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Abstract—This paper studies a co-design problem of control,
scheduling and routing over a multi-hop sensor and actuator
network subject to energy-saving consideration. Sensors are ob-
serving multiple independent linear systems and transmit their
data to actuators in which controllers are co-located. We formu-
late an optimization problem, minimizing a linear combination
of the averaged linear quadratic Gaussian control performance
and the averaged transmission energy consumption. Optimal
solutions are derived and their performance is illustrated in a
numerical example. Algorithms to reconfigure routing between
sensors and actuators in case of link disconnection are also
provided.

Index Terms—LQG control, wireless sensor and actuator
networks

I. INTRODUCTION

The control of process plants with wireless sensors and

actuators is of significant interest to process industries [1].

Process control over a wireless network offers advantages

through enhanced and massive sensing, flexible deployment

and operation, and more efficient maintenance. However,

since wireless sensors have usually no inexhaustible or re-

liable energy sources, energy limitation of wireless sensors

affect system performance. In this context, energy-aware

protocols, real-time algorithms as well as empirical studies

for optimizing the performance of wireless sensor networks

have been discussed in [2]–[4]. Furthermore, there are a

lot of theoretical results using event-triggering approach to

reduce communication and energy usage for state estimation

and control over wireless networks [5]–[8]. In [6], [7],

event-triggered state estimation where communications are

invoked based on estimation error covariance is proposed.

LQG control based on covariance triggering is discussed

in [8]. Under a related setup, [9], [10] consider sensor

scheduling for remote state estimation. In [9], the authors

study remote estimation of multiple linear systems where

at most one sensor can communicate with the remote esti-

mator at every time instance. In [10], a remote estimation

problem over a multi-hop wireless network is discussed.

However, despite the fact that a multi-hop wireless network

architecture is accepted in some industrial standards such

as wirelessHART [11], [12], it is still unclear how these

*This work was supported in part by the VINNOVA PiiA project “Advanc-
ing System Integration in Process Industry,” the Knut and Alice Wallenberg
Foundation, the Swedish Strategic Research Foundation, and the Swedish
Research Council.

Fig. 1. Process control over wireless sensor and actuator network

event-triggering and sensor scheduling frameworks affect the

performance of closed-loop systems. In this context, a co-

design problem of control, scheduling, routing over multi-

hop network are proposed [13], which minimizes L2 gain of

the error signal of the closed loop system with respect to a

step reference.

In this paper, we study LQG control of multiple discrete-

time linear systems with covariance-based triggering over

a multi-hop sensor and actuator network (Figure 1). Here,

sensors and actuators are distributed over a field and can

communicate with their sensor and actuator neighbourhoods.

We assume that the sensors and the actuators are smart

enough to carry out regular estimation and control. This

has been discussed as a future architecture for process au-

tomation [1]. In this system, each sensor communicates with

the corresponding controller co-located with the actuator. In

Figure 1, there are four plants (red, yellow, blue, and green)

which are controlled by each local control loop consisting

of a sensor and an actuator. To derive the LQG control

gains and sensor schedules, we formulate an optimization

problem which shows that the optimal solution is periodic.

This implies that one can automatically determine a sampling

time of the system, which otherwise is usually chosen by

a heuristic [14]. We also offer algorithms implemented in

the sensors and the actuators which can detect a network

link disconnection and reroute its path when other paths are

available.

The remainder of the paper is organized as follows. Sec-
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Fig. 2. System model

tion 2 describes the system including process and energy con-

sumption models, and formulates the optimization problem.

The optimal solution is discussed in Section 3. Algorithms for

route reconfiguration are offered in Section 4. A numerical

example is provided in Section 5. Section 6 presents the

conclusion.

Notation: Throughout this paper, N and R are the sets

of nonnegative integers and real numbers, respectively. The

set of n by n positive definite matrices over the field R
n×n

is denoted as S
n
++. For simplicity, we write X > Y where

X,Y ∈ S
n
++, if X − Y ∈ S

n
++.

II. PROBLEM FORMULATION

A. System model

A diagram of the system model is shown in Figure 2.

Consider N linear plants

x
(i)
k+1 = Aix

(i)
k +Biu

(i)
k + w

(i)
k , i ∈ N (1)

where x
(i)
k ∈ R

ni is the state vector at time k, u
(i)
k ∈ R

mi

is the input, w
(i)
k ∈ R

ni is zero-mean i.i.d. Gaussian noise

with covariance Wi, and N = {1, . . . , N} is the plant

index set, respectively. Each plant is monitored and controlled

by a sensor-actuator pair Ci = {si, ai}. The sensors have

measurements

y
(i)
k = Cix

(i)
k + v

(i)
k , i ∈ N (2)

where y
(i)
k ∈ R

pi is the output, and v
(i)
k ∈ R

pi is zero-

mean i.i.d. Gaussian noise with covariance Vi, respectively.

The pairs of N sensors and actuators are distributed over a

field and connected through an underlying communication

network denoted G = (V, E), where V =
⋃N

i=1 Ci is a

sensor and actuator node set, and E ⊆ V × V is a set of

communication links.

Define the information set available at sensor i at time k
as

I(i)s,k = {y(i)0 , . . . , y
(i)
k , u

(i)
0 , . . . , u

(i)
k−1, ν

(i)
0 , . . . , ν

(i)
k }

where ν
(i)
k ∈ {0, 1} is decision variable such that ν

(i)
k = 1

when the state estimate x̂
(i)
s,k|k is transmitted to actuator ai.

We assume that the transmission is carried out without failure

until a link is disconnected. To detect the disconnection,

decisions are made by each actuator and fed back to the

corresponding sensor. Note that actuators are not required

to transmit their decision at every time instance since the

transmission is perfect and then the sensors can emulate the

controllers.
The state estimate and the corresponding error covariance

at sensor i are given by

x̂
(i)
s,k|k−1 � E[x

(i)
k |I(i)s,k−1], x̂

(i)
s,k|k � E[x

(i)
k |I(i)s,k]

P
(i)
s,k|k−1 � E[(x

(i)
k − x̂

(i)
s,k|k−1)(x

(i)
k − x̂

(i)
s,k|k−1)

T|I(i)s,k−1]

P
(i)
s,k|k � E[(x

(i)
k − x̂

(i)
s,k|k)(x

(i)
k − x̂

(i)
s,k|k)

T|I(i)s,k].

In the same way, define the information set at actuator i at

time k as

I(i)a,k = {ν(i)0 , . . . , ν
(i)
k , ν

(i)
0 x̂

(i)
s,0|0, . . . , ν

(i)
k x̂

(i)
s,k|k,

u
(i)
0 , . . . , u

(i)
k−1, }

and the state estimate and the error covariance

x̂
(i)
a,k|k−1 � E[x

(i)
k |I(i)a,k−1], x̂

(i)
a,k|k � E[x

(i)
k |I(i)a,k]

P
(i)
a,k|k−1 � E[(x

(i)
k − x̂

(i)
a,k|k−1)(x

(i)
k − x̂

(i)
a,k|k−1)

T|I(i)a,k−1]

P
(i)
a,k|k � E[(x

(i)
k − x̂

(i)
a,k|k)(x

(i)
k − x̂

(i)
a,k|k)

T|I(i)a,k].

B. Energy consumption
We introduce the energy consumption model used in [15],

[16]. For data receiving and sending, a node consumes its

energy

ER = Eelecf, ES = Eelecf + Eampd
2f,

respectively, where f [bit] is an amount of data receiving or

sending and d is a distance to a downstream node. Note that

the energy consumption for sending depends on the link used.

Denote θ
(i)
k ((j, l)) : E → {0, 1} as the indicator function

whether the data of sensor i is sent through link (j, l) at

time k. If link (j, l) is used, then θ
(i)
k ((j, l)) = 1, otherwise

0. Then the energy consumption of node j ∈ V at time k is

given by

Ej,k =
∑

l:(l,j)∈E

[
Eelec

∑
i∈N

ciθ
(i)
k ((j, l))

]

+
∑

l:(j,l)∈E

[
(Eelec + Eampd

2
jl)

∑
i∈N

ciθ
(i)
k ((j, l))

]
(3)

where ci [bit] is a constant amount of data transmitted from

sensor i to actuator i. It is reasonable to assume that data

flow is conserved such that for all i ∈ N and k > 0:∑
l:(j,l)∈E

θ
(i)
k ((j, l))−

∑
l:(l,j)∈E

θ
(i)
k ((j, l)) = 0, if j �= si, ai,

(4a)∑
l:(j,l)∈E

θ
(i)
k ((j, l))−

∑
l:(l,j)∈E

θ
(i)
k ((j, l)) = ν

(l)
k , if j = si,

(4b)∑
l:(j,l)∈E

θ
(i)
k ((j, l))−

∑
l:(l,j)∈E

θ
(i)
k ((j, l)) = −ν(l)k , if j = ai,

(4c)
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in order to guarantee that sensor data can reach the corre-

sponding actuator.

C. Optimization problem

We formulate an optimization problem as LQG control

with network node energy consumption to find the optimal

feedback control, scheduling and routing. The problem is

given by

min
{νk,uk,θk}

lim sup
T→∞

1

T

T−1∑
k=0

[
N∑
i=1

(x
(i)T
k Qix

(i)
k

+ u
(i)T
k Riu

(i)
k ) +

∑
j∈V

βjEj,k

]
(5a)

s.t. (4), i ∈ N (5b)

with a weight factor βi > 0, where νk = [ν
(1)
k , . . . , ν

(N)
k ]T,

uk = [u
(1)T
k , . . . , u

(N)T
k ]T, and θk = [θ

(1)T
k , . . . , θ

(N)T
k ]T

with θ
(i)
k = [. . . , θ

(i)
k ((j, l)), . . .]T ∈ {0, 1}|E|. Note that

there is no controller which can access all the variables {νk},
{uk}, and {θk}, but we will show in the next section that the

optimal solution can be found by distributed optimization at

each controller without loss of performance.

III. OPTIMAL CONTROLLER AND SCHEDULER

In this section, we discuss the optimality of problem (5).

By equation (3), the last term of (5a) can be rewritten as∑
j∈V

βjEj,k =
∑
i∈N

[ ∑
(j,l)∈E

(βjEelec + βlEelec

+ βjEampd
2
jl)ciθ

(i)
k ((j, l))

]
�

∑
i∈N

[ ∑
(j,l)∈E

αjlciθ
(i)
k ((j, l))

]
�

∑
i∈N

E
(i)
k (6)

where E
(i)
k is a weighted total energy consumption for loop

i transmission. Now, we have the following theorem.

Theorem 3.1: The optimal solution to problem (5) is

obtained by solving the distributed optimization problem:

min
{ν(i)

k ,u
(i)
k ,θ

(i)
k }

lim sup
T→∞

1

T

T−1∑
k=0

[
x
(i)T
k Qix

(i)
k

+ u
(i)T
k Riu

(i)
k + ν

(i)
k Ẽi

]
(7)

where Ẽi is the minimum-cost path for loop i when ν
(i)
k = 1,

i.e., Ẽi is the optimal value of the problem:

Ẽi � min
θ
(i)
k

πTθ
(i)
k s.t. (4) (8)

where π = [. . . , πjl, . . .]
T ∈ R

|E| is given by πjl = αjlci.
Proof: Using (6), the objective function (5a) is equiva-

lent to the sum of the function

lim sup
T→∞

1

T

T−1∑
k=0

[
x
(i)T
k Qix

(i)
k + u

(i)T
k Riu

(i)
k + E

(i)
k

]

up to i = 1, . . . , N . Since E
(i)
k is only a function of θ

(i)
k , and

x
(i)
k and u

(i)
k are not affected by θ

(i)
k , we can take any θ

(i)
k

provided that (4) is satisfied. Thus, the optimal value of E
(i)
k

when ν
(i)
k = 1 can be obtained by solving problem (8).

By Theorem 3.1, distributed optimization can achieve the

optimality of problem (5).

Remark 3.2: Problem (8) is the shortest path problem

which can be solved by polynomial-time algorithms [17].

The transmission paths are pre-calculated before starting the

operation.

Remark 3.3: Problem (7) is a special case in [8] where the

energy consumption is determined by problem (8) and where

there is no packet drop.

To see the optimal solution of the distributed optimization

problem (7), we state the following theorem.

Theorem 3.4: There exists a stationary solution to (7), and

the solution {u(i)∗
k } is given by

u
(i)∗
k = −(BT

i SiBi +Ri)
−1BT

i SiAix̂
(i)
a,k|k � L

(i)
i x̂

(i)
a,k|k

(9)

with

x̂
(i)
a,k|k =

{
Aix̂

(i)
a,k−1|k−1 +Biu

(i)
k−1, if ν

(i)
k = 0

x̂
(i)
s,k|k if ν

(i)
k = 1,

(10)

P
(i)
a,k|k =

{
AiP

(i)
a,k−1|k−1A

T
i +Wi, if ν

(i)
k = 0

P̄i, if ν
(i)
k = 1,

(11)

where Si ∈ S
n
++ is a solution of the Riccati equation

Si = AT
i SiAi +Qi −AT

i SiBi(B
T
i SiBi +Ri)

−1BT
i SiAi

and P̄i ∈ S
n
++ is a steady state of the error covariance at

sensor i given by the standard Kalman filter. In addition, the

stationary solution {ν(i)∗k } is given by a threshold policy

ν
(i)∗
k =

{
0, if P

(i)
a,k−1|k−1 < P ∗i

1, otherwise,
(12)

where P ∗i ∈ S
n
++ is the threshold matrix.

Proof: Follows from the proof of Theorem 3 in [8]. This

is a special case when γk = 1 in [8].

Remark 3.5: The controller (9) is a certainty equivalence

controller and is optimal thanks to side-information available

according to the control architecture in Figure 2 [18].

Remark 3.6: The schedule of ν
(i)∗
k converges to the pe-

riodic solution when Ai is unstable. This follows from the

fact that there exists ti ∈ N such that f ti
i (P̄i) = P ∗i where

fi(X) � AiXAT
i +Wi which is calculated numerically. See

[7]. As in [7], [8], the optimal cost of problem (7) is given

by

tr
(
SiQi

)
+

1

ti + 1

[
tr
(
(AT

i SiAi+Wi−Si)

ti∑
j=0

f j(P̄i)
)
+Ẽi

]
.

IV. LINK DISCONNECTION AND ROUTE

RECONFIGURATION

A controller recognizes a link disconnection when it fails

to receive the new data from the sensor despite that ν
(i)∗
k = 1.

In this case, the path is reconfigured by searching a new
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one. Let Pi = {p(i)1 , . . . , p
(i)
j , . . . , p

(i)
Mi
} be a set of possi-

ble paths form si to ai where p
(i)
j =

(
(si, ·), . . . , (·, ai)

)
is the jth minimum-cost path. Furthermore, let Mi =

{P (i)∗
1 , . . . , P

(i)∗
Mi
} be the set of threshold matrices induced

by each path. The sets Pi and Mi are assumed to be pre-set

in si and ai. Algorithms 1 and 2 provide the implementation

of the proposed controller, scheduling, and routing recon-

figuration. In the algorithms, if the controller detects a link

disconnection, it changes its path to the second best one. If

no other paths are available, the control loop goes to fail safe

mode.

Algorithm 1 Iterative algorithm for smart sensor i

Calculate x̂
(i)
s,k|k

if ν(i)k = 1 then
Send x̂

(i)
s,k|k along path p

(i)
j

end if
if New pj+l received then

Calculate P
(i)
a,k|k = f l(P

(i)
a,k−1|k−1)

Set a new path p
(i)
j+l and a threshold P

(i)∗
j+l

else
Calculate P

(i)
a,k|k by (11)

end if
Calculate ν

(i)
k+1 by (12)

k ← k + 1

Algorithm 2 Iterative algorithm for smart actuator i

if ν(i)k = 1 and x̂
(i)
s,k|k not received then

Calculate x̂
(i)
a,k|k = Aix̂

(i)
a,k−1|k−1 +Biu

(i)
k−1

Calculate P
(i)
a,k|k = f(P

(i)
a,k−1|k−1)

if j = Mi then
Go to fail safe mode

else
Set a new path p

(i)
j+1 a threshold P

(i)∗
j+l

Send new path p
(i)
j+1 along a backward route of p

(i)
j+1

end if
else

Calculate x̂
(i)
a,k|k by (10)

Calculate P
(i)
a,k|k by (11)

end if
Calculate u

(i)
k by (9)

Calculate ν
(i)
k+1 by (12)

k ← k + 1

V. NUMERICAL EXAMPLE

To illustrate our results, we consider a small network with

N = 3 where sensors and actuators are distributed over a

square field shown in Figure 3. The system parameters of

the three plants are given by

A1 =

[
1.3 0.5
0.2 0.9

]
, A2 =

[
1.2 0
0 1.4

]
, A3 =

[
1.3 1.2
0 1

]
,

Fig. 3. Network with three sensor and actuator pairs over a field

Fig. 4. The minimum-cost path for each loop before disconnection (left)
and after disconnection (right)

Bi = [1 2]T, and Ci = [1 1] for all i = 1, 2, 3. Furthermore,

we have Wi = 0.01I , Vi = 1, Qi = I , and Ri = 1
for all i. For communication parameters, we assume that

ci = 4 and βi = 5 for i = 1, 2, 3, and Eelec = Eamp = 1.

Under the given network, we can derive the minimum-cost

path for each control loop as in Figure 4 (left). The optimal

schedules are shown in Figure 5. We see that the solutions

are periodic as stated in Remark 3.6. Sensor s1 transmits

its new estimate every eighth time instance, sensor s2 every

fourth time instance, and sensor s3 every fifth time instance,

Fig. 5. Optimal schedules of three loops
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Proposed method Every-time Communication

Averaged cost 0.861 · 104 3.022 · 104
TABLE I

COMPARISON OF AVERAGED COST BETWEEN THE PROPOSED METHOD

AND THE EVERY-TIME COMMUNICATION CASE

Fig. 6. Optimal schedule of loop 2 around rerouting at k = 300

respectively. The difference of the periods among the loops

comes from the relation of the eigenvalues of Ai and the

energy costs for transmission. The optimal averaged cost of

the proposed method is shown in Table I compared with the

case that when all the sensors communicate with the actuators

at every time instance. We find that the proposed method

obtains much lower cost than the every-time transmission

case.

We also simulate the case that the link between s2 and a3 is

disconnected at time k = 300 which leads to reroute the path

between s2 and a2 to the second best path s2 → s1 → a3 →
a1 (Figure 4 (right)). The optimal schedule of loop 2 obtained

by Algorithms 1 and 2 is indicated in Figure 6. Since it leads

to more energy consumption, the period of loop 2 becomes

five which is longer than the period before the disconnection.

The averaged energy consumptions of sensors and actuators

are shown in Figure 7. We found that the averaged energy

consumption of s1 increases after k = 50, since it is used as

new intermediate node for loop 2.

Fig. 7. Averaged energy consumption for sensor and actuator communica-
tion

VI. CONCLUSION

In this paper, we investigated the co-design framework of

LQG control, sensor scheduling, and routing over a multi-

hop sensor and actuator network by formulating the optimal

problem which minimizes the infinite time averaged LQG

control performance and energy consumption. We also pro-

posed the algorithms for sensors and actuators to configure a

new path when a link is disconnected. Possible future works

will focus on the cases that communications have channel

fading, delay and constraints regarding specific protocols

such as wirelessHART.
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