
information in the updates.

Continuous-time distributed algorithms can be classified
into two classes depending on whether the algorithm uses
the first-order gradient information, see, e.g., Wang and
Elia (2010); Gharesifard and Cortés (2014); Yu et al.
(2016); Kia et al. (2015); Zhang et al. (2017); Li et al.
(2018); Yi et al. (2018); Liang et al. (2019) or the second-
order Hessian information, see, e.g., Lu and Tang (2012);
Wei et al. (2013).

Among these distributed optimization algorithms, a stan-
dard assumption for proving exponential (or linear in the
language of optimization) convergence is that (local or
global) cost functions are strongly convex. For example, Lu
and Tang (2012); Yu et al. (2016); Kia et al. (2015); Zhang
et al. (2017); Jakovetić et al. (2015); Nedić et al. (2017);
Qu and Li (2018, 2019); Xi et al. (2018); Xu et al. (2018);
Xin and Khan (2018); Pu et al. (2018); Jakovetić (2019),
assumed that each local cost function is strongly convex
and Varagnolo et al. (2016); Li et al. (2018); Saadatniaki



et al. (2018) assumed that the global cost function is
strongly convex.

Unfortunately, in many practical applications, such as
least squares and logistic regression, the cost functions nor-
mally are not strongly convex, see, e.g., Yang et al. (2020).
This situation has motivated researchers to consider alter-
natives to strong convexity. There are some results in cen-
tralized optimization. For instance, Necoara et al. (2019)
derived linear convergence rates of several centralized first-
order methods for solving the smooth convex constrained
optimization problem under the quadratic function growth
condition and Karimi et al. (2016) established linear con-
vergence rates of centralized proximal-gradient methods
for solving the smooth optimization problem under the
assumption that the cost function satisfies the Polyak-
 Lojasiewicz condition. However, to the best of knowledge,
there are only few such results in distributed optimization.
Shi et al. (2015) proposed the distributed exact first-order
algorithm (EXTRA) and established its linear convergence
under the conditions that the global cost function is re-
stricted strongly convex and the optimal set is a singleton.
Liang et al. (2019) established exponential/linear conver-
gence of the distributed primal-dual gradient descent al-
gorithm for solving smooth convex optimization under the
condition that the primal-dual gradient map is metrically
subregular which is weaker than the strict and strong
convexity.

In this paper, we consider the problem of solving dis-
tributed optimization. We first propose a continuous-time
distributed primal-dual gradient algorithm and show that
it converges exponentially to a global minimizer under
the assumption that the global cost function satisfies the
restricted secant inequality condition. This condition is
weaker than the (restrict) strong convexity condition as-
sumed by Jakovetić et al. (2015); Nedić et al. (2017); Qu
and Li (2018, 2019); Xi et al. (2018); Xu et al. (2018);
Xin and Khan (2018); Pu et al. (2018); Jakovetić (2019);
Varagnolo et al. (2016); Saadatniaki et al. (2018); Zeng
and Yin (2017); Xi and Khan (2017); Shi et al. (2015);
Lu and Tang (2012); Yu et al. (2016); Kia et al. (2015);
Zhang et al. (2017); Li et al. (2018); Yi et al. (2018) since
it does not require convexity and the global minimizer
is not necessarily unique. This condition is also different
from the metric subregularity criterion assumed by Liang
et al. (2019). Moreover, we show that the discrete-time
counterpart of the proposed continuous-time distributed
algorithm, derived from a simple discretization by Euler’s
method, also converges linearly to a global minimizer un-
der the same condition.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 presents the prob-
lem formulation and assumptions. The main results are
stated in Sections 4 and 5. Simulations are given in Sec-
tion 6. Concluding remarks are offered in Section 7.

Notations: rns denotes the set t1, . . . , nu for any posi-
tive constant n. colpz1, . . . , zkq is the concatenated col-
umn vector of vectors zi P Rpi , i P rks. 1n (0n)
denotes the column one (zero) vector of dimension n.
In is the n-dimensional identity matrix. Given a vector
rx1, . . . , xns

J P Rn, diagprx1, . . . , xnsq is a diagonal matrix
with the i-th diagonal element being xi. The notation

AbB denotes the Kronecker product of matrices A and B.
nullpAq is the null space of matrix A. Given two symmetric
matricesM,N ,M ě N means thatM´N is positive semi-
definite. ρp¨q stands for the spectral radius for matrices
and ρ2p¨q indicates the minimum positive eigenvalue for
matrices having positive eigenvalues. } ¨ } represents the
Euclidean norm for vectors or the induced 2-norm for
matrices. For given positive semi-definite matrix A, }x}A
denotes the norm

?
xJAx. Given a differentiable function

f , ∇f denotes the gradient of f .

2. PRELIMINARIES

In this section, we present some definitions from alge-
braic graph theory (see Mesbahi and Egerstedt (2010)),
the restricted secant inequality (see Zhang and Cheng
(2015)), and monotonicity properties of vector functions
(see Crouzeix et al. (2000)).

2.1 Algebraic Graph Theory

Let G “ pV, E , Aq denote a weighted undirected graph
with the set of vertices (nodes) V “ rns, the set of links
(edges) E Ď V ˆ V, and the weighted adjacency matrix
A “ AJ “ paijq with nonnegative elements aij . A link
of G is denoted by pi, jq P E if aij ą 0, i.e., if vertices
i and j can communicate with each other. It is assumed
that aii “ 0 for all i P rns. Let Ni “ tj P rns : aij ą 0u

and degi “
n
ř

j“1

aij denotes the neighbor set and weighted

degree of vertex i, respectively. The degree matrix of graph
G is Deg “ diagprdeg1, ¨ ¨ ¨ ,degnsq. The Laplacian matrix
is L “ pLijq “ Deg´A. A path of length k between
vertices i and j is a subgraph with distinct vertices i0 “
i, . . . , ik “ j P rns and edges pij , ij`1q P E , j “ 0, . . . , k´1.
An undirected graph is connected if there exists at least
one path between any two vertices.

2.2 Restricted Secant Inequality

Definition 1. (Definitions 1 and 2 in Zhang and Cheng
(2015)) A differentiable function fpxq : Rp ÞÑ R satisfies
the restricted secant inequality condition with constant
ν ą 0 if

p∇fpxq ´∇fpPX˚pxqqJpx´ PX˚pxqq

ě ν}x´ PX˚pxq}2, @x P Rp, (1)

where X˚ is the set of all global minimizers of f and
PX˚pxq is the projection of x onto the set X˚, i.e.,
PX˚pxq “ arg minyPX˚ }x ´ y}2. If the function f is also
convex it is called restricted strong convexity.

Note that, unlike the strong convexity, the restricted se-
cant inequality (1) alone does not even imply the convexity
of f . Moreover, it does not imply that X˚ is a singleton
either. However, it implies that every stationary point is
a global minimizer, i.e., X˚ “ tx P Rp : ∇fpxq “ 0pu.
Therefore, it is weaker than the (essential and weak) strong
convexity, see Karimi et al. (2016).

2.3 Monotonicity

Definition 2. (See Section 2.2 in Crouzeix et al. (2000)) A
mapping F : K Ď Rp Ñ Rp is said to be



(1) pseudomonotone on K if for all a, b P K,

pa´ bqJF pbq ě 0 ñ pa´ bqJF paq ě 0;

(2) pseudomonotone`˚ on K if it is pseudomonotone on K
and for all a, b P K,

rpa´ bqJF pbq “ 0 and pa´ bqJF paq “ 0s

ñ F paq “ F pbq.

The gradient of a differentiable pseudoconvex function
is pseudomonotone, see Karamardian (1976); Penot and
Quang (1997), and the gradient of a differentiable G-
convex function is pseudomonotone`˚ , see Crouzeix et al.
(2000).

3. PROBLEM FORMULATION AND ASSUMPTIONS

Consider a network of n agents, each of which has a local
cost function fi : Rp Ñ R. All agents collaborate together
to find an optimizer x˚ that minimizes the global objective
fpxq “

řn
i“1 fipxq, i.e.,

min
xPRp

fpxq. (2)

The communication among agents is described by a
weighted undirected graph G. Let X˚ denote the optimal
set of the optimization problem (2). For simplicity, let

x “ colpx1, . . . , xnq, f̃pxq “
řn
i“1 fipxiq, X˚ “ t1n b

x˚ : x˚ P X˚u, and L “ LbIp. The following assumptions
are made.

Assumption 1. Each local cost function is differentiable.
Moreover, the optimal set X˚ is nonempty and convex.

Assumption 2. Each local cost function is smooth, that
is, for each i P rns, fi has a globally Lipschitz-continuous
gradient with constant Lfi ą 0:

}∇fipaq ´∇fipbq} ď Lfi}a´ b}, @a, b P Rp.
Assumption 3. The global cost function fpxq satisfies the
restricted secant inequality condition with constant ν ą 0.

Assumption 4. t∇f̃pxq : x PX˚u is a singleton.

Remark 1. Assumptions 1–2 are mild since the convexity
of the cost functions and the boundedness of their gradi-
ents are not assumed. Assumption 3 only requires that the
global cost function satisfies the restricted secant inequal-
ity condition, so it is weaker than the assumptions that the
global or each local cost function is strongly convex, which
are commonly assumed in the literature. One sufficient
condition which satisfies Assumption 4 is that X˚ is a
singleton. The following lemma gives another sufficient
condition. Both sufficient conditions do not require the
cost functions to be convex.

Lemma 1. (Proposition 14 in Crouzeix et al. (2000)) Let
H “ t1n b x : x P Rpu. Suppose that each local cost

function is differentiable and X˚ is nonempty. If ∇f̃ is
pseudomonotone`˚ on H, then t∇f̃pxq : x P X˚u is a
singleton.

To end this section, we make the following standard
assumption on the underlying communication graph.

Assumption 5. The undirected graph G is connected.

4. CONTINUOUS-TIME DISTRIBUTED
ALGORITHM

In this section, we propose a continuous-time distributed
algorithm and analyses its convergence rate. Due to the

space limitations, all proofs are omitted, but can be found
in Yi et al. (2019).

Noting that the Laplacian matrix L is positive semi-
definite and nullpLq “ t1nu since G is connected, we know
that the optimization problem (2) is equivalent to the
following constrained optimization problem

min
x P Rnp

f̃pxq

s.t. L1{2x “0np.
(3)

Let u “ colpu1, . . . , unq P Rnp denote the dual variable,
then the augmented Lagrangian function associated with
(3) is

Apx,uq “ f̃pxq `
α

2
xJLx` βuJL1{2x, (4)

where α ą 0 and β ą 0 are constants. Although f̃pxq may
not satisfy the restricted secant inequality condition, the
following lemma shows that f̃pxq ` α

2x
JLx satisfies the

restricted secant inequality condition with respect to X˚.

Lemma 2. Suppose that Assumptions 1–3 and 5 hold. If

α ą
2nL2

f`νLf

νρ2pLq
, where Lf “ maxiPrnstLfiu, then

p∇f̃pxq ´∇f̃pPX˚pxqqqJpx´ PX˚pxqq ` α}x}2L
ě ν1}x´ PX˚pxq}2, @x P Rnp, (5)

where ν1 “ mint ν2n , αρ2pLq ´
2nL2

f`νLf

ν u ą 0.

Remark 2. Lemma 2 extends Proposition 3.6 in Shi et al.
(2015) and plays an important role in the proof of the
exponential convergence later. The key difference between
Lemma 2 and Proposition 3.6 in Shi et al. (2015) is that

here we do not assume that f̃ is convex and X˚ is a

singleton. The requirement that α ą
2nL2

f`νLf

νρ2pLq
is used

to eliminate the effects of non-convexity of f̃ . Similar to
the proof of Proposition 3.6 in Shi et al. (2015), we can

show that if f̃ is convex, then this requirement can be
relaxed by α ą 0 and (5) still holds with ν1 “ mint νn ´

2Lf ι,
αρ2pLqι

2

1`ι2 u ą 0, where ι P p0, ν
2nLf

q. Due to the

similarity, we omit the details here.

Based on the primal-dual gradient method, a continuous-
time distributed algorithm to solve (3) is

9xptq “ ´αLxptq ´ βL1{2uptq ´∇f̃pxptqq, (6a)

9uptq “ βL1{2xptq, @xp0q, up0q P Rnp. (6b)

Denote v “ colpv1, . . . , vnq “ L1{2u, then the algorithm
(6) can be rewritten as

9xptq “ ´αLxptq ´ βvptq ´∇f̃pxptqq, (7a)

9vptq “ βLxptq, @xp0q P Rnp, vp0q “ 0np, (7b)

or

9xiptq “ ´ α
n

ÿ

j“1

Lijxjptq ´ βviptq ´∇fipxiptqq, (8a)

9viptq “β
n

ÿ

j“1

Lijxjptq, @xip0q P Rp, vip0q “ 0p. (8b)

We have the following result for the continuous-time
distributed primal-dual gradient descent algorithm (8).



Theorem 1. Each agent i P rns runs the distributed al-

gorithm (8). If Assumptions 1–5 hold, α ą
2nL2

f`νLf

νρ2pLq
,

and β ą 0, then }xptq ´ PX˚pxptqq} exponentially con-
verges to 0 with a rate no less than ε2

2ε3
ą 0, where

ε2 “ mintβ2 , ε1ν1u ą 0 and ε3 “ maxt ε1
ρ2pLq

` α
2β`

1
2 , ε1`

1
2u,

with ε1 “ maxt 1
ν1
p
L2

f

2β ` ρpLqβq,
β
αu.

Remark 3. The exponential convergence for continuous-
time distributed algorithms was also established by Lu
and Tang (2012); Yu et al. (2016); Kia et al. (2015); Zhang
et al. (2017); Li et al. (2018); Yi et al. (2018); Liang et al.
(2019). However, Lu and Tang (2012); Yu et al. (2016); Kia
et al. (2015); Zhang et al. (2017) assumed that each local
cost function is strongly convex. Li et al. (2018) assumed
that the global cost function is strongly convex. Yi et al.
(2018) assumed that the global cost function is restricted
strongly convex and the optimal set is a singleton. Liang
et al. (2019) assumed that each local cost function is
convex and the primal-dual gradient map is metrically
subregular. In contrast, the exponential convergence result
established in Theorem 1 only requires that the global cost
function satisfies the restricted secant inequality condition,
but the convexity assumption on cost functions and the
singleton assumption on the optimal set are not required.

5. DISCRETE-TIME DISTRIBUTED ALGORITHM

In this section, we propose a discrete-time distributed
algorithm and analyse its convergence rate.

Consider a discretization of the continuous-time algorithm
(7) by Euler’s approximation method as

xpk ` 1q “xpkq ´ hpαLxpkq ` βvpkq `∇f̃pxpkqqq, (9a)

vpk ` 1q “vpkq ` hβLxpkq, @xp0q P Rnp, vp0q “ 0np,
(9b)

where h ą 0 is a fixed stepsize. It is straightforward to
check that the algorithm (9) is equivalent to the algorithm
EXTRA proposed in Shi et al. (2015) with mixing matrices

W “ Inp ´ hαL and W̃ “ Inp ´ hαL ` h2β2L. The
distributed form of (9) is

xipk ` 1q “xipkq ´ hpα
n

ÿ

j“1

Lijxjpkq ` βvipkq

`∇fipxipkqqq, (10a)

vipk ` 1q “vipkq ` hβ
n

ÿ

j“1

Lijxjpkq,

@xip0q P Rp, vip0q “ 0p. (10b)

We have the following result for the discrete-time dis-
tributed primal-dual gradient descent algorithm (10).

Theorem 2. Each agent i P rns runs the distributed algo-

rithm (10). If Assumptions 1–5 hold, α ą
2nL2

f`νLf

νρ2pLq
, β ą 0,

and 0 ă h ă 2ε2ε4
ηε3ε5

, where η “
?

2 maxt 2ε1
ρ2pLq

`α` 1, 4ε1`

1u ą 0, ε4 “ ε1 mint 1
ρpLq ,

1
2u, and ε5 “ maxtβ2ρ2pLq `

3α2ρ2pLq ` 3L2
f , 3β

2u, then }xpkq ´ PX˚pxpkqq} linearly
converges to 0 with a rate no less than 1 ´ γ, where

γ “ hp2ε2ε4´hηε3ε5q
4ε3ε4

.

Remark 4. By comparing Theorems 1 and 2, we see that
the proposed continuous- and discrete-time distributed

algorithms have the same convergence properties un-
der the same assumptions. The linear convergence for
discrete-time distributed algorithms was also established
by Jakovetić et al. (2015); Nedić et al. (2017); Qu and
Li (2018, 2019); Xi et al. (2018); Xu et al. (2018); Xin
and Khan (2018); Pu et al. (2018); Jakovetić (2019);
Varagnolo et al. (2016); Saadatniaki et al. (2018); Zeng
and Yin (2017); Xi and Khan (2017); Shi et al. (2015).
However, Jakovetić et al. (2015); Nedić et al. (2017); Qu
and Li (2018, 2019); Xi et al. (2018); Xu et al. (2018);
Xin and Khan (2018); Pu et al. (2018); Jakovetić (2019)
assumed that each local cost function is strongly convex;
Varagnolo et al. (2016); Saadatniaki et al. (2018) assumed
that the global cost function is strongly convex. Zeng and
Yin (2017); Xi and Khan (2017) assumed that each local
cost function is restricted strongly convex and the optimal
set X˚ is a singleton. Shi et al. (2015) assumed that the
global cost function is restricted strongly convex and X˚

is a singleton. In contrast, the linear convergence result
established in Theorem 2 only requires that the global cost
function satisfies the restricted secant inequality condition,
but the convexity assumption on cost functions and the
singleton assumption on the optimal set are not required.

6. SIMULATIONS

In this section, we verify the theoretical results through a
numerical example. Consider the distributed optimization
problem (2) with

fipxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

bi,1px` 1q2, x ď ´1,

bi,2x
4, ´1 ă x ď 0,

1´
a

1´ x2 ` bi,3x
2, 0 ď x ă

?
2

2
,

fi,1pxq,

?
2

2
ď x ă 1,

fi,2pxq, x ě 1,

where fi,1pxq “
b

1´ px´
?

2q2´
?

2`1`bi,3x
2, fi,2pxq “

1
2 px ´ 1 `

b?
2´1
2 q2 `

a

2
?

2´ 2 ` 5´5
?
2

4 ` bi,3x
2, and

bi,j , j “ 1, 2, 3 are constants that are randomly gener-
ated and satisfy the condition that

řn
i“1 bi,1 ą 0 and

řn
i“1 bi,2 “

řn
i“1 bi,3 “ 0. These fipxq, i P rns are

modifications of Example 2 in Zhang and Cheng (2015).
Clearly, fi is non-convex but differentiable and smooth,
and the global objective fpxq “

řn
i“1 fipxq satisfies the

restricted secant inequality condition with constant ν “

mint

b?
2´1
2 , 2

řn
i“1 bi,1u, see Zhang and Cheng (2015).

Moreover, the optimal set is r´1, 0s. The communication
graph between agents is modeled as a ring graph with
n “ 10 agents.

We run the discrete-time distributed algorithm (10) with
α “ β “ 10 and h “ 0.02. The initial value xip0q is
randomly generated. The trajectories of the primal and
dual variables of each agent are plotted in Fig. 1 and Fig. 2,
respectively. We see that each primal variable converges to
zero which is a global minimizer and correspondingly each
dual variable also converges to zero. Evolutions of residual
}xpkq ´ PX˚pxpkqq}{}xp0q ´ PX˚pxp0qq} are shown in
Fig. 3. The results illustrate linear convergence, which are
consistent with the theoretical results of Theorem 2.
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Fig. 1. Evolutions of local primal variables.
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Fig. 2. Evolutions of local dual variables.
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Fig. 3. Evolutions of residual.

7. CONCLUSIONS

In this paper, we derived the exponential convergence
rate of the continuous-time distributed primal-dual al-
gorithm for solving the distributed smooth optimization
problem when the global cost function satisfies the re-
stricted secant inequality condition. This condition relaxes
the standard strong convexity condition. We also showed
that the discrete-time counterpart of the continuous-time
algorithm establishes linear convergence rate under the
same condition. An interesting future research direction
is to relax the restricted secant inequality condition by
the Polyak- Lojasiewicz condition.
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