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Kalman Filtering Over Fading Channels: Zero–One
Laws and Almost Sure Stabilities

Junfeng Wu , Guodong Shi , Brian D. O. Anderson , Life Fellow, IEEE, and Karl Henrik Johansson

Abstract— In this paper, we investigate probabilistic sta-
bility of Kalman filtering over fading channels modeled by
∗-mixing random processes, where channel fading is allowed to
generate non-stationary packet dropouts with temporal and/or
spatial correlations. Upper/lower almost sure (a.s.) stabilities
and absolutely upper/lower a.s. stabilities are defined for char-
acterizing the sample-path behaviors of the Kalman filtering.
We prove that both upper and lower a.s. stabilities follow a
zero–one law, i.e., these stabilities must happen with a probability
either zero or one, and when the filtering system is one-
step observable, the absolutely upper and lower a.s. stabilities
can also be interpreted using a zero–one law. We establish
general stability conditions for (absolute) upper and lower a.s.
stabilities. In particular, with one-step observability, we show the
equivalence between absolutely a.s. stabilities and a.s. ones, and
necessary and sufficient conditions in terms of packet arrival rate
are derived; for the so-called non-degenerate systems, we also
manage to give a necessary and sufficient condition for upper
a.s. stability.

Index Terms— Kalman filter, fading channels, stability.

I. INTRODUCTION

A. Background and Motivation

THE last decade has witnessed an increasing attention
on wireless sensor networks (WSNs) from the control,

communication and networking communities, thanks to a rapid
development of micro–electronics, wireless communication,
and information and networking technologies. WSNs have
applications in a wide range of areas such as health care,
intelligent buildings, smart transportation and power grid, just
to name a few, due to considerable advantages, including
reducing operational cost, allowing distributed sensing and
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information sharing among different nodes, etc. New chal-
lenges have also been introduced at the expense of the afore-
mentioned advantages, where control and estimation systems
have to be sustainable in the presence of communication
links. This has attracted significant attention to the study
of information theory for network systems [2], and one
fundamental aspect lies in that channel fading [3] leads to
constructive or destructive interference of telecommunication
signals, and at times severe drops in the channel signal–to–
noise ratio may cause temporary communication outage for
the underlying control or estimation systems.

The Kalman filter [4], [5] plays a fundamental role in
networked state estimation systems, where a basic theme
is the stability of Kalman filtering over a communication
channel between the plant and the estimator which generates
random packet dropouts [6]. There were mainly two stability
categories in the literature focusing on the mean–square, or the
probability distribution, evolution of the error covariance
along sample–paths of the Kalman filtering, respectively. The
majority of the research works assumes the channel admits
identically and independently distributed (i.i.d.) or Markovian
packet drops. Sinopoli et al. [7] modeled the packet losses
as an i.i.d. Bernoulli process, and proved that there exists a
critical arrival rate for the packet arrival rate, below which,
the expected prediction error covariance is unbounded. Fur-
ther improvements of this result were developed in [8]–[10].
The mean–square stability, and stability defined at random
packet recovery/reception times, of Kalman filtering subject
to Markovian packet losses generated by a Gilbert–Elliott
channel were studied in [11]–[16]. Efforts have also been
made from a probabilistic point of view. Weak convergence
of Kalman filtering with intermittent observations, which
amounts to having the error covariance matrix converge to
a limit distribution, were investigated in [17]–[19] for i.i.d.,
semi–Markov, and Markovian packet drop models, respec-
tively. The weak convergence of distributed Kalman filtering
was studied in [20].

In this paper, we aim to characterize the asymptotic behav-
iors of the sample paths of Kalman filtering over fading
channels. Instead of only focusing on certain average property
(mean–square, or distribution) of the sample paths, we go
beyond most of the stability notions considered in the liter-
ature. It turns out that the majority of the packet drop models
can be put under a unified model from the mixing theory.

B. Model and Contribution

We assume that the data packets are regarded as success-
fully received when received error–free; and are regarded as
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completely lost otherwise. Although real digital communica-
tion introduces a bunch of other challenges, such as quantiza-
tion and data rate, bit errors, and random delays [2], we are
exclusively devoted to studying the impact of packet dropouts
on the estimation performance and therefore those other effects
will be ignored. To address non–stationarity of the propagation
environment with spatial and temporal correlations between
channel parameters [21]–[23], we introduce a packet drop
process that is ∗-mixing [24]. The mixing theory provides
a tool of investigating random processes which are approxi-
mately independent in the sense that the dependence dies away
as the distance of any two random variables in the process
grows large. The ∗-mixing model includes but also generalizes
i.i.d. and Markov–type models in the literature.

We consider the probabilistic stabilities of Kalman filtering
over such general fading channels. We devise the definitions
of upper/lower a.s. stabilities and absolutely upper/lower a.s.
stabilities. The difference and connection between mean–
square stability and (absolutely) a.s. stabilities are also dis-
cussed. Consistent with a.s. convergence, the definitions of
(absolutely) a.s. stabilities serve as a supplement of the
stability study on Kalman filtering from the perspective of
probabilistic behaviors. We establish the following results:

• We prove that the upper and lower a.s. stabilities follow
a zero–one law, indicating that an event must happen
with probability either zero or one. When the considered
filtering system is one–step observable, the absolutely
upper and lower a.s. stabilities can also be interpreted
by the zero–one law.

• We further present stability conditions for the (absolutely)
upper and lower stabilities. We first give suffi-
cient/necessary conditions for general linear time–
invariant (LTI) systems. One–step observable systems
yield tighter results with necessary and sufficient con-
ditions in terms of the packet arrival rate derived for
upper and lower a.s. stabilities. It is also shown for one–
step observable systems that a.s. stability is equivalent
to absolutely a.s. one. Finally, for the so–called non–
degenerate systems, we manage to give a necessary and
sufficient upper a.s. stability condition.

All the above results are established under ∗-mixing fading
channels, and to the best of our knowledge, this is the first time
the concept of mixing has been introduced to the modelling of
random packet losses. An embryo of part of this work (some
stability conditions) was presented in [1] for independent
channels.

C. Paper Organization

The remainder of the paper is organized as follows.
Section II provides the problem setup, defines the (absolutely)
upper/lower a.s. stabilities, and introduces the ∗-mixing ran-
dom process considered in [24]. The difference between vari-
ous stabilities are also discussed in Section II. In Section III,
two stability zero–one laws are derived. Various stability
conditions are studied in Section IV. Some concluding remarks
are given in the end.

Notations: N is the set of positive integers. For a real
number x , �x� and �x� denote the largest integer not greater
than x and the smallest integer not less than x respectively.
The set of n by n symmetric positive semi–definite (positive
definite) matrices over the complex field is denoted as S

n+
(Sn++). For a matrix X , X denotes the transpose of X and
X∗ the conjugate transpose of X . Moreover, λi (X) represents
the i th largest eigenvalue of X in terms of magnitude for
i = 1, . . . , n, and ‖X‖2 represents the spectral norm of X .
The indicator function of a subset A ⊂ � is a function
1A : � → {0, 1}, where 1A(ω) = 1 if ω ∈ A, otherwise
1A(ω) = 0. σ(·) denotes the σ–algebra generated by random
variables. For an event A in some probability space, “A i.o.
” means A happens infinitely often.

II. KALMAN FILTERING OVER FADING CHANNELS

In this section, we introduce the Kalman filtering model and
define the problem of interest.

A. Kalman Filtering With Packet Dropouts

Consider an LTI system:

xk+1 = Axk +wk, (1)

yk = Cxk + vk, (2)

where xk ∈ R
n is the process state vector, yk ∈ R

m is the
observation vector, wk ∈ R

n and vk ∈ R
m are zero–mean

Gaussian random vectors with E[wkw j
′] = δkj Q (Q ≥ 0),

E[vkv j
′] = δkj R (R > 0), and E[wkv j

′] = 0 ∀ j, k. The δkj is
the Kronecker delta function with δkj = 1 if k = j and δkj = 0
otherwise. The initial state x0 is a zero–mean Gaussian random
vector that is uncorrelated with wk and vk and has covariance
P0 ≥ 0. We assume that the pair (C, A) is observable and
(A, Q1/2) controllable. We introduce the standard definition
of observability index of the pair (C, A).

Definition 1: For the observable pair (C, A), the observ-
ability index Io ∈ N is defined as the smallest integer such
that [C ′, A′C ′, . . . , (AIo−1)′C ′]′ has full column rank.
It is evident that Io ≤ n.

Purely stable LTI systems do not interest us as their esti-
mation error covariance matrix automatically decays. In that
case, it becomes trivial to discuss probabilistic stability issues.
For unstable LTI systems, it can be seen that, by applying a
similarity transformation, the unstable and stable modes can
be decoupled. An open–loop prediction for the stable mode
always has a bounded estimation error covariance, therefore,
this mode does not play any key role in the problem
considered here. Without loss of generality, we assume that

(A1) All of the eigenvalues of A have magnitudes no less
than 1.

We consider an estimation scheme where the raw mea-
surements {yk}k∈N of the sensor are transmitted to the esti-
mator over an erasure communication channel over which
packets may be dropped randomly, see Fig. 1. We assume
that the packets are regarded as successfully received when
received error–free; and are regarded as completely lost oth-
erwise. Denote by γk ∈ {0, 1} the arrival of yk at time k:
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Fig. 1. State estimation over an erasure channel.

If γk = 1, it indicates that yk successfully arrives at the
estimator; otherwise γk = 0. We assume that the sequence
{γk}k∈N is independent of how the system evolves, and that
the estimator knows whether the packet has arrived or not at
each time. Define Fk as the filtration generated by all the mea-
surements received by the estimator up to time k, i.e., Fk �
σ (γt yt , γt ; 1 ≤ t ≤ k), and define F = σ

(∪∞
k=1Fk

)
. We use

a triple (�,F ,P) to denote the common probability space for
all random elements in the LTI system as well as in the packet
dropouts. The estimator computes x̂k|k , the minimum mean–
squared error estimate, and x̂k+1|k , the one–step prediction,
according to x̂k|k = E[xk|Fk] and x̂k+1|k = E[xk+1|Fk], where
E denotes the expectation induced by P. Let Pk|k and Pk+1|k be
the corresponding estimation and prediction error covariance
matrices, receptively, i.e., Pk|k = E[(xk − x̂k|k)(·)′|Fk] and
Pk+1|k = E[(xk+1 − x̂k+1|k)(·)′|Fk], which are computed
recursively via a modified Kalman filter [7]:

Kk = Pk|k−1C ′(C Pk|k−1C ′ + R)−1,

x̂k|k = x̂k|k−1 + γk Kk(yk − C Ax̂k|k−1),

Pk|k = (I − γk KkC)Pk|k−1,

x̂k+1|k = Ax̂k|k,
Pk+1|k = APk|k A′ + Q.

In particularly, Pk+1|k evolves in the following way

Pk+1|k = APk|k−1 A′ + Q

− γk APk|k−1C ′(C Pk|k−1C ′ + R)−1C Pk|k−1 A′. (3)

It can be seen that Pk+1|k now becomes a function of the
random variables {γt }1≤t≤k. In what follows, we are devoted to
characterizing the impacts of {γk}k∈N on Pk+1|k . To simplify
discussion in the sequel, let us use a simpler notation Pk+1 �
Pk+1|k , and introduce the functions h, g, hk and gk : S

n+ → S
n+

as follows:

h(X) � AX A′ + Q, (4)

g(X) � AX A′ + Q − AXC ′(C XC ′ + R)−1C X A′, (5)

hk(X) � h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
k times

(X) and gk(X) � g ◦ g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

(X),

where ◦ denotes the function composition.

B. ∗-Mixing Fading Channels

Wireless channels are mainly affected by path loss, small–
scale fading and shadow fading. In a wireless connected
vehicle–to–vehicle network [23], for example, for the sake
of moving vehicles, small–scale fading happens in an unpre-
dictable way. Moreover, shadow fading, caused by obstructing
objects, leads to temporal and spatial correlations between
communications links. The aforementioned factors are no

longer negligible. To model packet dropouts subject to spa-
tially and/or temporally correlated and non–stationary fading
channels, on one hand, we need to take the non–stationarity
of propagation environment and correlations between channel
parameters into account; on the other hand, we have to retain
indispensable assumptions, making it possible to build up
instructive theories upon it. We model the packet dropouts
as a ∗-mixing stochastic process, where the concept of mix-
ing, originating from physics, is an attempt to interpret the
thermodynamic behavior of mixtures.

Before proceeding, we introduce the definition of ∗-mixing,
which is taken from [24].

Definition 2: The sequence of random variables {ξk}k∈N on
a probability space (S ,S, μ) is said to be ∗-mixing if there
exists a positive integer N and a real–valued function f defined
for n ≥ N, where n ∈ N, such that

(i) f is a non–increasing function with limn→∞ f (n) = 0;
(ii) There holds

∣
∣μ(A∩B)−μ(A)μ(B)∣∣ ≤ f (n)μ(A)μ(B)

for all n ≥ N, A ∈ σ(ξ1, . . . , ξk),B ∈
σ(ξk+n , ξk+n+1, . . .), and k ∈ N.

In the sequel, we assume that

(A2) The random process {γk}k∈N is ∗-mixing.

To the best of our knowledge, this is the first time mixing
has been introduced when modelling random packet dropouts.
One coarse way to explain the above mathematical definition is
that ∗-mixing implies that the occurrence of any two groups of
possible states can be considered approximately independent
as long as the two groups are a sufficient amount of time
apart from each other, where dependence is “quantified” by
the mixing coefficient f (n). It is a universal understanding that
in the physical world historical states in remote past impact
less and less on the evolution of future states, provided that the
hypothesis of ∗-mixing stands. Note that the idea of mixing has
been used in the “theoretical channel model” (the theoretical
channel refers to a mapping from the input source to the output
source) in the literature [25]–[27].

Remarkably enough the mixing model admits most of the
well–studied models reported in the literature, e.g., i.i.d. [7],
[9], [17], Markov [10], [14], [15], [19], semi–Markov [16],
[18], Markovian jump [13], finite–state Markov [28], as its
special cases [24].

C. Problems of Interest

In this paper, we are interested in the sample–path behaviors
of Kalman filtering with ∗-mixing packet losses. Since Tr(Pk)
represents the sum of squared error variance of the estimate for
each element of xk , we use Tr(Pk) as a performance metric.
Noting that lim supk→∞ Tr(Pk) and lim infk→∞ Tr(Pk) are
well–defined random variables taking values from R ∪ {+∞},
we introduce the following stability notions for the considered
Kalman filter.

Definition 3: The considered Kalman filter is termed

(i) upper a.s. stable if P
(

lim supk→∞ Tr(Pk) < ∞) = 1, and
lower a.s. stable if P

(
lim infk→∞ Tr(Pk) < ∞) = 1;

(ii) absolutely upper a.s. stable if there exists a constant
C > 0 such that P

(
lim supk→∞ Tr(Pk) < C

) = 1,
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and absolutely lower a.s. stable if there exists a constant
C > 0 such that P

(
lim infk→∞ Tr(Pk) < C

) = 1.

These stability notions focus on the asymptotic behavior
of the estimation system along every sample path across the
sample space, enabling us to investigate a Kalman filtering
system from a probabilistic perspective. Note that, in general,
absolutely a.s. stability is a stronger notion than the a.s. one.
For convenience, we also call the considered Kalman filter
upper a.s. unstable if P

(
lim supk→∞ Tr(Pk) < ∞) = 0,

and lower a.s. unstable if P
(

lim infk→∞ Tr(Pk) < ∞) = 0.
Additionally, the Kalman filter is said to be almost surely
convergent if

P

(
lim

k→∞ Pk exists, and is finite
)

= 1. (6)

D. Discussions

In the literature, a widely investigated stability notion of
Kalman filtering systems with packet losses is mean–square
stability, i.e., the Kalman filtering is mean–square stable if
supk∈N E‖Pk‖ < ∞. In general, there are no implications
between a.s./absolutely a.s. stabilities and mean–square sta-
bility for the Kalman filter. This relation is analogous to
the relation between a.s. convergence and L p–convergence for
a sequence of random variables [29], because a.s./absolutely
a.s. stabilities are defined on the basis of a.s. convergence
and mean–square stability is defined on the basis of L p–
convergence.

Another important concept of Kalman filtering systems
is the weak–convergence, which requires Pk to converge to
a limit in distribution [17]–[19]. Then by standard chain
of implications of the notions of probabilistic convergence,
we know that both the mean–square convergence (i.e.,
limk→∞ E‖Pk − P∗‖ = 0 for some P∗) and the a.s. conver-
gence (6) imply weak convergence.

III. THE ZERO–ONE LAWS

A tail event of a random process is an event whose occur-
rence is independent of each finite subset of random variables.
In this section, we present that the a.s. stabilities follow a zero–
one law, which is shown with the aid of the definition of tail
events and the zero–one law for a ∗-mixing sequence.

Theorem 1: Let Assumptions (A1)–(A2) hold. Both upper
and lower a.s. stabilities follow a zero–one law, i.e.,

(i) Either P
(

lim supk→∞ Tr(Pk) < ∞) =
1 or P

(
lim supk→∞ Tr(Pk) < ∞) = 0;

(ii) Either P
(

lim infk→∞ Tr(Pk) < ∞) =
1 or P

(
lim infk→∞ Tr(Pk) < ∞) = 0.

The following theorem further shows that the zero–one law
also applies to absolutely upper and lower a.s. stabilities when
the system is one–step observable, i.e., Io = 1.

Theorem 2: Let Assumptions (A1)–(A2) hold. Suppose
Io = 1. Then absolutely upper and lower a.s. stabilities follow
the zero–one law, i.e.,

(i) Either there exists a constant C > 0 such that
P
(

lim supk→∞ Tr(Pk) < C
) = 1 or

P
(

lim supk→∞ Tr(Pk) < C
) = 0 holds for any C > 0;

(ii) Either there exists a constant C > 0 such that
P
(

lim infk→∞ Tr(Pk) < C
) = 1 or

P
(

lim infk→∞ Tr(Pk) < C
) = 0 holds for any C > 0.

In the rest of this section, we first gather and establish a
few supporting lemmas, and then provide detailed proofs for
Theorems 1 and 2.

A. Supporting Lemmas

Denote the unique solution to g(X) = X as P . Assuming
the observability of (C, A) and controllability of (A, Q1/2), it
is well known that P is a positive definite matrix [30]; and
that, for a standard Kalman filter, limk→∞ Pk = P [31]. For
the operators h and g, the following lemma holds. The proof
can be found in [10, Lemma A.1].

Lemma 1: For any matrices X ≥ Y ≥ 0,

h(X) ≥ h(Y ), (7)

g(X) ≥ g(Y ), (8)

h(X) ≥ g(X). (9)

The following two lemmas further establish some useful
properties of operators g and h.

Lemma 2: For any X ∈ S
n+, there exists an integer t ∈ N,

independent of X , such that gt (X) > 0.
Proof: Choose a constant β ∈ (0, 1). Since

limk→∞ gk(0) = P , there always exists a sufficiently
large integer N(β) such that gk(0) ≥ βP for all k ≥ N(β).
Then By Lemma 1, gk(X) ≥ gk(0) > 0. Note that N(β) is
chosen independent of X . The conclusion follows by letting
t = N(β). �

Lemma 3: There exists a constant a > 0 such that
Tr
(
hk(X)

) ≥ a|λ1(A)|2k holds for all X ∈ S
n+ and for all

k ∈ N.
Proof: By the controllability of (A, Q1/2) assumed, one

has V � hn(0) > 0. Then there always exists a real number
a0 > 0 so that V ≥ a0 I . Therefore, hk(0) ≥ a0 Ak−n(A′)k−n

holds for all k ≥ n. Let us denote the Schur’s unitary
triangularization [32] of A as A = U T U∗ where U is a
unitary matrix and T = [ti j ] is an upper triangular with tii =
λi (A), i = 1, . . . , n. Since Ak−n(A′)k−n is Hermitian and
positive semi–definite, λ1

(
Ak−n(A′)k−n

)
is real and moreover,

λ1

(
Ak−n(A′)k−n

)
= λ1

(
T k−n(T ∗)k−n

)

=
∥
∥∥
∥

⎡

⎢
⎣

λ1(Ak−n) ∗ ∗
0

. . . ∗
0 0 λn(Ak−n)

⎤

⎥
⎦

∥
∥∥
∥

2

2

≥ |λ1(A
k−n)|2

= |λ1(A)|2(k−n).

Therefore, Tr
(
hk(0)
) ≥ an |λ1(A)|2k holds for all k ≥ n with

an � a0|λ1(A)|−2n . As for k = 1, . . . , n − 1, we choose a
sequence of positive real numbers, denoted by {ak}1≤k≤n−1,
such that Tr

(
hk(0)
) ≥ ak|λ1(A)|2k . The conclusion follows

by taking a � min{ak : k = 1, . . . , n} > 0. �
Since (C, A) is observable, J �[
(C AIo−1)′, (C AIo−2)′, . . . ,C ′]′ has full column rank
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and J ′ J is nonsingular. Denote

M0 � (J ′ J )−1 J ′

⎛

⎜
⎝H

⎡

⎢
⎣

Q . . . 0
...

. . .
...

0 . . . Q

⎤

⎥
⎦ H ′ +

⎡

⎢
⎣

R . . . 0
...

. . .
...

0 . . . R

⎤

⎥
⎦

⎞

⎟
⎠

× J (J ′ J )−1 (10)

and

H =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

C C A . . . . . . C AIo−2

0 C
. . .

...
...

...
. . .

. . .
...

0 0 . . . C C A
0 0 0 . . . C
0 0 0 . . . 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next define

M = hIo(M0). (11)

For Io and M , we have the following lemma.
Lemma 4: Suppose that by time k − 1 there are at least

Io consecutive measurements yk−Io, . . . , yk−1 received by the
Kalman filter. Then there holds Pk ≤ M .

Proof: Observe that
⎡

⎢⎢
⎢
⎣

yk−1
yk−2
...

yk−Io

⎤

⎥⎥
⎥
⎦

= J xk−Io + H

⎡

⎢⎢
⎢
⎣

wk−2
wk−3
...

wk−Io

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎣

vk−1
vk−2
...

vk−Io

⎤

⎥⎥
⎥
⎦
.

Based on the consecutive measurements yk−Io, . . . , yk−1
received by the estimator, we use the following estimator to
generate a linear prediction of xk :

x̄k = AIo(J ′ J )−1 J ′

⎡

⎢⎢
⎢
⎣

yk−1
yk−2
...

yk−Io

⎤

⎥⎥
⎥
⎦
.

The associated prediction error covariance Pk � E[(xk −
x̄k)(xk − x̄k)

′] ≤ M . Since the Kalman filter is known as
the linear minimum mean–squared error estimator, we have
Pk ≤ P ≤ M , which completes the proof. �

In the following, we introduce the definition of Riemannian
distance on S

n++.
Definition 4: For any X,Y ∈ S

n++, the Riemannian distance
δ between X and Y is defined as

δ(X,Y ) =
(

n∑

i=1

Log2λi

(
XY −1
)
)1/2

. (12)

It has been shown that δ is a metric on S
n++, and that

the metric space (Sn++, δ) is complete and separable [33]. In
(Sn++, δ), the operators h, g defined in (4) and (5) are non–
expansive and gIo is contractive.

Lemma 5 (34, Th. 1.7): Suppose that A is invertible. In the
metric space (Sn++, δ),
(i) There hold δ(h(X), h(Y )) ≤

δ(X,Y ) and δ(g(X), g(Y )) ≤ δ(X,Y ) for any
X,Y ∈ S

n++;

(ii) There exists a real number q ∈ (0, 1) that only depends
on A, C, Q, R such that there holds

δ(gIo(X), gIo(Y )) ≤ qδ(X,Y )

for any X,Y ∈ S
n++.

It is also easy to establish the following lemma.
Lemma 6: In the metric space (Sn++, δ), there holds

2−δ(X,Y )X ≤ Y ≤ 2δ(X,Y )X for any X,Y ∈ S
n++.

Proof: From the definition of Riemannian distance in (12),
we have

Logλn(XY −1) ≤ δ(X,Y ) and Logλ1(XY −1) ≥ −δ(X,Y ).

Therefore, 2−δ(X,Y ) I ≤ Y −1/2 XY −1/2 ≤ 2δ(X,Y ) I, which
completes the proof. �

Next, we consider a deterministic sequence {zk}k∈N with
each zk taking value from {0, 1}. Associated with the sequence
{zk}k∈N we define the (deterministic) recursion:

Pk+1 = APk A′ + Q − zk APkC ′(C PkC ′ + R)−1C Pk A′. (13)

The following lemma holds.
Lemma 7: Consider the deterministic evolution (13).

(i) If there exists an initial condition P0 = 
 ∈ S
n+ such that

lim sup
k→∞

Tr(Pk) = ∞, then

lim sup
k→∞

Tr(Pk) = ∞ for all P0 ∈ S
n+;

(ii) If there exists an initial condition P0 = 
 ∈ S
n+ such that

lim sup
k→∞

Tr(Pk) < ∞, then

lim sup
k→∞

Tr(Pk) < ∞ for all P0 ∈ S
n+.

Proof: Consider two Kalman filters that undergo the
packet loss process {zk}k∈N: one has initial condition 
1 ∈ S

n+
while the other has initial condition 
2 ∈ S

n+. Denote the
prediction error covariance matrices at time k from initial
points 
1 and 
2, respectively, by P
1

k and P
2
k . From

Lemma 2, we can always find a sufficiently large integer t
such that gt (
1), gt (
2) ∈ S

n++. According to (8) and (9),
we have P
1

t , P
2
t ∈ S

n++. On the other hand, P
1
t ≤ ht (
1)

and P
2
t ≤ ht (
2) by (9). Therefore, there always exists a

constant d ≥ 0 such that δ(P
1
t , P
2

t ) ≤ d . The fact from
Lemma 5 that the operators h and g are non–expansive in
(Sn++, δ) provided that A is invertible leads to

δ(P
1
k , P
2

k ) ≤ d

for all k ≥ t . By Lemma 6,

P
1
k ≥ βP
2

k (14)

holds for all k ≥ t , where β � 2−d .
The unboundness of Tr(P
k ) means that, for any positive

number C, there always exists a sufficiently large integer N ≥ t
such that Tr(P
N ) > C. When taking 
1 = 0 and 
2 =

 in (14), we have Tr(P0

N) ≥ βC. By (7) and (8) again,
Tr(P P0

N ) ≥ Tr(P0
N) ≥ βC holds for any P0 ∈ S

n+. Since C is
arbitrarily chosen, the assertion follows as claimed. The same
is true of the statement (i i) as the contraposition of (i). �

There corresponds an analogy for lim infk→∞ Tr(Pk) as we
will present below. We omit the proof since it is similar to the
proof of Lemma 7.
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Lemma 8: Consider the deterministic evolution (13).
(i) If there exists an initial condition P0 = 
 such that

lim inf
k→∞ Tr(Pk) = ∞, then

lim inf
k→∞ Tr(Pk) = ∞ for all P0 ∈ S

n+;

(ii) If there exists an initial condition P0 = 
 such that
lim inf
k→∞ Tr(Pk) < ∞, then

lim inf
k→∞ Tr(Pk) < ∞ for all P0 ∈ S

n+.

The definition of tail events is as follows:
Definition 5: Let {ξk}k∈N be a sequence of random vari-

ables, and F̃k � σ(ξk , ξk+1, . . .) be the smallest σ–algebra
generated by ξk , ξk+1, . . . Then, T ({ξk}k∈N) � ∩∞

j=1F̃ j is
called the tail algebra of {ξk}k∈N. If A ∈ T ({ξk}k∈N), then
A is said to be a tail event of {ξk}k∈N.

We still need to recall the concept of strong mixing, which
was first introduced in [34], and then the zero–one law for
strong mixing random processes established in [35]. Note that
∗-mixing implies strong mixing [36].

Definition 6: The sequence of random variables {ξk}k∈N on
a probability space (S ,S, μ) is said to be strong mixing if

α(n) � sup |μ(A ∩ B)− μ(A)μ(B)| → 0, as n → ∞,

where the supremum is taken over all A ∈ σ(ξ1, . . . , ξk), B ∈
σ(ξk+n , ξk+n+1, . . .) and k ∈ N.

The following lemma holds.
Lemma 9 (Zero–One Law for Strong Mixing ([36, Th.

2.3])): Let {ξk}k∈N be a sequence of strong mixing random
variables on a probability space (S ,S, μ). Let T ({ξk}k∈N)
be the tail algebra of {ξk}k∈N. Then for any A ∈ T ({ξk}k∈N),
there holds μ(A) = 1 or 0.

Remark 1: The concepts of ∗-mixing and strong mixing
introduced in Definitions 2 and 6, originated in [24] and [34],
respectively, are imposed under different measures of depen-
dence between past and future along the random sequence.
The ∗-mixing is equipped with a tighter measure, and therefore
implies the strong mixing. For a detailed introduction of their
relations we hereby refer to [36], in which the ∗-mixing
corresponds to ψ-mixing, and the strong mixing corresponds
to α-mixing.

B. Proof of Theorem 1

We only focus on assertion (i) for the event E � {ω :
lim sup

k→∞
Tr(Pk)(ω) < ∞}, as the conclusion for (i i) can be

proved using the same argument.
Since Tr(Pk) is F–measurable for all k ∈ N, so is

lim supk→∞ Tr(Pk). Then E ∈ F . Fix a positive integer n and
a deterministic sequence {z̃k}k∈N with each z̃k taking value
from {0, 1}. We define a sequence {zk}k∈N, where zk ∈ {0, 1},
such that zk = z̃k+n . Accordingly, we define a sequence of
matrices {P̃k}k∈N as the estimation error covariances of the
Kalman filter along {z̃k}k∈N, where initial point is denoted
by P̃0 ∈ S

n+; and define {Pk}k∈N along {zk}k∈N, where initial
point is denoted by P0 ∈ S

n+. The rest of the proof consists of
two aspects:
(a) Suppose that lim sup

k→∞
Tr(P̃k) = ∞ holds with a given

initial covariance P̃0. When P0 = P̃n , we have

lim sup
k→∞

Tr(Pk) = lim sup
k→∞

Tr(P̃k+n) = ∞. It follows from

(i) of Lemma 7 that lim sup
k→∞

Tr(Pk) = ∞ holds for any

P0 ∈ S
n+.

(b) Suppose that lim sup
k→∞

Tr(P̃k) < ∞ holds along {z̃k}k∈N.

Then we have lim sup
k→∞

Tr(Pk) = lim sup
k→∞

Tr(P̃k+n) < ∞
when P0 = P̃n . It follows from (i i) of Lemma 7 that
lim sup

k→∞
Tr(Pk) < ∞ holds for any P0 ∈ S

n+.

Define

S0 �
{

X : X = φz̃n ◦ · · · ◦ φz̃1(
)
}
,

where z̃1, . . . , z̃n ∈ {0, 1}, and φi equals to the mapping h
when i = 0 and g when i = 1. It is straightforward that
S0 is bounded (it is a finite set) and S0 ⊆ S

n+, therefore
showing that whether lim sup

k→∞
Tr(P̃k) < ∞ holds or not does

not depend on z̃1, . . . , z̃n . Since {z̃k}k∈N is arbitrarily chosen
from �, we conclude that the event E and its compliment Ec

are independent of σ(γ1, . . . , γn). Again since n is arbitrarily
taken, E ∈ T ({γk}k∈N). The conclusion then follows from
Lemma 9.

C. Proof of Theorem 2

First of all, we establish an auxiliary lemma.
Lemma 10: Suppose Io = 1. Then for any con-

stant C > Tr(M), where M is defined in (11),
the events {ω : lim supk→∞ Tr(Pk)(ω) < C} and {ω :
lim infk→∞ Tr(Pk)(ω) < C} are tail events of {γk}k∈N.

Proof: First let us show the conclusion for the event
AC � {ω : lim sup

k→∞
Tr(Pk)(ω) < C}. As in the proof of

Theorem 1, we can readily show AC ∈ F . Fix a positive
integer n, a real number C > 0 and a deterministic sequence
{z̃k}k∈N with each z̃k taking value from {0, 1}. we define a
sequence {zk}k∈N, where zk ∈ {0, 1}, such that zk = z̃k+n .
Accordingly, define a sequence of matrices {P̃k}k∈N as the
estimation error covariances along {z̃k}k∈N with an initial point
denoted by P̃0 ∈ S

n+; and define {Pk}k∈N along {zk}k∈N with
an initial point denoted by P0 ∈ S

n+. The rest of the proof
consists of two aspects:

(a) Suppose that lim sup
k→∞

Tr(P̃k) < C holds with a given

initial point P̃0. In light of Lemma 3, we conclude
via reduction to absurdity that {z̃k}k∈N ∈ {ω : ω ∈
γk = 1, i.o.}. When P0 = P̃n � 
1, we have
lim sup

k→∞
Tr(Pk) = lim sup

k→∞
Tr(P̃k+n) < C. Next we shall

now show lim sup
k→∞

Tr(Pk) < C for any P0 ∈ S
n+. Choose

any matrix 
2 ∈ S
n+. We differentiate Pk with different

initial points 
1 and 
2 by using notations P
1
k and P
2

k
respectively. By Lemma 2, there exists an integer t such
that P
1

t , P
2
t ∈ S

n++. Since Io = 1, Lemma 5 indicates
that the operator g is strictly contractive in (Sn++, δ).
Therefore,

δ(P
1
k , P
2

k ) ≤ q
∑k

i=t zi δ(P
1
t , P
2

t )
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holds for all k ≥ t , where q ∈ (0, 1) is a constant that
only depends on A, C, Q, R. As k → ∞, we have∑k

i=t zi → ∞ and consequently δ(P
1
k , P
2

k ) → 0.
Thus, P
2

k → P
1
k due to the fact that (Sn++, δ) is

a complete metric space. Since C is arbitrarily chosen,
lim sup

k→∞
Tr(Pk) < C holds for any P0 ∈ S

n+.

(b) On the other hand, we suppose that lim sup
k→∞

Tr(P̃k) ≥ C

holds with a given initial covariance P̃0 ∈ S
n+. We discuss

in all cases: lim sup
k→∞

Tr(P̃k) is bounded by a larger con-

stant C̃ > C or unbounded. For the first case, by using
the same argument as in (i), lim sup

k→∞
Tr(Pk) < C̃ holds

for any P0 ∈ S
n+. For the other case, it follows form the

proof of Theorem 1 that lim sup
k→∞

Tr(Pk) = ∞ holds for

any P0 ∈ S
n+.

Define

S0 �
{

X : X = φz̃n ◦ · · · ◦ φz̃1(
)
}
,

where z̃1, . . . , z̃n ∈ {0, 1}, and φi equals to the mapping h
when i = 0 and g when i = 1. It is straightforward that S0 is
bounded (it is a finite set) and S0 ⊆ S

n+. In view of the argu-
ments in (i) and (i i), we obtain that whether lim sup

k→∞
Tr(P̃k) <

C holds or not does not depend on z̃1, . . . , z̃n . Since {z̃k}k∈N

is arbitrarily chosen, the event AC and its compliment (AC)
c

are independent of σ(γ1, . . . , γn). Again since n and C are
arbitrarily taken, AC ∈ T ({γk}k∈N) holds for all C > 0.

It remains to show the assertion for the event EC �
{ω : lim inf

k→∞ Tr(Pk)(ω) < C}. On one hand, by reduction to

absurdity it is true for any C > Tr(M) that

EC ⊆ {ω : ω ∈ γk = 1 i.o.}.
On the other hand, from Lemma 4,

{ω : ω ∈ γk = 1, i.o.} ⊆ {ω : lim inf
k→∞ Tr(Pk)(ω) < Tr(M)}

⊆ EC, (15)

where the second “⊆” holds since C > Tr(M). In summary,
we have

EC = {ω : ω ∈ γk = 1 i.o.}. (16)

Then EC ∈ T ({γk}k∈N) as one realizes that the latter event
in (16) is a tail event. �

We are now in a place to complete the proof of Theorem 2.
We only focus on the statement for absolutely upper a.s.
stability, since that for absolutely lower a.s. stability can be
analogously proved. Define

Ax � {ω : lim sup
k→∞

Tr(Pk)(ω) < x}, x > 0.

It is clear that A�x�⊆Ax ⊆ A�x� holds for all x > 0, which
eventually results in

⋃

C∈(0,∞)

AC =
⋃

C∈N

AC.

Since AC ∈ T ({γk}k∈N) for any C > Tr(M) by Lemma 10,
⋃

C∈(0,∞)

AC =
⋃

C∈N,
C>Tr(M)

AC ∈ T ({γk}k∈N).

Finally, the conclusion follows from Lemma 9.

IV. ALMOST SURE STABILITY CONDITIONS

In the last section, we have shown that whether the consid-
ered Kalman filter is a.s. stable or not can be interpreted by
a zero–one law. In this section, we are devoted to studying
the relationship between the packet rate and these stability
notions. We first present some sufficient/necessary stability
conditions for general LTI systems. Then we continue to show
that one–step observable systems admit tighter results, with
necessary and sufficient conditions derived for upper and lower
a.s. stabilities, respectively. Finally, for the so–called non–
degenerate systems, we give a necessary and sufficient upper
a.s. stability condition.

Denote E[γk] � pk . To make the analysis concise, we
require the following assumption

(A3) {pk}k∈N is a monotonic sequence.

It is not difficult to find that, if (A3) is not satisfied, all
results are still tractable under the current analysis but in more
complex forms. We choose (A3) to be our standing assumption
in the rest of this section.

A. Main Results

1) General Stability Conditions: First we give sufficient
conditions for (absolute) lower a.s. stability and lower a.s.
instability. Recall that Io is the observability index defined
in Definition 1.

Theorem 3: Let Assumptions (A1)–(A3) hold.

(i) If
∞∑

k=1
(pk)

Io = ∞, then the considered filtering system is

absolutely lower a.s. stable for any P0 ∈ S
n+.

(ii) If
∞∑

k=1
pk < ∞, then the considered filtering system is

lower a.s. unstable for any P0 ∈ S
n+.

The following theorem presents a necessary condition for
upper a.s. stability.

Theorem 4: Let Assumptions (A1)–(A3) hold. If the con-
sidering filtering system is upper a.s. stable, then there exists

a constant I ∈ N such that
∞∑

k=1
(1 − pk)

I < ∞.

The proofs of Theorems 3 and 4 rely on Borel-Cantelli
lemmas with respect to ∗-mixing.

2) One–Step Observable Systems: As a special case, one–
step observable systems have Io = 1. The following theorem
provides necessary and sufficient conditions for (absolutely)
lower a.s. stability.

Theorem 5: Let Assumptions (A1)–(A3) hold. Suppose
Io = 1. For any P0 ∈ S

n+, the following conditions are
equivalent:

(i) The considered filtering system is absolutely lower a.s.
stable;

(ii) The considered filtering system is lower a.s. stable;
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(iii) There holds that
∞∑

k=1
pk = ∞.

In the following, we also present necessary and sufficient
conditions for (absolutely) upper a.s. stability.

Theorem 6: Let Assumptions (A1)–(A3) hold. Suppose
Io = 1. For any P0 ∈ S

n+, the following statements are
equivalent:

(i) The considered filtering system is absolutely upper a.s.
stable;

(ii) The considered filtering system is upper a.s. stable;

(iii) There exists a constant I ∈ N such that
∞∑

k=1
(1− pk)

I < ∞.

Theorems 5 and 6 are proved, partially relying on the
fact that, as long as the considered Kalman filter success-
fully receives a packet, its instantaneous error covariance is
bounded from above. The detailed proofs have been put in
Section IV-C.

3) Non–Degenerate Systems: For general LTI systems with
Io ≥ 2, it is challenging to find conditions guaranteeing
(absolutely) upper a.s. stability, since Pk does not necessarily
decrease when packets are intermittently received. However,
an exception is a class of so–called non–degenerate systems.
We first introduce the definition of non–degenerate systems,
which is taken from [14] and [15], and then present the
probabilistic stability guarantor of supk≥n Tr(Pk) for this kind
of systems. Note that the requirement of non–degeneracy is
indispensable because it enables us to bound Tr(Pk) when
intermittent receptions of measurements happen.

Definition 7: Consider a system (C, A) in diagonal stan-
dard form, i.e., A = diag(λ1, . . . , λn) and C = [C1, . . . ,Cn].
A quasi–equiblock of the system is defined as a subsystem
(CI , AI), where I � {l1, . . . , li } ⊂ {1. . . . , n}, such that
AI = diag(λl1 , . . . , λli ) with |λl1 | = · · · = |λli | and CI =
[Cl1 , . . . ,Cli ].

Definition 8: A diagonalizable system (C, A) is non–
degenerate if every quasi–equiblock of the system is one–step
observable. Conversely, it is degenerate if it has at least one
quasi–equiblock that is not one–step observable.

The following result holds.
Theorem 7: Let Assumptions (A1)–(A3) hold. Suppose the

system (C, A) is non–degenerate. For any P0 ∈ S
n+, the

following statements are equivalent:

(i) The considered filtering system is absolutely upper a.s.
stable;

(ii) The considered filtering system is upper a.s. stable;

(iii) There exists a constant I ∈ N such that
∞∑

k=1
(1− pk)

I < ∞.

Remark 2: The necessary and sufficient conditions in
Theorem 7 suggest that, when (C, A) is non–degenerate,
the absolutely upper a.s. stability also follows a zero–one law.

B. Supporting Lemmas

This subsection presents supporting lemmas and auxiliary
definitions for the proofs of the main results. The following
two lemmas concern with sequences of real numbers. The first
one is well known and its proof can be found in [37].

Lemma 11: Suppose that {ak}k∈N is a sequence of real
numbers with ak ∈ [0, 1). Then

∑∞
k=1 ak = ∞ holds if and

only if
∏∞

k=1(1 − ak) = 0.
Lemma 12: Suppose that {ak}k∈N is a monotonic sequence

of real numbers with ak ∈ [0,∞). Then, for any l ≥ 2,∞∑
i=0

∏(i+1)l
k=il+1 ak = ∞ holds if and only if

∞∑
k=1
(ak)

l = ∞.

Proof: Without loss of generality, we assume that {ak}k∈N

is monotonically decreasing, for a monotonically increasing
sequence can be treated in a similar manner. For simplicity,

let s j �
∞∑

i=1

∏in+ j−1
k=(i−1)n+ j ak for j ∈ N. If s1 = ∞, observing

that s1 ≥ s2 ≥ · · · ≥ sn ≥ sn+1, and that sn+1 = s1 −∏n
k=1 ak ,

we have s j = ∞. Therefore,

n∑

j=1

s j ≤
∞∑

k=1

(ak)
n,

implying
∑∞

k=1(ak)
n = ∞. To prove the sufficiency, note that

ns1 ≥
n∑

j=1

s j ≥
∞∑

k=n

(ak)
n.

Since n is finite, the desired conclusion follows. �
The following lemma is the first Borel–Cantelli lemma from

probability theory. For more details, please refer to [29].
Lemma 13 (First Borel–Cantelli Lemma): Let (S ,S, μ)

be a probability space. Suppose {A j } j∈N is a sequence of

events, where A j ∈ S for all j ∈ N. If
∞∑

i=1
μ(Ai ) < ∞, then

μ (Ai i.o.) = 0.
The definition of ∗-mixing for a sequence of events, and the

corresponding second Borel–Cantelli lemma are as follows.
Definition 9: A sequence of events {A j } j∈N is said to be

∗-mixing if {1A j } j∈N is ∗-mixing.
Lemma 14 (Second Borel–Cantelli Lemma Under ∗–Mixing

([24, Lemma 6]): Let {A j } j∈N be a sequence of ∗-mixing
events on a probability space (S ,S, μ). Then μ (Ai i.o.) = 1

if
∞∑

i=1
μ(Ai ) = ∞.

We define the following two quantities to evaluate the
minimum and maximum lengths of consecutive packet drops
that make the error covariance exceed a given threshold. With
the help of the two quantities, we develop a sufficient condition
for that lim sup

k→∞
Tr(Pk) exceeds a given threshold almost surely.

For a one–step observable system (i.e., Io = 1), as long as one
packet is received, Pk ≤ M holds by Lemma 4, enabling us
to develop necessary conditions for such a system.

Let us define two quantities I(C) and I(C) as follow: for a
given real number C ≥ Tr(M), put

I(C) � min
{

k ∈ N : Tr
(
hk(M)

)
> C
}
, (17)

I(C) � min
{

k ∈ N : Tr
(
hk(P)

)
> C
}
. (18)

Similar definitions for I(C) and I(C) primarily appeared
in [10], where the quantities were used to derive upper and
lower bounds on P

(
Pk|k ≤ P∗

)
for some P∗ ∈ S

n+. Different
from [10], in this paper, we will use these two quantities
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to characterize the relationships between the packet rate and
various stability notations in Definition 3.

The following lemma says that, for any C ≥ Tr(M), both
I(C) and I(C) are bounded.

Lemma 15: Suppose A is unstable. Then, there holds
I(C) ≤ I(C) < ∞ for all C ≥ Tr(M).

Proof: First of all, it is evident from Lemma 1 that I(C) ≤
I(C). Since P < M by Lemma 4, to show that I(C) and
I(C) are finite for any C ≥ Tr(M), it suffices to show that
there exists an integer k ∈ N implying Tr

(
hk(P)

)
> C. By

Lemma 3, there always exists an a > 0 such that Tr
(
hk(X)

) ≥
a|λ1(A)|2k . Therefore, when taking

k ≥
⌈

LogC − Loga

2Log|λ1(A)|
⌉

+ 1,

we have a|λ1(A)|2k > C, which completes the proof. �
Lemma 16: Suppose that Io = 1. Consider a real number

C ≥ Tr(M). If
∞∑

k=1
(1− pk)

I(C) < ∞, then P
(

lim sup
k→∞

Tr(Pk) ≤
C
) = 1 holds for all P0 ∈ S

n+.
Proof: Noticing

I(C)+i−1∏

k=i

(1 − pk) ≤ max

{
(1 − pk)

I(C) : i ≤ k ≤ I(C)+ i −1

}

≤
I(C)+i−1∑

k=i

(1 − pk)
I(C),

we have

∞∑

i=1

I(C)+i−1∏

k=i

(1 − pk) ≤
∞∑

i=1

I(C)+i−1∑

k=i

(1 − pk)
I(C). (19)

Since I(C) is a finite number, each term (1 − pk)
I(C) appears

at most I(C) times in the summation of the right-hand side of
(19). As a result,

∞∑

i=1

I(C)+i−1∑

k=i

(1 − pk)
I(C) ≤ I(C)

∞∑

k=1

(1 − pk)
I(C).

This leads to

∞∑

i=1

I(C)+i−1∏

k=i

(1 − pk) ≤ I(C)
∞∑

k=1

(1 − pk)
I(C) < ∞,

from the standing hypothesis.
Next, from Lemma 13 and the definition of I(C), we see

P (Tr(Pk) > C i.o.) = 0 for any P0 ∈ S
n+ since the event

Tr(Pk) > C requires that at least I(C) consecutive drops
happen before that. This completes the proof. �

C. Proofs of Statements

1) Proof of Theorem 3: If
∞∑

k=1
(pk)

Io = ∞, by Lemma 12,

one obtains
∞∑

i=0

∏(i+1)Io
k=iIo+1 pk = ∞.

Define

A j �
{
ω :

( j+1)Io∏

l= j Io+1

γl(ω) = 1, ω ∈ �
}
, j ∈ N.

Since {γk}k∈N is ∗-mixing and Io ≤ n, the sequence {A j } j∈N

of events induced by {γk}k∈N is ∗-mixing by definition. By
Lemmas 4 and 14, we have

P (Pk ≤ M i.o.) ≥ P(A j i.o.) = 1,

where the first assertion follows.
If
∑∞

k=1 pk < ∞, P (γk = 1 i.o.) = 0 holds by Lemma 13.
Then, by Lemma 3, there holds

P

(
lim inf
k→∞ Tr(Pk) < ∞

)
= 0,

which completes the proof.
2) Proof of Theorem 4: We shall prove the contraposition

of the theorem, viz. that, if
∞∑

k=1
(1 − pk)

I = ∞ for any I ∈ N,

then the considered filtering system is upper a.s. unstable. To
this end, fix any constant C ≥ Tr(M) and a realization ω ∈ �
of {γk}k∈N. By the definition of I(C) in (18) and Lemma 15,
we have Tr

(
hI(C)(P)

)
> C and I(C) < ∞. Then, from the

continuity of the matrix trace and h operators, there always
exists a constant β ∈ (0, 1) such that Tr

(
hI(C)(βP)

)
> C.

Since limk→∞ gk(0) = P , there exists a sufficiently large
N(β) that implies gk(0) ≥ βP for all k ≥ N(β), see the
proof of Lemma 2 at this statement. By (9) in Lemma 1,
Pk(ω) ≥ gk(0) > βP holds for all k ≥ N(β). This observation
therefore leads to Tr

(
hI(C)(Pk(ω))

)
> C for all k ≥ N(β).

When taking all ω’s within � into account, we have

EI(C) ⊆ (AC)
c, (20)

where EI(C) �{ω : I(C) numbers of consecutive packet
dropouts occur i.o.} and AC � {ω : lim supk→∞ Tr(Pk(ω)) ≤
C}. In addition, the hypothesis

∞∑
k=1
(1 − pk)

I(C) = ∞ implies

∞∑

i=0

(i+1)I(C)∏

k=iI(C)+1

(1 − pk) = ∞

by Lemma 12. Define

B j =
{
ω :

( j+1)I(C)∏

l= j I(C)+1

(
1 − γl(ω)

) = 1, ω ∈ �
}
, j ∈ N.

Since {γk}k∈N is ∗-mixing and I(C) < ∞, the events {B j } j∈N

induced by {γk}k∈N is ∗-mixing by definition. By virtue of
Lemma 14, it implies that

P(EI(C)) ≥ P(Bi i.o.) = 1. (21)

Since C is arbitrarily chosen from the interval [Tr(M),∞),

{ω : lim sup
k→∞

Tr(Pk(ω)) <∞}

=
⋃

C∈[Tr(M),∞)

AC

⊆
⋃

C∈[Tr(M),∞)

(EI(C))
c ⊆

∞⋃

I(C)=1

(EI(C))
c,
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where the first “⊆” is from (20) and the second one is due to
I(C) < ∞. As a result,

P(lim sup
k→∞

Tr(Pk) <∞) ≤ P

( ∞⋃

I(C)=1

(EI(C))
c
)

≤
∞∑

I(C)=1

(
1 − P(EI(C))

)

= 0,

in which the second inequality is due to subadditivity of
measure P and the last equality is due to (21). This completes
the proof.

3) Proof of Theorem 5: (i) ⇒ (i i) is true from the definition
in its own right. Since Io = 1 and the fact that lower a.s.
stability follows the one–zero law, (i i) ⇒ (i i i) and (i i i) ⇒
(i) hold by Theorem 3.

4) Proof of Theorem 6: Note that (i) implies (i i) by
definition and (i i) implies (i i i) by Theorem 4. It remains
to show (i i i) ⇒ (i). Take a constant C such that C ≥
min{Tr(M), hI(M)}. By (17) and Lemma 15, we have I <
I(C) < ∞. Then (i i i) implies

∑∞
k=1(1 − pk)

I(C) < ∞.
According to Lemma 16, P

(
lim sup

k→∞
Tr(Pk) ≤ C

) = 1 holds

for all P0 ∈ S
n+, which completes the proof.

5) Proof of Theorem 7: Similar to the proof of Theorem 6,
we only need to show (i i i)⇒ (i). To this end, we first define
a sequence of stopping time {t j } j∈N as a sequence of packet
arrival times as follows:

t1 � min{k : k ≥ 1, γk = 1},
...

t j � min{k : k > t j−1, γk = 1}.

If max{ j : t j ≤ k} ≥ n, it means that the estimator has
received no less than n packets up to time k. In this case,
we define

τk,1 � k − ti where i = max{ j : t j ≤ k}, and

τk, j � ti− j+2 − ti− j+1, for 2 ≤ j ≤ n.

To get the desired result, we need the following lemma.
Lemma 17: If max{ j : t j ≤ k} ≥ n and the system is non–

degenerate, then the following inequality holds:

Tr(Pk+1) ≤ a0

n∏

j=1

(|λ1(A)| + ε)2τk, j ,

where a0 is a constant independent of τk, j and ε can be
arbitrarily small.

Proof: The result can be readily established from
[15, Th. 4] and the fact that |λ1(A)| ≥ · · · ≥ |λn(A)|. �

If there exists an I ∈ N such that
∑∞

k=0(1 − pk)
I < ∞,

we can always find a sufficiently large positive number CI
satisfying CI > a0(|λ1(A)| + ε)2(n+I−2) for a small ε > 0.

Given any time k ≥ n + I − 1, we compute

P

(
Tr(Pk+1) > CI

)

≤ P

(
Tr(Pk+1) > a0(|λ1(A)| + ε)2(n+I−2)

)

≤ P

(
less than n packets received between

time k − n − I + 2 and k

)

≤
n−1∑

j=0

(
n + I − 1

j

)
max{pk−n−I+2, pk} j

× (1 − min{pk−n−I+2, pk})n+I− j−1

≤
n−1∑

j=0

(
n + I − 1

j

)
(1 − min{pk−n−I+2, pk})I

≤
n−1∑

j=0

(
n + I − 1

j

)
(1 − pk−n−I+2)

I

+
n−1∑

j=0

(
n + I − 1

j

)
(1 − pk)

I (22)

where the second inequality holds due to Lemma 17 and the
observation that

∑n
j=1 τk, j ≤ n + I − 2 if and only if less

than n packets are received between time k − n − I + 2 and k,
the second last inequality is from the monotonicity of {pk}k∈N,

and

( ·
·
)

denotes a combination number. Thus,

∞∑

k=1

P (Tr(Pk) > CI)

=
n+I−1∑

k=1

P (Tr(Pk) > CI)+
∞∑

k=n+I

P (Tr(Pk) > CI)

≤
n+I−1∑

k=1

P (Tr(Pk) > CI)+ 2
n−1∑

j=0

(
n + I − 1

j

) ∞∑

k=1

(1 − pk)
I

< ∞,

where the first inequality follows from (22). By Lemma 13,
P (Tr(Pk) > CI i.o.) = 0 holds even for the set of events
{ω : Tr(Pk(ω)) > CI}k∈N that are not independent, which
completes the proof.

V. CONCLUSIONS

We have studied the stability, from the probabilistic per-
spective, of Kalman filtering with random packet dropouts.
The packet dropouts were modeled by a ∗-mixing model,
whereby the occurrence of any two packet drops can be
considered approximately “independent” as they are suffi-
ciently far apart from each other. We defined (absolutely)
upper and lower a.s. stabilities of the considered filtering
systems. We established a zero–one law of upper and lower
a.s. stabilities for general LTI systems, which makes the upper
and lower a.s. instabilities meaningful definitions, and when
the filtering system is one–step observable, we showed that
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the absolutely upper and lower a.s. stabilities can also be
interpreted using a zero–one law. To answer the “zero or one”
question, we presented stability conditions for general LTI
systems. When the system is one–step observable, it was
further shown that absolutely a.s. stability is equivalent to
a.s. stability, both of which are guaranteed by a necessary and
sufficient condition in terms of packet arrival rates. Finally,
for the so–called non–degenerate systems, a necessary and
sufficient upper a.s. stability condition was given.
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