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Learning Optimal Scheduling Policy for Remote State Estimation
Under Uncertain Channel Condition

Shuang Wu, Xiaoqiang Ren, Qing-Shan Jia, Karl Henrik Johansson, Ling Shi

Abstract—We consider optimal sensor scheduling with un-
known communication channel statistics. We formulate two types
of scheduling problems with the communication rate being a
soft or hard constraint, respectively. We first present some
structural results on the optimal scheduling policy using dynamic
programming and assuming that the channel statistics is known.
We prove that the Q-factor is monotonic and submodular,
which leads to threshold-like structures in both problems. Then
we develop a stochastic approximation and parameter learning
frameworks to deal with the two scheduling problems with
unknown channel statistics. We utilize their structures to design
specialized learning algorithms. We prove the convergence of
these algorithms. Performance improvement compared with the
standard Q-learning algorithm is shown through numerical
examples, which also discuss an alternative method based on
recursive estimation of the channel quality.

Index Terms—State estimation, scheduling, threshold struc-
ture, learning algorithm.

I. INTRODUCTION

The development of precision manufacturing enables mas-
sive production of small-sized wireless sensors. These sensors
are deployed to collect data and transmit information for
monitoring, feedback control and decision making [1]. As the
sensor nodes are often battery powered and the communication
channel is shared by a large amount of devices, it is critical
to optimize the transmission schedule of the sensors to sys-
tematically tradeoff the system performance with the sensor
communication overhead [2].

In the last few decades, numerous studies have been dedi-
cated to optimize the communication rate v.s. the estimation
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error of sensor nodes [3]–[9]. The general scheduling prob-
lems impose significant computation challenges due to its
combinatorial nature. Sensor scheduling problems, however,
usually possesses special structures and computation overhead
can be reduced. One common idea is that the sensor only
transmits when the recently obtained information is important
with respect to a certain criterion. For example, the work in [5],
[9] chose the criterion to be the certain norms of the innovation
of a Kalman filter. The work in [6], [7] chose the criterion to
be the variance of the estimation error.

The literatures in sensor scheduling can be categorized
according to whether the underling communication channel is
idealized [7]–[9], lossy [3]–[6] or noisy [10]. The assumption
of idealized channel condition ignores the underlying commu-
nication channel and simplifies the scheduling policy design.
The design of the optimal transmission protocol for a non-ideal
channel treats the channel as a part of the whole system and
requires information of the communication channel conditions.
The packet dropout process is often treated as Bernoulli
process or a two-state Markov chain, while the channel noise
is treated as an additive Gaussian white noise. Based on the
channel model and its parameters, the optimal scheduling
policy can be derived. However, acquiring information of the
channel condition may be costly or even impossible [11].

This paper considers optimal sensor scheduling over a
packet-dropping channel with packet dropout rate unknown.
We consider two scenarios. In the first scenario, the commu-
nication is costly. In the second scenario, there is an explicit
communication rate constraint. We first prove monotonicity
and submodularity of the Q-factor for these two types of
problems, which leads to threshold-like structures in the op-
timal scheduling policy. We then design iterative algorithms
to obtain the optimal solution without knowing the packet
dropout rate. The major contribution of this work is as follows.

1) We show threshold-like structures (Theorems 1 and 2) of
the optimal policy in the considered sensor scheduling
problems. Specifically, the optimal policy for the costly
communication problem (Problem 1) is a threshold policy
and the optimal policy for the constrained communication
problem (Problem 2) is a randomized threshold policy.
These results are significant for scheduling problems as
they leads to easy implementations and they have been re-
ported in other papers under different setups (Discussions
are in Section III. In this work, we further utilize these
properties to improve the standard Q-learning algorithm.

2) We develop iterative algorithms based on stochastic ap-
proximation and parameter estimation, and compare them
in the two different types of scheduling problems. Based
on the structure of the Q-factor, we devise structural
learning methods, which impose the transient Q-factor
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to satisfy certain properties (Theorem 3). In addition, we
develop a synchronous learning algorithm by utilizing
the fact that the randomness of the state transition is
independent of the particular state. By using that the opti-
mal scheduling policy of the constrained communication
problem can be written in a closed form, we show that
an adaptive control method can be directly used to obtain
the optimal scheduling policy (Theorem 5).

In this work, we consider optimal scheduling with unknown
channel conditions. We aim to adapt the scheduling policy
to the real-time estimate of the channel condition. To yield
an accurate estimate fo the channel condition, it is necessary
to utilize the history of transmission successes and failures
to determine the scheduling policy. An intuitive method is to
compute the optimal scheduling policy based on the estimate
of the channel condition, which is obtained by keeping track
of some sufficient statistics of the channel state. By taking
the scheduling decision as control actions and the remote
state estimation error as system states, the optimal scheduling
problem can be formulated as an optimal control problem.
The computation of the optimal control law usually involves
solving a Bellman optimality equation [12], which is computa-
tionally intense. In this work, we develop iterative algorithms
which are relatively easy to implement and reduce significant
computation overhead compared with the intuitive method.

There are two main streams of research in the area of
optimal control of unknown dynamic systems. One stream,
termed as reinforcement learning [13]–[15], combines the
stochastic approximation and dynamic programming to iter-
atively solve the Bellman optimality equation. The basic idea
is to iteratively “learn” the value of each control decision at
each state and take control actions based on the “learned”
values. The major drawback is that every state-action pairs are
required to be visited comparably often so that the estimate of
the value of the state-action pairs are accurate. The transient
performance may not be desirable as suboptimal actions are
taken to estimate the values.

The other stream uses an adaptive control approach which
combines the parameter estimation and the optimal control.
Under certain conditions, the “certainty equivalence” holds,
which implies a separation between parameter estimation and
the optimal control. It is then optimal to take the parameter
estimate as its actual value and take control actions based on
the estimated parameters [16]–[18]. A major problem with the
adaptive control is that computing the optimal control for a
given parameter is computationally intense. We illustrate this
with a numerical example in Section V. In this work, we utilize
structures of the optimal policy to reduce the computation
burden.

Both the reinforcement learning and the adaptive control
frameworks guarantee that the iterative process converges to
the optimal control policy under certain conditions. However,
these works are quite generic. In specific problems, the special
structure may be used to improve the transient performance.
The sensor scheduling problem in this work possesses some
structures in the optimal policy. We devise a learning scheme
which takes advantage of these structures to improve transient
performance and reduce computation overhead.

Process Sensor
y(k) Packet

Feedback

a(k)

Estimator
x̂(k)x̂local(k)

Drop

Fig. 1: System architecture.

The remainder of this paper is organized as follows. In
section II, we provide the mathematical model of the sensor
scheduling problem and two related optimization problems.
In section III, we use a dynamic programming approach to
show structural results. In section IV, we present two learning
frameworks to solve the optimal scheduling policy when the
channel condition is unknown. We summarize the paper in
section V. Proofs are given in the appendix.

Notations: The bold symbol letter stands for a vector which
aggregates all its components, e.g., x = [x1, . . . , xn]>. For
a matrix X , ρ(X), X> and Tr(X) stands for the spectral
radius of the matrix, the matrix transpose and the trace of the
matrix. The operation [x]X denotes the projection of vector x
into the constrained set X . The probability and the conditional
probability are denoted by Pr(·) and Pr(·|·), respectively. The
expectation of a random variable is E[·]. The set of nonnegative
integers are represented by N.

II. PROBLEM SETUP

A. System Model

The architecture of the system is depicted in Fig. 1. We
consider the following LTI process.

x(k + 1) = Ax(k) + w(k),

y(k) = Cx(k) + v(k),

where x(k) ∈ Rn is the state of the process at time k and
y(k) ∈ Rm is the noisy measurement taken by the sensor. We
assume, at each time k, that the state disturbance noise w(k),
the measurement noise v(k), and the initial state x(0) are mu-
tually independent random variables, which follow Gaussian
distributions as w(k) ∼ N (0,Σw), v(k) ∼ N (0,Σv), and
x(0) ∼ N (0,Π). We assume that the covariance matrices Σw
and Π are positive semidefinite, and Σv is positive definite. We
assume that the pair (A,C) is detectable and that (A,

√
Σw)

is stabilizable.
The sensor measures the process states and computes its

local state estimates x̂local(k) using a Kalman filter. After
that, the sensor decides whether it should or not transmit the
estimate through the packet-dropping communication channel
to a remote state estimator. We use a(k) = 1 to denote
transmitting local estimate x̂local(k + 1) at time k + 1 and
a(k) = 0 to denote no transmission. Let η(k) = 1 denote that
the packet is successfully received by the remote estimator at
time k and η(k) = 0 otherwise. The successful transmissions
are assumed to be independent and identically distributed as

Pr(η(k + 1)|a(k) = 1) =


rs, if η(k + 1) = 1,

1− rs, if η(k + 1) = 0,

0, otherwise.
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Meanwhile, it is straightforward that Pr(η(k+ 1) = 0|a(k) =
0) = 1.

The remote state estimator will either synchronize the re-
mote state estimate with the local state estimate if the updated
data is received, or use process dynamics to predict the state
if no data is received. We assume that the local state estimate
of the Kalman filter is in steady state. Define the remote state
estimate as

x̂(k) = E[x(k)|η(0), η(0)x̂local(0), . . . , η(k), η(k)x̂local(k)].

The mean square estimation error covariance of the remote
estimator at time k, which is defined as

P (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))>|
η(0), η(0)x̂local(0), . . . , η(k), η(k)x̂local(k)],

can be computed as follows:

P (k) =

{
P , if η(k) = 1,

AP (k)A> + Σw, if η(k) = 0,

where P is the steady state of the state estimation error
covariance of the Kalman filter.

The remote estimator will feed back a one-bit signal to the
sensor to acknowledge its successful reception of the packet.
The information of the remote state estimate available to the
sensor for transmission decision is

τ(k) = min{0 ≤ t ≤ k : η(k − t) = 1},

which is the time elapsed since the last successful transmis-
sion. The temporal relation among a(k), η(k) and τ(k) is
illustrated in Fig. 2. Notice that τ(k) and η(k) are equivalent

k k + 1 Time

τ(k) τ(k + 1)

η(k) η(k + 1)a(k)

Fig. 2: Relation among state τ(k), action a(k) and transmis-
sion result η(k).

in the sense that both of them can be used to compute the
estimation error covariance at the remote estimator, which can
be written as

P (k) ={
P , τ(k) = 0,

Aτ(k)P (A>)τ(k) +
∑τ(k)−1
t=0 AtΣw(A>)t, τ(k) ≥ 1.

(1)

An admissible scheduling policy f = {fk}∞k=0 is a sequence
of mappings from τ0:k and a0:k−1 to the transmission decision,
i.e.,

a(k) = fk(τ0:k, a0:k−1),

where τ0:k and a0:k−1 stand for τ(0), . . . , τ(k) and
a(0), . . . , a(k − 1), respectively. Denote F as the set of
all admissible policies, i.e., policies that are measurable by
τ0:k, a0:k−1.

B. Performance Metrics and Problem Formulation

Given a scheduling policy f = {fk}∞k=0, we define the
expected average estimation error covariance of the remote
estimator and the expected transmission rate. We use Ef to
denote the expectation under the scheduling policy f . The
expected average estimation error covariance is

Je(f) = lim sup
T→∞

1

T
Ef
[ T−1∑
k=0

Tr(P (k)))|P (0) = P
]
,

and the expected average transmission rate is

Jr(f) = lim sup
T→∞

1

T
Ef
[ T−1∑
k=0

a(k)|P (0) = P
]
.

We are interested in two optimization problems for these
performance metrics.

Problem 1 (Costly Communication) Given the communica-
tion cost for one transmission λ, solving the following mini-
mization problem on the total cost:

inf
f∈F

Je(f) + λJr(f).

Problem 2 (Constrained Communication) Given a commu-
nication budget b, solving the following constrained minimiza-
tion problem:

inf
f∈F:Jr(f)≤b

Je(f).

Remark 1 The two problems are closely related. According
to [19, Sec 11.4], if a policy f? is a solution to Problem 2, then
there exists a Lagrangian multiplier λ? such that f? minimizes
Je(f)+λ?(Jr(f)−b), which means that f? minimizes Je(f)+
λ?Jr(f), i.e., f? is a solution to Problem 1 with λ = λ?.
However, even if λ? is known beforehand, an optimal policy of
Problem 1 may not be an optimal policy for the corresponding
Problem 2. As it will later be shown, optimal policy of Problem
1 can be found in the set of deterministic policies while optimal
policies of Problem 2 are randomized in general.

We assume for the main results of this paper that the channel
condition rs is unknown. When rs is known, Problems 1
and 2 can be solved via dynamic programming [8], [9] or
linear programming. Here, we cannot directly use the classical
methods. We instead use a learning-based method. Dynamic
programming approach is used to find some structures in the
optimal scheduling policies. By utilizing the structures, we can
accelerate the learning process.

A naive method to solve the problems is to iterate between
estimating rs and solving the corresponding mathematical
programming. However, the optimization problem then needs
to be solved at each time step, which is computationally
intense. In this work instead, we find a simple iterative method,
which does not incur much computation overhead compared
to the naive method.
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III. OPTIMAL SCHEDULING POLICY WITH KNOWN
CHANNEL CONDITION

Before proceeding to the learning approach, we establish
some structural results for the Problems 1 and 2 when assum-
ing rs is known. We reformulate the original two problems
using Markov decision process (MDP). The costly communi-
cation problem can be directly formulated as an MDP, while
the constrained communication problem is a constrained MDP
(coMDP). We will show the connection between these models.

Some of the results (e.g., Theorems 1 and 2) are similar
to those in the literatures. The setup in [8], [9], [20] is
different from ours. Leong et al. [21] showed the optimality
of a threshold policy for the costly communication problem
(Problem 1), but no results were developed for the constrained
communication problem (Problem 2). In addition, they showed
threshold property by studying the relative value function
instead of the Q-factor as we do in this work. To enable the
structural learning procedure developed in the next section, we
need to establish the monotonicity and submodularity of the
Q-factor.

A. Costly Communication

An MDP (S,A,P, c) consists of the state space S, the action
space A, the state transition probability P , and one stage cost
c. In our formulation, the state space consists of all the possible
τ(k) = τ ∈ N. The action space consists of the transmission
decision a = a(k) ∈ {0, 1}. If action a is taken when the
current state is τ , the state in the next time step will transit to
τ+ according to the state transition probability

Pr(τ+|τ, a) =


rs, if τ+ = 0 and a = 1,

1− rs, if τ+ = τ + 1 and a = 1,

1, if τ+ = τ + 1 and a = 0,

0, otherwise.

The one stage cost is

c(τ, a) = Tr(P (τ)) + λa,

where we use P (τ) to emphasize that the estimation error
can be determined by τ from (1). A policy corresponds to
the scheduling policy f := {fk}∞k=0, which maps the history
τ0:k, a0:k−1 to the action space, i.e., fk(τ0:k, a0:k−1) = a(k).
By the Markovian property of the state transitions, it suffices
to consider Markovian policies, the decision of which only
depends on the current state. Therefore, we only need to
consider the policies of the form of a(k) = fk(τ(k)).

The costly communication problem is compatible with the
MDP model described above and its solution can be obtained
by solving the following problem

inf
f∈FM

lim sup
T→∞

1

T + 1
E
[ T∑
k=0

c(τ(k), a(k))|τ(0) = 0
]
, (2)

where FM is the set of all Markovian policies. Moreover,
the optimal policy can be found in the set of all stationary
policies FS , i.e., FS = {f : fk = fk+1,∀k ≥ 0}, if a stability
condition holds.

Lemma 1 If ρ2(A)(1 − rs) < 1, there exists a stationary
policy f? ∈ FS such that a = f?(τ) solves the Bellman
optimality equation:

V (τ) = min
a∈A

[
c(τ, a) +

∑
τ+

V (τ+)Pr(τ+|τ, a)− J ?
]
, (3)

where J ? is the optimal value of the trace of the average
estimation error.

The stationary solution of the unconstrained MDP (2)
can be obtained by solving the Bellman optimality equation
with respect to (w.r.t.) a constant J ? and the relative value
function V (τ). The optimal policy is to choose the action that
minimizes the right hand side of (3):

f(τ) = arg min
a∈A

[
c(τ, a) +

∑
τ+

V (τ+)Pr(τ+|τ, a)− J ?
]
.

We denote the value function of a state-action pair as

Q(τ, a) = c(τ, a) +
∑
τ ′

V (τ ′)Pr(τ ′|τ, a)− J ?.

Note that V (τ ′) = mina∈AQ(τ ′, a). We rewrite (3) as

Q(τ, a) = c(τ, a) +
∑
τ ′

min
u∈A

Q(τ ′, u)Pr(τ ′|τ, a)− J ?. (4)

We can develop the following structural results for the V -
function and the Q-factor.

Lemma 2 (Monotonicity) V (τ) ≥ V (τ ′), ∀τ ≥ τ ′.

Lemma 3 (Monotonicity) Q(τ, a) ≥ Q(τ ′, a), ∀τ ≥ τ ′.

Lemma 4 (Submodularity) Q(τ, a)−Q(τ, a′) ≤ Q(τ ′, a)−
Q(τ ′, a′), ∀τ ≥ τ ′, a ≥ a′.

Thanks to monotonicity and submodularity, we have the
threshold structure on the optimal policy for Problem 11.

Theorem 1 (Costly communication) The optimal policy f?

for Problem 1 with known channel condition rs is of threshold
type, i.e., there exists a constant θ? ∈ S such that

f?(τ) =

{
0, if τ < θ?,

1, if τ ≥ θ?.

Since the optimal policy f? is of threshold type, we use the
threshold θ to represent a policy when there is no ambiguity.

Remark 2 Although similar results are available in liter-
atures, either the setup is different [8], [9], [20], or the
results are obtained by imposing additional assumptions [22].
Moreover, to our best knowledge, the structure of the Q-factor
(monotonicity and submodularity) that is revealed in this work
is the first of its kind in the field of sensor scheduling.

1A similar result was also reported in [21]. We present it here for
completeness and facilitate presentation of the structural learning as we
utilized the monotonicity and submodularity of the Q-factor.
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B. Constrained Communication

The state space, action space and the transition probability
of Problem 2 is the same as those of Problem 1. Nevertheless,
two types of one stage cost are involved in the constrained
communication problem ce(τ, a) = Tr(P (τ)) and cr(τ, a) =
a. Problem 2 can be formulated as a constrained MDP as

inf
f∈F

lim sup
T→∞

1

T + 1
E
[ T∑
k=0

ce(τ(k), a(k))|τ(0) = 0
]

s.t. lim sup
T→∞

1

T + 1
E
[ T∑
k=0

cr(τ(k), a(k))|τ(0) = 0
]
≤ b.

We use the Lagrangian multiplier approach to convert the
constrained problem to the following saddle point problem

inf
f∈F

sup
λ≥0

lim sup
T→∞

1

T + 1
E
[ T∑
k=0

ce(τ(k), a(k))|τ(0) = 0
]

+λ
(

lim sup
T→∞

1

T + 1
E
[ T∑
k=0

cr(τ(k), a(k))|τ(0) = 0
]
− b

)
.

(5)

As the one-stage cost is bounded below and monotonically
increasing, the above problem possesses a solution [23, The-
orem 12.8]. If we relax Problem 2 by fixing λ, (5) reduces to
Problem 1. Moreover, as the saddle point problem possesses
a solution, there exists a λ? such that the value of (5) with
λ = λ? is the same as the value of the constrained problem
(Remark 1).

The following lemma constitutes a necessary condition for
a policy to be optimal.

Lemma 5 If a scheduling policy f ∈ F solves Problem 2, it
must satisfy Jr(f) = b.

From [23], we know that as long as the constrained MDP
is feasible, the optimal policy randomizes between at most
m + 1 deterministic policies, where m is the number of
constraints. Problem 1 has no constraints, the optimal policy
is deterministic. Problem 2 has one constraint, so the optimal
policy randomizes between at most two deterministic policies.

Theorem 2 (Constrained communication) The optimal pol-
icy f? for Problem 2 with known channel condition rs is
of Bernoulli randomized threshold type, i.e., there exist two
constants θ? ∈ S and 0 ≤ rθ? ≤ 1 such that

f?(τ) =


0, if τ < θ?,

0, with probability 1− rθ? , if τ = θ?,

1, with probability rθ? , if τ = θ?,

1, if τ > θ?,

where rθ? and θ? satisfy

lim sup
T→∞

1

T
E
[ T−1∑
k=0

f?(τ(k))
]

= b.

We see that the optimal policy for the Problem 2 only
depends on the communication budget b and the channel
condition rs. These relations are summarized in the following
corollary.

Corollary 1 The optimal threshold θ? for Problem 1 and
randomization parameter rθ? are given by

θ? = b 1

rsb
− 1

rs
c, rθ? = θ? + 1 +

b− 1

brs
,

where b·c denotes the floor function.

IV. OPTIMAL SCHEDULING POLICY WITH UNCERTAIN
CHANNEL CONDITION

The optimal scheduling policy can be obtained if the Q-
factor is solved by (4). If the channel condition is not
known beforehand, we cannot use classical solution tech-
niques to solve the Bellman optimality equation. We propose
two learning-based frameworks, stochastic approximation and
parameter learning, to adaptively obtain the optimal policy
without knowing the channel statistics a priori.

The stochastic approximation framework yields an iterative
method to find a solution of the Bellman optimality equation.
The optimal scheduling policy can be directly obtained from
the Q-factor. The Bellman optimality equation (4) has a
countable infinite state-space and cannot be solved directly.
A finite-state approximation is needed. We restrict the largest
state to be M , and any states larger than M are treated as
M . The optimal action on such states is to transmit the local
estimate. As the optimal policy is a threshold-type, the optimal
scheduling policy can be captured by solving a finite state
approximation as long as M is large enough. In other words,
there exists an M > 0 such that the optimal policy of any
finite state approximation with |S| ≥ M is the same as the
optimal policy of the original model. In practice, we have to
set a maximal interval between two transmissions for a sensor
to avoid the sensor being always idle. The number M can be
set as the maximal interval. In the sequel, we denote S′ as the
truncated state space.

In parameter learning method, we continuously estimate the
channel condition based on the scheduling results and com-
pute the corresponding optimal scheduling policy by taking
the estimated channel condition as the actual condition. As
we have proven that the optimal policy for Problem 2 can
be analytically computed, this method is more suitable for
Problem 2.

In the following two sections, we discuss the stochastic
approximation method for Problem 1 and 2. The parameter
learning method is treated in a third section. Note that since the
sensor is aware that whether a transmission succeeds through
the feedback acknowledgment from the remote state estimator.
The learning algorithm is thus done at the sensor.

A. Problem 1 with Stochastic Approximation

At each time step k, an action a(k) is selected for state τ
in an ε-greedy pattern as

a(k) =

{
arg minuQk(τ, u), with probaility 1− ε,
any action, with probaility ε,
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where ε > 0 is a randomization parameter2 We then observe
that the state transits to τ(k+ 1) = τ ′. The iterative update of
the Q-factor is

Qk+1(τ(k), a(k)) = Qk(τ(k), a(k))+

α(νk(τ(k), a(k)))
[
c(τ(k), a(k)) + min

u∈A
Qk(τ(k + 1), u)

−Qk(τ(k), a(k))−Qk(τ0, a0)
]
, (6)

where (τ0, a0) is a fixed reference state-action pair, which can
be arbitrarily chosen. The step size α(n) satisfies3

∞∑
n=0

α(n) =∞,
∞∑
n=0

[α(n)]2 <∞,

and in (6) this step size depends on νk(τ, a) =∑k
n=0 1[(τ(n), a(n)) = (τ, a)], which is the number of times

that the state-action pair (τ, a) has been visited.
The above scheme is proven to converge [24], but the

convergence rate is slow in practice. One reason is that
the scheme is asynchronous as only one state-action pair is
updated at each time step. We propose two improvements for
this scheme by updating as many state-action pairs as possible.
We denote them structured learning and synchronous update.

Remark 3 The asynchronous algorithm does not converge to
the actual Q-value under transition probability Pr(τ+|τ, a)
but a perturbed one as follows

P̃r(τ+|τ, a) = (1− ε)Pr(τ+|τ, a) +
ε

|A|
∑
u∈A

Pr(τ+|τ, a).

This scheme is suboptimal. A smaller ε leads to a more
accurate learning result but slows down the learning rate. The
synchronous scheme, which will be introduced later, however,
guarantees that the Q-value converges to its actual value as
ε can be set to zero.

Remark 4 In addition to the randomization parameter ε, the
truncation parameter M and the stepsizes α also affects the
learning process. A greater M leads to a higher accuracy.
As we mentioned in the beginning of this section, the com-
munication rate of a sensor should be above certain values.
When M is large enough so that the optimal threshold is
below M , the size M has very little effects on the accuracy.
In light of transient behavior, big stepsizes lead to severe
oscillation while small stepsizes lead to slow convergence rate.
In practice, stepsizes of the form α(k) = c

(1+k)a , where c is a
constant and 0.5 < a ≤ 1, can be selected to tradeoff between
fast convergence rate and small oscillations.

Structural learning. The first improvement is based on
the structural results proven in the previous section. We can
infer the unvisited state-action pair by using the monotonicity
and the submodularity structure on the Q-factor. From this
information, the Q-factor is closer to the solution of the
Bellman optimality equation.

2The randomness is necessary because every state-action pairs should be
visited with infinite number of times to guarantee convergence.

3Examples of such α(·) > 0 include 1/np with 0.5 < p ≤ 1, log(n)/n
and 1/[n log(n)].

Submodularity of the Q-factor gives

Q(τ, 1)−Q(τ, 0)−Q(τ + 1, 1) +Q(τ + 1, 0) ≥ 0, τ ∈ S′.
(7)

Stack the Q-factor for all state-action pair as a vector

Q =
[
Q(0, 0), Q(0, 1), . . . , Q(M, 0), Q(M, 1)

]>
We can then write (7) as TsQ ≥ 0, where

Ts =


−1 1 1 −1 0 0 . . .
0 0 −1 1 1 −1 . . .

...
. . . 0 0 −1 1 1 −1


M×2(M+1)

and the inequality is performed element-wisely. Similarly, we
can use the monotonicity constraint Q(τ +1, a)−Q(τ, a) ≥ 0
for all τ to write TmQ ≥ 0, where

Tm =


−1 0 1 0 0 . . .
0 −1 0 1 0 . . .

. . . . . .
. . . 0 −1 0 1


2M×2(M+1)

The two constraints can be compactly written as TQ ≥ 0.
Suppose there is a function g(Q) such that its gradient with

respect to Q(·, ·) fulfills

∇Qg =
[
c(τ, a) +

∑
Pr(τ ′|τ, a) min

u∈A
Q(τ ′, u)

−Q(τ, a)−Q(τ0, a0)
]
. (8)

This iterative learning scheme is a gradient ascent algorithm
for the maximization problem

max
Q

g(Q).

In the Q-learning algorithm, the expectation term in (8) is
replaced with its noisy sample minu∈AQk(τ(k + 1), u). We
take the noisy sample of (τ(k), a(k)) component of ∇Qg, i.e.,
∇Qg(τ(k),a(k)) +Nk, where

N(k) =
[
c(τ(k), a(k)) + min

u∈A
Q(τ(k + 1), u)

−Q(τ(k), a(k))−Q(τ0, a0)
]
−∇Qg(τ(k),a(k)).

Imposing the monotonicity and submodularity constraints
on this optimization problem gives

max
Q

g(Q)

s.t. TQ ≥ 0.

For this problem, we consider the following primal-dual algo-
rithm

Qk+1(τ(k), a(k)) = Qk(τ(k), a(k)) + α(ν(τ(k), a(k)))

×
[
∇Qg(τ(k),a(k)) +Nk + [T>µk](τ(k),a(k))

]
, (9)

µk+1 = µk − α(k)TQk, (10)

where [T>µk](τ,a) corresponds to component (τ, a) of T>µk.
This algorithm converges to the solution of the Bellman
optimality equation as stated in the following theorem.
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Theorem 3 The structured Q-learning (9)-(10) converges to
a solution of (4) with probability 1.

Remark 5 Standard Q-learning uses the sample average to
estimate the Q-factor. One sample is used to update one state-
action pair. Our proposed method utilizes the monotonicity and
submodularity of the Q-factor. This fully utilizes the samples,
and potentially increases the convergence performance.

Synchronous update. The second improvement is updating
synchronously. In most cases, the synchronous update is
not applicable for stochastic approximation-based real-time
optimal control. In our problem, however, the randomness of
the state transition is independent of the state. We can run
a parallel virtual model with the actual model. The virtual
model keeps track of the Q-factor and the actual model
takes actions according to the Q-factor stored in the virtual
model. Every time after the actual model transmits, we either
observe successful transmission or failure. If the transmission
is successful, the Q-factor is updated as

Qk+1(τ, 1) =Qk(τ, 1) + α

(
k∑

n=0

a(n)

)[
c(τ, 1) + min

u∈A
Qk(0, u)

−Qk(τ, 1)−Qk(τ0, a0)
]
, τ ∈ S′. (11)

If the transmission fails, the Q-factor is updated as

Qk+1(τ, 1) = Qk(τ, 1) + α

(
k∑

n=0

a(n)

)[
c(τ, 1)

+ min
u∈A

Qk(τ + 1, u)−Qk(τ, 1)−Qk(τ0, a0)
]
τ ∈ S′. (12)

For a = 0, the Q-factor is updated as

Qk+1(τ, 0) = Qk(τ, 0) + α

(
k −

k∑
n=0

a(n)

)[
c(τ, 0)

+ min
u∈A

Qk(τ + 1, u)−Qk(τ, 0)−Qk(τ0, a0)
]
τ ∈ S′. (13)

To summarize, the update of the Q-factor can be written as

Qk+1(τ, a) = Qk(τ, a) + α(i)
[
c(τ, a) + min

u∈A
Qk(τ ′, u)

−Qk(τ, a)−Qk(τ0, a0)
]
, τ ∈ S′, a ∈ A, (14)

where the next state τ ′ can be determined according to whether
the transmission succeeds or not and the parameter i in α(i)
is

i =

{∑k
n=0 a(n), if a(k) = 1,

k −
∑k
n=0 a(n), if a(k) = 0.

With this improvement, the randomness in the action selection
is not necessary because every state-action pair is now updated
simultaneously (Remark 3).

As the synchronous version is a standard Q-learning algo-
rithm satisfying the assumptions made in [24], its convergence
automatically holds.

Remark 6 The structural learning we introduce above can
also be used for the synchronous version as the source of

noise and the associated limiting ordinary differential equation
(ODE) are the same.

Remark 7 The randomization parameter ε can be set to
zero for the synchronous algorithm. Therefore, the Q-factor
converges under the synchronous algorithm to the actual
value of the model with original probability transition law
Pr(τ ′|τ, a). From the Bellman optimality equation, we can see
that the average cost is a continuous function of the Q-factor.
By the continuous mapping theorem [25, Theorem 3.2.4], the
average cost also converges to the optimal one.

B. Problem 2 with Stochastic Approximation

From the structural results for Problem 2, we know that, for
each communication budget b, there exists a λ?(b) such that
the optimal total cost with communication cost being λ?(b)
for Problem 1 equals to the optimal average estimation error
under communication budget b plus λ?(b)b. We use a gradient-
based update for the communication cost to obtain λ?(b) as
follows

λk+1 =λk + β(k)
(
a(n)− b

)
, (15)

where β(k) is the step size at time k. From previous analysis,
we know that the optimal randomized policy for Problem 2
is also an optimal policy for Problem 1 with communication
cost being λ?(b).

Combing (14)-(15)4, the iterative learning algorithm for the
Problem 2 is

Qk+1(τ, a) =Qk(τ, a) + α[
k∑

n=0

a(n)]
[
cλk

(τ, a) + min
u∈A

Qk(τ ′, u)

−Qk(τ, a)−Qk(τ0, a0)
]
, τ ∈ S′, a ∈ A,

λk+1 =λk + β(k)
(
a(k)− b

)
,

where the subscript λk in cλk
(·, ·) is used to emphasize the

dependence of the one stage cost on the communication cost.
The step sizes α(·) and β(·) satisfy∑

n

α(n) =
∑
n

β(n) =∞,
∑
n

(α(n))2 + (β(n))2 <∞,

(16)

and lim
n→∞

β(n)

α(n)
= 0. (17)

The last requirement imposes that that the communication
cost λ is updated in a slower time scale. This is called a quasi-
static condition because the updates of λ seem “static” when
Q is updating. By using either the standard asynchronous Q-
learning or its improved version discussed before, for every
“static” cost λ, the vector Q converges to the corresponding
solution of the Bellman optimality equation (4). Consequently,
the scheduling policy will also converge to the optimal one. If
the algorithm over the slower time scale also converges, the
two-time scale algorithm converges. This result is stated in the
following theorem.

4Such combination is also applicable for the original asynchronous version
and the structural learning. Convergence analysis of these are the same.
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Theorem 4 The two-time scale Q-learning (14)-(15) con-
verges with probability 1. The asymptotic communication cost
λ∞ = λ? and the Q-factor are the solutions to the Bellman
optimality equation

Q(τ, a) = c(τ, a) +
∑
τ+

min
a∈A

Q(τ+, a)Pr(τ+|τ, a)− J ?,

with c(τ, a) = Tr(P (τ)) + λ?a. The optimal policy f(λ?)
satisfies Jr(f(λ?)) = b.

C. Problem 1 and Problem 2 with Parameter Learning

The stochastic approximation method iteratively updates
the Q-factor. In the sensor scheduling problem, only the
transmission success probability is unknown. If we can sample
the channel condition infinitely many times, the empirical
success probability converges to the actual success probability
almost surely by the strong law of large numbers. Based
on this observation, we develop the direct learning schemes
for Problems 1 and 2, respectively. Different from previous
sections, we discuss Problem 2 first.

1) Problem 2: Thanks to Theorem 2, the optimal policy
in this case only depends on the channel condition rs and the
communication budget b. Once we know the channel condition
rs, the optimal threshold θ? and switching probability rθ? can
be analytically computed as shown in Corollary 1. We propose
the following learning method. Let Ns(k) and Nf (k) denote
the number of successful transmission and failed transmission
at time k. The maximum likelihood estimate of rs is

r̂s(k) =
Ns(k)

Ns(k) +Nf (k)
. (18)

We use r̂s instead of rs to determine the corresponding optimal
scheduling policy as

θ?(r̂s(k)) = b 1

r̂s(k)b
− 1

r̂s(k)
c, (19)

rθ?(r̂s(k)) = θ?(r̂s(k)) + 1 +
b− 1

br̂s(k)
. (20)

If r̂s = 0, the corresponding threshold is defined to
be infinity. This can be avoided through proper initializa-
tion. In the initialization phase, we keep transmitting until
Ns(k) = 1. After that, we use the randomized threshold policy
(θ?(r̂s(k)), rθ?(r̂s(k))) to determine the scheduling policy
while learning rs.

This scheme separates the parameter estimation and the
optimal control problem. Its convergence is immediate.

Theorem 5 The schedule policy, which uses (18)-(20) con-
verges almost surely to the optimal policy. Moreover, also
the average estimation error converges to the optimal average
estimation error almost surely.

2) Problem 1: In this case, the estimation of rs and its
initialization remains the same as in Problem 2. As shown
before, there is no analytic expression for the optimal policy
in Problem 1. For every given channel condition estimate
r̂s(k), we need to solve the Bellman optimality equation. As
the initialization guarantees that r̂s(k) will not be zero, the
corresponding policy is a finite-threshold policy, which ensures
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Fig. 3: Q-factor in the learning process for Problem 1.

Time k

0 1000 2000 3000 4000 5000E
m

pi
ric

al
 A

ve
ra

ge
 E

st
im

at
io

n 
E

rr
or

0

10

20

30

40
asyn
stru asyn
syn
stru syn
actual est. error

Fig. 4: Average estimation error in Problem 1.

that the trial does not stop. However, the computation overhead
is large as the Bellman optimality equation needs to be solved
at each time step. We present a numerical example to illustrate
the computational issue in this scenario.

Remark 8 To summarize this section, the parameter learning
method is suitable for Problem 2. Meanwhile, the stochastic
approximation causes less computation overhead than the
parameter learning method for Problem 1.

V. NUMERICAL EXAMPLE

In this section, we illustrate the convergence of our algo-
rithms with a specific example. We consider the following
system:

x(k + 1) =

[
1.2 1
0 0.8

]
x(k) + w(k), y(k) = x(k) + v(k),

where

E[w(k)w(k)>] =

[
1 0
0 1

]
,E[v(k)v(k)>] =

[
1 0
0 1

]
.

The successful transmission rate is rs = 0.7.
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Fig. 6: Average estimation error in Problem 2.

We first consider the Problem 1. We set the communication
cost to be λ = 20 per transmission. We compare four algo-
rithms: the original asynchronous algorithm (6), the structure-
based asynchronous algorithm in (9)-(10), the synchronous
algorithm (14) and the structure-based synchronous algorithm
(a combination of the structural learning and the synchronous
algorithm). The learning processes of all algorithms converge
as shown in Fig. 3. The label nt (nnt) stands for transmit
(not transmit) when τ = n. We can see that the Q-factor
in the original asynchronous algorithm does not satisfy the
monotonicity condition. By comparing (a) and (b), we can
see that the structure-based learning ensures monotonicity and
submodularity of the Q-factor. The average cost, which is the
empirical sum of the time average of the estimation error
and the average communication cost, is shown in Fig. 4.
The computation detail of the empirical estimation error and
the empirical communication rate at time k is available in
online version [27]. For comparison, we also provide the true
value of cost. We can see that all four algorithms converge
to the true value. As the structure-based learning imposes
the monotonicity and the submodularity of the Q-factor, the
average estimation error in the structure-based asynchronous
version converges to the true value faster than the basic
asynchronous version. Moreover, the synchronous algorithms
have much faster convergence rate than the asynchronous ones
as expected.

We then consider the Problem 2. We set the desired
communication rate to be b = 0.4. In addition to the four
algorithms compared for Problem 1, we include the parameter-
based learning algorithm in (18)-(20). We show the results
of the communication rate and the average cost in Figs. 5
and 6. The empirical value of the communication rate and
the average estimation error are computed in the same way as
before. It can be seen that the four stochastic approximation-
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Fig. 7: The learning method is adaptive to time-varying
channel condition.
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Fig. 8: Average estimation error of three scheduling policies.

based algorithms have comparable performances in terms of
the communication rate. Moreover, their empirical average
estimation errors are comparable to that of the direct parameter
learning method.

We next illustrate the effectiveness of the learning method
for a time-varying channel. We consider Problem 1 and set
the communication cost to be λ = 10 per transmission. The
channel condition is initially good with a successful transmis-
sion rate being rs = 0.9. At iteration time step k = 2500,
the successful transmission rate decreases to rs = 0.6. We
compare the transient performance of the synchronous struc-
tured learning method with the performance under constantly
“good” or “bad” conditions. Figs. 7 and 8 show that the
learning method is adaptive to time-varying channel conditions
as the empirical communication rate and the empirical average
estimation error converge to the optimal value. The computa-
tion of the empirical values of the communication rate and the
average estimation error is computed using a sliding window
(details available in online version [27]). The solid blue lines
are the adaptive learning method, while the solid red line and
the dotted orange line are under “good” and “bad” channel
conditions, respectively. Note that as the entropy of a Bernoulli
random variable with mean being 0.6 is greater than that with
mean being 0.9, the empirical average estimation error under
bad channel has a greater fluctuation.

We mentioned in the introduction that adaptive control
methods can be computationally intense. We show how the
Q-learning-based methods outperform direct parameter learn-
ing. In particular, we consider the remote estimation of the
same dynamic process as previous examples for Problem 1.
We simultaneously run the synchronous Q-learning with the
parameter learning algorithm. In the parameter learning algo-
rithm, we first estimate rs based on the history of transmission
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success and failures, and then calculate the optimal policy of
the corresponding MDP using the relative value iteration. As
the relative value iteration fails to converge within finite time,
we forcefully stop the algorithm within 1, 5 and 50 iterations.
The time-averaged costs of each algorithm is presented in
Fig. 9. The label “MDP-x” stands for the parameter learning
method with x iterations at each time step. If only one
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Fig. 9: Performance comparison between the Q-learning and
the parameter learning. The label “MDP-x” stands for the
parameter learning method with x allowable iterations at each
time step.

iteration is allowed for the MDP algorithm at each time step,
the performance of the parameter learning is much worse
than the Q-learning. If the number of iterations increases,
the performance improves. The performance of the parameter
learning is close to the Q-learning for 50 iterations at each time
step. The computation overhead of the Q-learning is equivalent
to one iteration of the relative value iteration for MDP. In
this particular example, it costs approximately 50 times more
computation resources for the parameter learning method to
reach the same performance as that of the Q-learning.

VI. CONCLUSION

We considered scheduling for remote state estimation un-
der costly communication and constrained communication,
respectively. By using dynamic programming, we established
two frameworks to tackle the problems when the channel
condition is known. We utilized these results to develop
revised algorithms to improve the convergence of the standard
asynchronous stochastic approximation algorithm. In addition,
as the randomness of the state transition was observed to be
independent of the state, we developed a simple synchronous
algorithm for the costly communication problem. Although
the stochastic approximation method can be used for the
constrained communication problem, the parameter learning
method possesses faster convergence speed and is easier to
implement. For future work, the framework can be extended to
a general channel such as a Markovian channel and scheduling
multiple sensors.

APPENDIX

A. Proof of Lemma 1 and 2

The proof of Lemma 1 relies on the vanishing discount ap-
proach [26, Theorem 5.5.4]. Details are omitted and available
in online version [27].

Similar to the existence of an optimal stationary policy,
the proof of Lemma 2 relies on a discounted cost setup for
the same problem. For a constant 0 < γ < 1, we want to
minimize the discounted total cost

∑∞
k=0 γ

kE[c(τ(k), a(k))].
The optimal policy satisfies the Bellman optimality equation
for the discounted cost problem

Vγ(τ) = min
a∈A

[
c(τ, a) + γ

∑
τ+

Vγ(τ+)Pr(τ+|τ, a)
]
.

Note that the right hand side of the discounted Bellman
optimality equation is a mapping of Vγ(τ), τ ∈ S. Define such
mapping as the Bellman operator on Vγ(τ), τ ∈ S as

T (Vγ) = min
a∈A

[
c(τ, a) + γ

∑
τ+

Vγ(τ+)Pr(τ+|τ, a)
]
.

The discounted setup is considered here because the Bellman
operator Tγ for the discounted cost problem is a contraction
mapping w.r.t. to a norm (Details available in [27]). Since
there is a unique fixed point for a contraction mapping
iteration, which enables us to use an induction-based method
to prove the monotonicity of the discounted value function.
Moreover, as the six condition in Lemma 1 hold, we have
V (τ) = limγ↑1 Vγ(τ). The details are omitted due to space
limitation and are available in the online version [27].

B. Proof of Lemmas 3 and 4

1) Proof of Lemma 3: The monotonicity of the Q-factor
holds because

Q(τ, a)−Q(τ ′, a)

≥
∑
τ+

min
a∈A

Q(τ+, a)Pr(τ+|τ, a)−
∑
τ ′
+

min
a∈A

Q(τ ′+, a)Pr(τ ′+|τ ′, a)

=
∑
τ+

V (τ+)Pr(τ+|τ, a)−
∑
τ ′
+

V (τ ′+)Pr(τ ′+|τ ′, a) ≥ 0.

This completes the proof.
2) Proof of Lemma 4: Since a, a′ ∈ A = {0, 1}, let a = 1

and a′ = 0. We can compute that

Q(τ, 1)−Q(τ, 0)−Q(τ ′, 1) +Q(τ ′, 0)

= rs min
a∈A

Q(0, a) + (1− rs) min
a∈A

Q(τ + 1, a)−min
a∈A

Q(τ + 1, a)

− rs min
a∈A

Q(0, a)− (1− rs) min
a∈A

Q(τ ′ + 1, a) + min
a∈A

Q(τ ′ + 1, a)

= rs[min
a∈A

Q(τ ′ + 1, a)−min
a∈A

Q(τ + 1, a)]

= rs(V (τ ′ + 1)− V (τ + 1)) ≤ 0,

which completes the proof.

C. Proof of Theorem 1

This argument is equivalent to that, if Q(τ, 1) ≤ Q(τ, 0),
then Q(τ ′, 1) ≤ Q(τ ′, 0) for τ ≤ τ ′. Since V (τ+1) ≤ V (τ ′+
1), we obtain

Q(τ ′, 1)−Q(τ ′, 0) =λ+ rsV (0)− rsV (τ ′ + 1)

≤λ+ rsV (0)− rsV (τ + 1)

=Q(τ, 1)−Q(τ, 0) ≤ 0.

This completes the proof.



2325-5870 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2959162, IEEE
Transactions on Control of Network Systems

11

D. Proof of Lemma 5

As the problem is feasible in the sense that there exists
f ∈ F such that Jr(f) < b. The optimal solution (f?, λ?) to
the saddle point problem should satisfy

λ?(Jr(f
?)− b) = 0.

If λ? = 0, the optimal scheduling policy is always to transmit,
which violates the constraint Jr(f?) ≤ b. Therefore, λ 6= 0,
and Jr(f?) = b accordingly.

E. Proof of Theorem 2

The proof relies on concavity and continuity of J(θ, λ) :=
Je(θ) + λJr(θ) w.r.t. λ along with a sufficient optimality
condition of constrained optimization [28, Theorem 1, Sec
8.4]. Details are available online.

F. Proof of Corollary 1 and Theorem 3

Corollary 1 follows from straightforward computation. De-
tails are omitted and available in online version [27]. The proof
of Theorem 3 relies on stochastic approximation in [24], [29].
Details are available in online version.

G. Proof of Theorem 4

The theorem can be proven by showing that the two-time
scale iteration converges to the solution of the saddle point
problem in (5). This is equivalent to λ∞ ∈ arg maxλ Je(f

?)+
λJr(f

?) and f? ∈ arg minf Je(f
?) + λ?Jr(f

?), where f? is
the policy induced by Q∞(·, ·).

Similar to the stochastic approximation in one time scale,
the two-time scale approach converges to the constrained
communication problem if the two types of conditions in [30,
Theorem 3.4] holds. The first type relates to the noise and the
second type relates to the stability of the limit ODE. Based
on analysis in Problem 1, the remaining task is to check the
asymptotic stability of the ODE in the slower time scale.

A major difficulty lies in that the time average limit of
the right hand side of (15) is not an ODE but a differential
inclusion as

λ̇ ∈ Jr(λ)− b

as Jr(λ) is discontinuous at countably many λ. Nevertheless,
according to [31, Lemma 4.3], the limit ODE can be charac-
terized by the following ODE instead

λ̇(t) =
∂

∂λ
J?(λ(t)),

where J?(λ(t)) = inff Je(f) + λ(t)Jr(f). The inff can be
achieved as Q in the faster time scale converges according to
previous analysis. The trajectory of λ(t) is thus the solution
to the following integral equation

λ(t) = λ(0) +

∫ t

0

J?(λ(s)) ds.

This interpretation conquers the discontinuity problem as the
set of discontinuity has a zero measure. By the chain rule, the
trajectory of the total cost J?(t) satisfies

J̇?(t) =
∂

∂λ
J?(λ) · λ̇(t) = | ∂

∂λ
J?(λ)|2 > 0,

for almost all t except when λ(t) ∈ arg maxJ?(·). This proves
that λ(t) converges to arg maxJ?(·), i.e.,

Je(f
?) + λ∞(Jr(f

?)− b) = Je(f
?) + λ?(Jr(f

?)− b),

where λ? is the saddle point solution to (5) and

f?(τ) ∈ arg min
a

{
c(τ, a) +

∑
τ ′

min
u∈A

Q(τ ′, u)Pr(τ ′|τ, a)− J ?
}
.

This completes the proof.

H. Proof of Theorem 5

The proof relies on the continuous mapping theorem [25,
Theorem 3.2.4]. Details are available in online version.
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