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Abstract. The design of optimal disturbance accommodation and servomechanism controllers
with limited plant model information is studied in this paper. We consider discrete-time linear
time-invariant systems that are fully actuated and composed of scalar subsystems, each of which
is controlled separately and influenced by a scalar disturbance. Each disturbance is assumed to be
generated by a system with known dynamics and unknown initial conditions. We restrict ourselves
to control design methods that produce structured dynamic state feedback controllers where each
subcontroller, at least, has access to the state measurements of those subsystems that can affect
its corresponding subsystem. The performance of such control design methods is compared using
a metric called the competitive ratio, which is the worst-case ratio of the cost of a given control
design strategy to the cost of the optimal control design with full model information. We find an
explicit minimizer of the competitive ratio and show that it is undominated, that is, there is no other
control design strategy that performs better for all possible plants while having the same worst-case
ratio. This optimal controller can be separated into a static feedback law and a dynamic disturbance
observer. For step disturbances, it is shown that this structure corresponds to proportional-integral
control.
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plete information, large-scale system
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1. Introduction. Advances in networked control systems have created new
opportunities and challenges in controlling large-scale systems composed of several
interacting subsystems. An example of a networked control system is shown in
Figure 1.1. For such networked systems, many researchers have considered the prob-
lem of decentralized or distributed stabilization or optimal control as well as the effect
of communication channel limitations on closed-loop performance [2, 32, 20, 24, 18,
33, 21, 23, 28, 26, 30, 31, 25, 10]. However, at the heart of all these control methods
lies the (sometimes implicit) assumption that the designer has access to the global
plant model information when designing a local controller. In contrast, the broad
goal of this paper, which continues our work started in [16, 7, 9, 6], is to consider dis-
tributed control design problems where the full plant model is not globally available.
In the next subsection, we discuss why such a situation might be at hand.

1.1. Motivation. There are several reasons why global plant model information
may not be available in practice and why a control designer may be constrained to
compute local controllers for a large-scale systems in a distributed manner with access
to only a limited or partial model of the plant. For example, (i) the designer wants
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1544 F. FAROKHI, C. LANGBORT, AND K. H. JOHANSSON

Fig. 1.1. Illustrative example of a networked control system where Pi denotes the subsystems
to be controlled and Ci denotes the controllers. The interactions between the subsystems and the
controllers as well as the external disturbances and references are indicated by arrows.

the parameters of each local controller to depend only on local model information,
so that the controllers do not need to be modified if the model parameters of a
particular subsystem, which is not directly connected to them, change; (ii) the design
of each local controller is done by a designer with no access to the global model
of a plant since at the time of design the complete plant model information is not
available or might change later in the design process; or (iii) different subsystems
belong to different individuals who refuse to share their model information since they
consider it private. These situations are very common in practice. For instance,
a chemical plant in process industry can have thousands of proportional-integral-
derivative controllers. These processes well illustrate case (i), as the tuning of each
local controller does not typically involve model information from other control loops
in order to simplify the maintenance and limit the controller complexity. Case (ii) is
typical for cooperative driving such as vehicle platooning, where each vehicle has its
own local (cruise) controller which cannot be designed based on model information of
all possible vehicles that it may cooperate with in future traffic scenarios. Case (iii)
can be illustrated by the control of the power grid, where economic incentives might
limit the exchange of network model information across regional borders. Motivated
by these important applications, we have started investigating the concept of limited
model information control design for large-scale systems [16, 7, 9, 6]. We briefly survey
these studies in the next subsection.

1.2. Previous studies. The limitations of linear quadratic design under limited
model information for a class of interconnected linear time-invariant dynamical sys-
tems composed of scalar subsystems was studied in [16]. The authors introduced the
competitive ratio as a metric for comparing control design strategies (i.e., mappings
from the set of plants of interest to the set of applicable controllers) with various
degrees of access to model information. The competitive ratio was simply defined as
the worst-case ratio of the cost of a given control design strategy to the cost of the
optimal control design with full model information. Showing that there is no control
design strategy with a bounded competitive ratio when relying on local model in-
formation for a continuous-time system, they concentrated on discrete-time systems.
Then, they proved that the static deadbeat control design strategy attains the min-
imum competitive ratio among all strategies that use only local model information
when designing a local controller. To distinguish between multiple possible minimiz-
ers of the competitive ratio, they introduced domination as a partial order on the set
of limited model information control design strategies. They proved that the static
deadbeat control design strategy is undominated, that is, there is no other control de-
sign strategy in the set of all limited model information design strategies with a better
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closed-loop performance for all possible plants while maintaining the same worst-case
ratio.

This result was later extended to structured discrete-time fully actuated linear
time-invariant dynamical systems when the plant graph (i.e., directed graph that cap-
tures the interconnection pattern between different subsystems) contains no sink [7, 9].
In these studies, the set of applicable controllers was considered to be the set of struc-
tured static state feedback controllers. The structure of the controllers was captured
using a control graph (i.e., directed graph that illustrates the state-measurement avail-
ability in subcontrollers) which was assumed to be a supergraph of the plant graph.
In [7, 9], it was shown that the static deadbeat control design strategy is an undom-
inated minimizer of the competitive ratio when the plant graph contains no sink.
However, the design could be improved when the plant graph contains a sink. The
choice of static controllers in these studies was justified, at first, by being the simplest
case to explore [16, 7, 9] and then, maybe more surprisingly, by the recently proven
fact that the best (in the sense of competitive ratio and domination) state feedback
structured H2-controller for a plant with lower triangular information pattern that
can be designed with limited model information is in fact static [6]. This is true even
though the best such controller constructed with access to full model information is of
course dynamic [28, 26]. In this paper, we study the problem of limited model infor-
mation control design for optimal disturbance accommodation and servomechanism
and show that contrary to the situations mentioned above, the best limited model
information design method gives dynamic controllers. Optimal disturbance accom-
modation is a meaningful model for problems such as step disturbance rejection or
step reference tracking and has been well-studied in the literature [27, 3, 12, 34, 1, 13],
although with no attention paid to the model information limitations in the design
procedure.

1.3. Main contributions. In this paper, we consider limited model informa-
tion control design for interconnection of scalar discrete-time linear time-invariant
subsystems being affected by scalar decoupled disturbances with a quadratic sepa-
rable performance criterion. In each subsystem, the disturbance model is assumed
to be known, while its initial condition is unknown [13]. The motivation for such a
cost function is given in the servomechanism and disturbance accommodation liter-
ature [27, 3, 12, 34, 1, 13] and also stems from our interest in dynamically-coupled
but cost-decoupled plants and their applications in supply chains and shared infras-
tructure [5, 19]. The assumptions on scalar subsystems and scalar disturbances are
introduced to make the proofs shorter. Since we want each subsystem to be directly
controllable (so that designing subcontrollers based on only local model information is
possible), we assume that the overall system is fully actuated (i.e., the same number
of inputs as the state dimension). The results of this paper can be generalized to
fully-actuated subsystems of arbitrary order. However, the generalization to under-
actuated subsystems is nontrivial, as explained in detail in Remark 2.1. Note that we
can also see this new model as a generalization of the problem formulation in [7, 9, 6]
to under-actuated subsystems, since each subsystem can be considered as an aggrega-
tion of the original subsystem with its corresponding disturbance dynamics; however,
only one of the states is in this case directly controlled and observed.

Our study in this paper starts with the case where each subcontroller is de-
signed with the corresponding subsystem’s information only. We prove that the so-
called dynamic deadbeat control design strategy is an undominated minimizer of the
competitive ratio when the plant graph contains no sink and the control graph is a
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1546 F. FAROKHI, C. LANGBORT, AND K. H. JOHANSSON

supergraph of the plant graph. The fact that the dynamic deadbeat control design
strategy is a minimizer of the competitive ratio is proved in Theorem 4.3 and the
fact that it is undominated is proved in (the “if” part of) Theorem 4.4. For any fixed
plant, the controller constructed by the dynamic deadbeat control design strategy can
be separated into a static feedback law and a dynamic disturbance observer. For step
disturbances, it is shown that this structure corresponds to a proportional-integral
controller. However, the dynamic deadbeat control design strategy is dominated when
the plant graph contains sinks. This is proved in (the “only if” part of) Theorem 4.4.
We present an undominated limited model information control design method that
takes advantage of the knowledge of the sinks’ location to achieve a better closed-loop
performance. We prove that this newly defined control design strategy is an undom-
inated minimizer of the competitive ratio in Theorems 4.6 and 4.7. In Theorem 4.5,
we further show that this control design strategy has the same competitive ratio as
the dynamic deadbeat control design strategy. Later, in Theorem 5.1, we character-
ize the amount of model information needed to achieve a better competitive ratio
than the dynamic deadbeat control design strategy. The amount of information is
captured using the design graph (i.e., directed graph which indicates the dependency
of each subcontroller on different parts of the global dynamical model). It turns out
that to achieve a better competitive ratio than the dynamic deadbeat control design
strategy, each subsystem’s controller should, at least, have access to the model of all
those subsystems that can affect it.

1.4. Paper outline. This paper is organized as follows. We formulate the prob-
lem and define the performance metric in section 2. In section 3, we introduce two
specific control design strategies and study their properties. We characterize the best
limited model information control design method as a function of the subsystem in-
terconnection pattern in section 4. In section 5, we study the influence of the amount
of the information available to each subsystem on the quality of the controllers that
they can produce. We discuss special cases of step disturbance rejection, step ref-
erence tracking, and proportional-integral control in section 6. Finally, we end with
conclusions in section 7.

1.5. Notation. The sets of real numbers and complex numbers are denoted by
R and C, respectively. All other sets are denoted by calligraphic letters, such as P
and A. Particularly, the letter R denotes the set of proper real rational functions.

Matrices are denoted by capital roman letters such as A. Aj will denote the jth
row of A. Aij denotes a submatrix of matrix A, the dimension and the position of
which will be defined in the text. The entry in the ith row and the jth column of the
matrix A is aij .

Let Sn
++ (Sn

+) be the set of symmetric positive-definite (positive-semidefinite)
matrices in Rn×n. A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive-
definite (positive-semidefinite) and A > (≥)B means that A−B > (≥)0.

σ(Y ) and σ(Y ) denote the smallest and the largest singular values of the matrix
Y , respectively. Vector ei denotes the column vector with all entries zero except
the ith entry, which is equal to one.

All graphs considered in this paper are directed, possibly with self-loops, with
vertex set {1, . . . , q} for some positive integer q. If G = ({1, . . . , q}, E) is a directed
graph, we say that i is a sink if there does not exist j �= i such that (i, j) ∈ E. The
adjacency matrix S ∈ {0, 1}q×q of graph G is a matrix whose entries are defined as
sij = 1 if (j, i) ∈ E and sij = 0 otherwise. Since the set of vertices is fixed for all
considered graphs, a subgraph of a graph G is a graph whose edge set is a subset of
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the edge set of G and a supergraph of a graph G is a graph of which G is a subgraph.
We use the notation G′ ⊇ G to indicate that G′ is a supergraph of G.

2. Mathematical formulation.

2.1. Plant model. We are interested in discrete-time linear time-invariant dy-
namical systems described by

(2.1) x(k + 1) = Ax(k) + B(u(k) + w(k)), x(0) = x0,

where x(k) ∈ Rn is the state vector, u(k) ∈ Rn is the control input, w(k) ∈ Rn is the
disturbance vector, and A ∈ R

n×n and B ∈ R
n×n are appropriate model matrices.

Furthermore, we assume that the dynamic disturbance can be modeled as

(2.2) w(k + 1) = Dw(k), w(0) = w0,

where w0 ∈ Rn is unknown to the controller (and the control designer). Let a plant
graph GP with adjacency matrix SP be given. We define the following set of matrices:

A(SP ) = {Ā ∈ R
n×n | āij = 0 for all 1 ≤ i, j ≤ n such that (sP)ij = 0}.

Also, let us define

(2.3) B(ε) = {B̄ ∈ R
n×n | σ(B̄) ≥ ε, b̄ij = 0 for all 1 ≤ i �= j ≤ n}

for some given scalar ε > 0 and

D = {D̄ ∈ R
n×n | d̄ij = 0 for all 1 ≤ i �= j ≤ n}.

Now, we can introduce the set of plants of interest P as the set of all discrete-time
linear time-invariant systems (2.1)–(2.2) with A ∈ A(SP ), B ∈ B(ε), D ∈ D, x0 ∈ Rn,
and w0 ∈ R

n. With a slight abuse of notation, we will henceforth identify a plant
P ∈ P with its corresponding tuple (A,B,D, x0, w0).

The variables xi ∈ R, ui ∈ R, and wi ∈ R are the state, input, and disturbance
of scalar subsystem i whose dynamics are given by

xi(k + 1) =

n∑
j=1

aijxj(k) + bii(ui(k) + wi(k)),

wi(k + 1) = diiwi(k).

We call GP the plant graph since it illustrates the interconnection structure between
different subsystems, that is, subsystem j can affect subsystem i only if (j, i) ∈ EP .
Note that we assume that the global system is fully actuated, i.e., all the matrices
B ∈ B(ε) are square invertible matrices. This assumption is motivated by the fact that
we need all subsystems to be directly controllable. Moreover, we make the standing
assumption that the plant graph GP contains no isolated node. There is no loss of
generality in assuming that there is no isolated node in the plant graph GP , since it
is always possible to design a controller for an isolated subsystem without any model
information about the other subsystems and without influencing the overall system
performance. Note that, in particular, this implies that there are q ≥ 2 vertices in
the graph because for q = 1 the only subsystem that exists is an isolated node in the
plant graph.
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1548 F. FAROKHI, C. LANGBORT, AND K. H. JOHANSSON

Remark 2.1. In this paper, we consider plants that are composed of scalar subsys-
tems. Although this situation is admittedly restrictive, scalar subsystems can span
a moderately rich family of physical or engineered systems (see [29, 11, 22, 4, 17]
and references therein). In addition, the techniques and results presented here can
be generalized to fully-actuated subsystems of arbitrary order. As will become clear
later in Lemma 4.2, when dealing with fully actuated subsystems the designer should
decouple the subsystems that are not a sink in the plant graph from the rest of the
system. This can be intuitively justified since these subsystems should avoid affecting
sensitive parts of the plant to achieve a bounded competitive ratio.

Remark 2.2. The special assumptions on the system and the disturbance in (2.1)–
(2.2) enable us to estimate the initial condition of the disturbance using

(2.4) wi(0) =
1

bii

⎡
⎣xi(1)− biiui(0)−

n∑
j=1

aijxj(0)

⎤
⎦ ,

which is called the deadbeat observer, since it recovers the initial condition in just one
time-step. Now that for each 1 ≤ i ≤ n, subsystem i has access to wi(0), it can easily
cancel the effect of the disturbance by subtracting the terms dkiiw(0) from its planned
actuation input at each time-step k. However, note that the problem of designing
an optimal disturbance accommodation controller is a joint observer-controller design
problem because one can always recover wi(0) using (2.4) irrespective of the value
of ui(0), but by applying an erroneous ui(0) the competitive ratio would become
infinite. In next section, through Lemma 4.2, we prove that given the control action
u(0) = −B−1(A+D)x(0), the deadbeat observer introduced in (2.4) is the best control
design strategy (in terms of competitive ratio and domination).

Remark 2.3. Because B ∈ B(ε) is an invertible matrix, we can always rewrite the
system dynamics so that u(k) and w(k) affect the system through the same matrix B
as in (2.1). Note that even if B is not invertible, as long as the designer aims at
stabilizing the origin (i.e., limk→∞ x(k) = 0), it is no restriction to assume that u(k)
and w(k) influence the system through the same B-matrix. It easily follows from
considering the system

x(k + 1) = Ax(k) +Bu(k) + Ew(k), x(0) = x0.

To achieve limk→∞ x(k) = 0, it has to hold that limk→∞ Bu(k) + Ew(k) = 0. When
limk→∞ w(k) �= 0, this condition is satisfied if and only if there exists a matrix M
such that E = BM [1]. Defining w̄(k) = Mw(k), we get

x(k + 1) = Ax(k) +Bu(k) +Bw̄(k), x(0) = x0.

Because we do not restrict D in (2.2) to be stable, we thus have to make the assump-
tion that E ∈ image(B) as described above.

Figure 2.1(a) shows an example of a plant graph GP . Each node represents a
subsystem of the system. For instance, the second subsystem in this example affects
the first subsystem, and the third subsystem, that is, submatrices A12 and A32 can
be nonzero. Note that the first subsystem in Figure 2.1(a) represents a sink of GP .
The plant graph G′

P in Figure 2.1(a′) has no sink.

2.2. Controller model. The control laws of interest in this paper are discrete-
time linear time-invariant dynamic state feedback control laws of the form

xK(k + 1) = AKxK(k) +BKx(k), xK(0) = 0,(2.5)

u(k) = CKxK(k) +DKx(k).(2.6)
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Fig. 2.1. GP and G′
P are examples of plant graphs, GK and G′

K are examples of control graphs,
and GC and G′

C are examples of design graphs.

Each controller can also be represented by a transfer function

K �
[

AK BK

CK DK

]
= CK(zI −AK)−1BK +DK ,

where z is the symbol for the one time-step forward shift operator. Let a control
graph GK with adjacency matrix SK be given. Each controller K belongs to

K(SK) = {K ∈ Rn×n | kij = 0 for all 1 ≤ i, j ≤ n such that (sK)ij = 0}.

When the adjacency matrix SK is not relevant or can be deduced from context, we
refer to the set of controllers as K. Since it makes sense for each subcontroller to
use at least its corresponding subsystem state measurements, we make the standing
assumption that in each design graph GK, all the self-loops are present.

An example of a control graph GK is given in Figure 2.1(b). Each node represents
a subsystem-controller pair of the overall system. For instance, GK shows that the
first subcontroller can use state measurements of the second subsystem beside its
corresponding subsystem state measurements. Figure 2.1(b′) shows a complete control
graph G′

K. This control graph indicates that each subcontroller has access to full state
measurements of all subsystems, that is, K(SK) = Rn×n.

2.3. Control design methods. A control design method Γ is a map from the
set of plants P to the set of controllers K. Any control design method Γ has the form

(2.7) Γ =

⎡
⎢⎣

γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn

⎤
⎥⎦ ,

where each entry γij represents a map A(SP)× B(ε)×D → R.
Let a design graph GC with adjacency matrix SC be given. We say that Γ has

structure GC if for all i, subcontroller i is computed with knowledge of the plant model
of only those subsystems j such that (j, i) ∈ EC . Equivalently, Γ has structureGC if for
all i, the map Γi = [γi1 · · · γin] is only a function of {[aj1 · · · ajn], bjj , djj | (sC)ij �=
0}. When GC is not a complete graph, we refer to Γ ∈ C as being a “limited model
information control design method.” Since it makes sense for the designer of each
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subcontroller to have access to at least its corresponding subsystem model parameters,
we make the standing assumption that in each design graph GC , all the self-loops are
present.

The set of all control design strategies with structure GC will be denoted by C,
which is considered as a subset of all maps from A(SP)×B(ε)×D to K(SK) because
a design method with structure GC is not a function of the initial state x0 or the
initial disturbance w0. We use the notation Γ(A,B,D) instead of Γ(P ) for each plant
P = (A,B,D, x0, w0) ∈ P to emphasize this fact.

To simplify the notation, we assume that any control design strategy Γ has a
state-space realization of the form

Γ(A,B,D) =

[
AΓ(A,B,D) BΓ(A,B,D)
CΓ(A,B,D) DΓ(A,B,D)

]
,

where AΓ(A,B,D), BΓ(A,B,D), CΓ(A,B,D), and DΓ(A,B,D) are matrices of ap-
propriate dimension for each plant P = (A,B,D, x0, w0) ∈ P . The matrices
AΓ(A,B,D) and CΓ(A,B,D) are block diagonal matrices since subcontrollers do not
share state variables. This realization is not necessarily minimal.

An example of a design graph GC is given in Figure 2.1(c). Each node represents
a subsystem-controller pair of the overall system. For instance, GC shows that the
second subsystem’s model is available to the designer of the first subsystem’s controller
but not the third and the fourth subsystems’ model. Figure 2.1(c′) shows a fully
disconnected design graph G′

C . A local designer in this case can only rely on the
model of its corresponding subsystem.

2.4. Performance metric. The goal of this paper is to investigate the influ-
ence of the plant graph on the properties of controllers derived from limited model
information control design methods. We use two performance metrics to compare
different control design methods, which are adapted from the notions of competitive
ratio and domination recently introduced in [16, 7, 9, 6]. Let us start with introducing
the closed-loop performance criterion.

To each plant P = (A,B,D, x0, w0) ∈ P and controller K ∈ K, we associate the
performance criterion

(2.8) JP (K) =
∞∑
k=0

[
x(k)TQx(k) + (u(k) + w(k))TR(u(k) + w(k))

]
,

where Q ∈ Sn
++ and R ∈ Sn

++ are diagonal matrices. We make the following standing
assumption.

Assumption 2.1. Q = R = I.
This is without loss of generality because the change of variables (x̄, ū, w̄) =

(Q1/2x,R1/2u,R1/2w) transforms the closed-loop performance measure and state-
space representation into

(2.9) JP (K) =
∞∑
k=0

[
x̄(k)T x̄(k) + (ū(k) + w̄(k))T (ū(k) + w̄(k))

]

and

x̄(k + 1) = Q1/2AQ−1/2x̄(k) +Q1/2BR−1/2(ū(k) + w̄(k))

= Āx̄(k) + B̄(ū(k) + w̄(k))
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without affecting the plant, control, or design graphs, due to Q and R being diagonal
matrices.

Definition 2.1 (competitive ratio). Let a plant graph GP , a control graph GK,
and a constant ε > 0 be given. Assume that for every plant P ∈ P, there exists an
optimal controller K∗(P ) ∈ K such that

JP (K
∗(P )) ≤ JP (K) ∀K ∈ K.

The competitive ratio of a control design method Γ is defined as

rP (Γ) = sup
P=(A,B,D,x0,w0)∈P

JP (Γ(A,B,D))

JP (K∗(P ))

with the convention that 0
0 equals one.

Note that the optimal control design strategy (with full plant model information)
K∗ does not necessarily belong to the set C.

Definition 2.2 (domination). A control design method Γ is said to dominate
another control design method Γ′ if

(2.10) JP (Γ(A,B,D)) ≤ JP (Γ
′(A,B,D)) ∀ P = (A,B,D, x0, w0) ∈ P

with strict inequality holding for at least one plant in P. When Γ′ ∈ C and no control
design method Γ ∈ C exists that satisfies (2.10), we say that Γ′ is undominated in C
for plants in P.

In the remainder of this paper, we determine optimal control design strategies

(2.11) Γ∗ ∈ argmin
Γ∈C

rP(Γ)

for a given plant, control, and design graph. Since several design methods may achieve
this minimum, we are interested in determining which ones of these strategies are
undominated.

3. Preliminary results. Before stating the main results of the paper, we intro-
duce two specific control design strategies and study their properties.

3.1. Optimal centralized control design strategy. The problem of designing
optimal constant input-disturbance accommodation control for linear time-invariant
continuous-time systems was solved earlier in [1, 12]. To the best of our knowledge,
this was not the case for arbitrary dynamic disturbance accommodation when dealing
with linear time-invariant discrete-time systems. As we need it later, we start by
developing the optimal centralized (i.e., GK is a complete graph) disturbance accom-
modation controller K∗(P ) for a given plant P ∈ P . First, let us define the auxiliary
variables ξ(k) = u(k) + w(k) and ū(k) = u(k + 1)−Du(k). It then follows that

ξ(k + 1) = u(k + 1) + w(k + 1)

= u(k + 1) +Dw(k)

= Du(k) +Dw(k) + ū(k)

= Dξ(k) + ū(k).(3.1)

Augmenting the state transition in (3.1) with the state-space representation of the
system in (2.1) results in[

x(k + 1)
ξ(k + 1)

]
=

[
A B
0 D

] [
x(k)
ξ(k)

]
+

[
0
I

]
ū(k).(3.2)
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In addition, we can write the performance measure in (2.9) as

JP (K) =

∞∑
k=0

[
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
.(3.3)

To guarantee the existence and uniqueness of the optimal controller K∗(P ), we need
the following lemma.

Lemma 3.1. The pair (Ã, B̃) with

(3.4) Ã =

[
A B
0 D

]
, B̃ =

[
0
I

]

is controllable for any given P = (A,B,D, x0, w0) ∈ P.
Proof. The pair (Ã, B̃) is controllable if and only if

[
Ã− λI B̃

]
=

[
A− λI B 0

0 D − λI I

]

is full-rank for all λ ∈ C. This condition is always satisfied since all matrices B ∈ B(ε)
are full-rank matrices.

Now the problem of minimizing the cost function in (3.3) subject to plant dynam-
ics in (3.2) becomes a state feedback linear quadratic optimal control with a unique
solution of the form

ū(k) = G1x(k) +G2ξ(k),

where G1 ∈ R
n×n and G2 ∈ R

n×n satisfy

(3.5)
[
G1 G2

]
= −(B̃TXB̃)−1B̃TXÃ

andX is the unique positive-definite solution of the discrete algebraic Riccati equation

(3.6) ÃTXB̃(B̃TXB̃)−1B̃TXÃ− ÃTXÃ+X − I = 0.

Therefore, we have

u(k + 1) = Du(k) + ū(k)

= Du(k) +G1x(k) +G2ξ(k).(3.7)

Using the identity ξ(k) = B−1(x(k + 1)−Ax(k)) in (3.7), we get

u(k + 1) = Du(k) +G1x(k) +G2ξ(k)

= Du(k) +G1x(k) +G2B
−1(x(k + 1)−Ax(k))

= Du(k) + (G1 −G2B
−1A)x(k) +G2B

−1x(k + 1).(3.8)

Putting a control signal of the form u(k) = xK(k) +DKx(k) in (3.8), we get

xK(k + 1) = DxK(k) + (DDK +G1 −G2B
−1A)x(k) + (G2B

−1 −DK)x(k + 1).

Now, we enforce the condition G2B
−1−DK = 0, as xK(k+1) can only be a function

of x(k) and xK(k); see (2.5). Therefore, the optimal controller K∗(P ) becomes

xK(k + 1) = DxK(k) + [G1 +DG2B
−1 −G2B

−1A]x(k),

u(k) = xK(k) +G2B
−1x(k)

with xK(0) = 0.
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Lemma 3.2. Let the control graph GK be a complete graph. Then, the cost of the
optimal controller K∗(P ) for each plant P ∈ P is lower-bounded as

JP (K
∗(P )) ≥

[
x0

Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)

−(W +B−2)D W +B−2

] [
x0

Bw0

]
,

where

W = AT (I +B2)−1A+ I.

Proof. Define

J̄P (K, ρ) =

∞∑
k=0

([
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
+ ρū(k)T ū(k)

)

and

K̄∗
ρ(P ) = argmin

K∈K
J̄P (K, ρ).

Using Lemma 3.1, we know that K̄∗
ρ(P ) exists and is unique. We can find J̄P (K̄

∗
ρ(P ), ρ)

using X(ρ) as the unique positive-definite solution of the discrete algebraic Riccati
equation

(3.9) ÃTX(ρ)B̃(ρI + B̃TX(ρ)B̃)−1B̃TX(ρ)Ã− ÃTX(ρ)Ã+X(ρ)− I = 0.

According to [14], the positive-definite matrix X(ρ) is lower-bounded by

X(ρ)− I ≥ ÃT
(
X̄(ρ)−1 + ρ−1B̃B̃T

)−1

Ã

= ÃT

(
X̄(ρ)− X̄(ρ)B̃

(
ρI + B̃T X̄(ρ)B̃

)−1

B̃T X̄(ρ)

)
Ã,

where

X̄(ρ) = ÃT
(
I + ρ−1B̃B̃T

)−1

Ã =

[
ATA+ I ATB

BA B2 +D2 ρ
ρ+1 + I

]
.

Basic algebraic calculations show that

lim
ρ→0

[
X̄(ρ)− X̄(ρ)B̃

(
ρI + B̃T X̄(ρ)B̃

)−1

B̃T X̄(ρ)

]
=

[
AT (I +B2)−1A+ I 0

0 0

]
.

According to [15], we know that

lim
ρ→0+

J̄P (K̄
∗
ρ(P ), ρ) = JP (K

∗(P )),

and as a result

(3.10) X = lim
ρ→0

X(ρ) ≥
[
A B
0 D

]T [
AT (I +B2)−1A+ I 0

0 0

] [
A B
0 D

]
+ I,

where X is the unique positive-definite solution of the discrete algebraic Riccati equa-
tion in (3.6) and consequently

JP (K
∗(P )) =

[
x0

ξ(0)

]T [
X11 X12

XT
12 X22

] [
x0

ξ(0)
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with X being partitioned as

X =

[
X11 X12

XT
12 X22

]
.

We know that

ξ(0) = u(0) + w0 = G2B
−1x0 + w0 = −(X−1

22 XT
12 +DB−1)x0 + w0.

Thus, the cost of the optimal control design JP (K
∗(P )) becomes[

x0

−(X−1
22 XT

12 +DB−1)x0 + w0

]T [
X11 X12

XT
12 X22

] [
x0

−(X−1
22 XT

12 +DB−1)x0 + w0

]

=

[
x0

w0

]T [
X11 −X12X

−1
22 XT

12 +B−1DX22DB−1 −B−1DX22

−X22DB−1 X22

] [
x0

w0

]

=

[
x0

w0

]T [
B−1(X22 +DX22D − I)B−1 −B−1DX22

−X22DB−1 X22

] [
x0

w0

]
.(3.11)

The second equality is true because of the following equation extracted from the
discrete algebraic Riccati equation in (3.6):

X22 = I +BX11B −BX12X
−1
22 XT

12B;

this is equivalent to

(3.12) X11 −X12X
−1
22 XT

12 = B−1(X22 − I)B−1.

Using (3.10), it is evident that

X22 ≥ B[AT (I +B2)−1A+ I]B + I = BWB + I,

and as a result, the inner matrix in (3.11) is lower-bounded by[
B−1(X22 +DX22D − I)B−1 −B−1DX22

−X22DB−1 X22

]

=

[
B−1(X22 − I)B−1 0

0 0

]
+

[
B−1DX22DB−1 −B−1DX22

−X22DB−1 X22

]

=

[
B−1(X22 − I)B−1 0

0 0

]
+

[−B−1D
I

]
X22

[−B−1D
I

]T

≥
[
B−1(BWB)B−1 0

0 0

]
+

[−B−1D
I

]
(BWB + I)

[−B−1D
I

]T

=

[
W +DWD +D2B−2 −D(WB +B−1)

−(BW +B−1)D BWB + I

]
.

Finally, we get

JP (K
∗(P )) ≥

[
x0

w0

]T [
W +DWD +D2B−2 −D(WB +B−1)

−(BW +B−1)D BWB + I

] [
x0

w0

]

=

[
x0

Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)

−(W +B−2)D W +B−2

] [
x0

Bw0

]
.

This statement concludes the proof.
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3.2. Deadbeat control design strategy. In this subsection, we introduce the
deadbeat control design strategy and calculate its competitive ratio.

Definition 3.3. Let a plant graph GP and a control graph GK be given such
that GK ⊇ GP . The deadbeat control design strategy ΓΔ : A(SP) × B(ε)× D → K is
defined as

ΓΔ(A,B,D) �
[

D −B−1D2

I −B−1(A+D)

]
.

Remark 3.1. It should be noted that using the deadbeat control design strategy,
the closed-loop system reaches the origin in just two time-steps irrespective of the
value of the initial state x0 and the initial disturbance w0. Additionally, the deadbeat
control design strategy is a limited model information control design method since

ΓΔ
i (A,B,D) = −(z − dii)

−1b−1
ii d2iie

T
i − b−1

ii (Ai +Di)

for each 1 ≤ i ≤ n, that is, subcontroller i uses only the plant model information of
subsystem i, (Ai, Bi, Di). Finally, when using the deadbeat control design strategy,
aij + bii(dΓ)ij(A,B,D) = 0, 1 ≤ i, j ≤ n, which, as shown later in Lemma 4.2, is a
property that must necessarily be satisfied by nodes that are not a sink to obtain a
finite competitive ratio.

The closed-loop system with deadbeat control design strategy is shown in
Figure 3.1(a). This feedback loop can be rearranged as the one in Figure 3.1(b) which
has two separate components. One component is a static deadbeat control design
strategy for regulating the state of the plant and the other is a deadbeat observer for
canceling the disturbance. This structure is further discussed in section 6, where it
is shown that it corresponds to proportional-integral control in some cases. First, we
need to calculate an expression for the cost of the deadbeat control design strategy.

Lemma 3.4. The cost of the deadbeat control design strategy ΓΔ for each plant
P = (A,B,D, x0, w0) ∈ P is

JP (Γ
Δ(A,B,D)) =

[
x0

Bw0

]T [
Q11 Q12

QT
12 Q22

] [
x0

Bw0

]
,

where

Q11 = I +D2(I +B−2) +ATB−2A+DATB−2AD +ATB−2D +DB−2A,(3.13)

Q12 = −D −ATB−2 −DB−2 −DATB−2A,(3.14)

Q22 = ATB−2A+B−2 + I.(3.15)

Proof. First, it should be noted that the state of the closed-loop system with
ΓΔ(A,B,D) in feedback reaches the origin in two time-steps. Now, using the system
state transition, one can calculate the deadbeat control design strategy cost as

JP (Γ
Δ(A,B,D)) = xT

0 x0 + (u(0) + w0)
T (u(0) + w0)

+ x(1)Tx(1) + (u(1) + w(1))T (u(1) + w(1)),

where x(1) = −Dx0+Bw0, u(0) = −B−1(A+D)x0, and u(1) = −B−1(A+D)x(1)−
B−1D2x0. The rest of the proof is a trivial simplification.

We need the following lemma in order to calculate the competitive ratio of the
deadbeat control design strategy ΓΔ when the control graph GK is a supergraph of
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Fig. 3.1. The closed-loop system with (a) the deadbeat controller corresponding to ΓΔ and
(b) rearranging this controller as a static deadbeat controller and a deadbeat observer.

the plant graph GP . As the notation K∗(P ) is reserved for the optimal control design
strategy for a given control graph GK, from now on we will use K∗

C to denote the
centralized optimal control design strategy (i.e., the optimal control design strategy
with access to full-state measurement).

Lemma 3.5. Let GK ⊇ GP and let P = (A,B,D, x0, w0) ∈ P be a plant with A
being a nilpotent matrix of degree two. Then, JP (K

∗(P )) = JP (K
∗
C(P )).

Proof. When matrix A is nilpotent, the unique positive-definite solution of the
discrete algebraic Riccati equation (3.6) is

X =

[
ATA+ I ATB

BA BAT (I +B2)−1AB + I +B2

]
.

Consequently, the optimal centralized controller gains in (3.5) are

G1 = 0, G2 = −(I +B2)−1BAB −D,

and as a result, the optimal centralized controller K∗
C(P ) is

K∗
C(P ) =

[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]
= (zI −D)−1D(I +B2)−1B−1A−B−1D2 − (I +B2)−1BA−B−1D.

Thus, K∗
C(P ) ∈ K(SK) because the control graph GK is a supergraph of the plant

graphGP . Now, considering thatK∗(P ) is the global optimal decentralized controller,
it has a lower cost than any other decentralized controller K ∈ K(SK), especially
K∗

C(P ) ∈ K(SK) for this particular plant. Hence,

(3.16) JP (K
∗(P )) ≤ JP (K

∗
C(P )).

On the other hand, it is evident that

(3.17) JP (K
∗
C(P )) ≤ JP (K

∗(P )).

This concludes the proof.
Remark 3.2. Finding the optimal structured controller is intractable in general,

even when the global model is known. In this paper, we concentrate on the cases where
the control graph GK is a supergraph of the plant graph GP , because it is relatively
easier to solve the optimal control design problem under limited model information in
this case. In addition, although in this paper we may not be able to find the optimal
structured controller K∗(P ) for a particular plant in some of the cases, we can still
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compute the competitive ratio rP . Thus, in a sense, this makes the competitive ratio
a quite powerful tool.

Next, we derive the competitive ratio of the deadbeat control design method.
Theorem 3.6. Let GK ⊇ GP . Then, the competitive ratio of the deadbeat control

design method ΓΔ is equal to

rP(ΓΔ) =
2ε2 + 1 +

√
4ε2 + 1

2ε2
.

Proof. First, let us define the set of all real numbers that are greater than or
equal to the competitive ratio of the deadbeat control design strategy

M =

{
β ∈ R

∣∣∣∣ JP (ΓΔ(A,B,D))

JP (K∗(P ))
≤ β ∀P ∈ P

}
.

It is evident that

JP (K
∗
C(P )) ≤ JP (K

∗(P ))

for each plant P ∈ P irrespective of the control graph GK, and as a result

(3.18)
JP (Γ

Δ(A,B,D))

JP (K∗(P ))
≤ JP (Γ

Δ(A,B,D))

JP (K∗
C(P ))

.

Using (3.18) and Lemmas 3.4 and 3.2, β belongs to the set M if

(3.19)

[
x0

Bw0

]T [
Q11 Q12

QT
12 Q22

] [
x0

Bw0

]
[

x0

Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)

−(W +B−2)D W +B−2

] [
x0

Bw0

] ≤ β

for all A ∈ A(SP ), B ∈ B(ε), D ∈ D, x0 ∈ Rn, and w0 ∈ Rn, where Q11, Q12, and
Q22 are matrices defined in (3.13)–(3.15). The condition (3.19) is satisfied if and only
if for all A ∈ A(SP ), B ∈ B(ε), and D ∈ D, we have[

β(W +DWD +D2B−2)−Q11 −βD(W +B−2)−Q12

−β(W +B−2)D −QT
12 β(W +B−2)−Q22

]
≥ 0.

Using the Schur complement [35], β belongs to the set M if

Z = β(W +B−2)−Q22

= β(AT (I +B2)−1A+ I +B−2)−ATB−2A−B−2 − I

= AT (β(I +B2)−1 −B−2)A+ (β − 1)(B−2 + I) ≥ 0(3.20)

and

− [−βD(W +B−2)−Q12

] [
β(W +B−2)−Q22

]−1 [−β(W +B−2)D −QT
12

]
+ β(W +DWD +D2B−2)−Q11 ≥ 0(3.21)

for all A ∈ A(SP ), B ∈ B(ε), and D ∈ D. We can do the simplification

−βD(W +B−2)−Q12 = −βD(AT (I +B2)−1A+ I +B−2)

−(−D −ATB−2 −DB−2 −DATB−2A)

= −(β − 1)D(I +B−2) +ATB−2

−DAT (β(I +B2)−1 −B−2)A

= −DZ +ATB−2,

D
ow

nl
oa

de
d 

10
/1

6/
14

 to
 1

30
.2

37
.3

7.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1558 F. FAROKHI, C. LANGBORT, AND K. H. JOHANSSON

and as a result, the condition (3.21) is equivalent to

(3.22) β(W +DWD+D2B−2)−Q11− [−DZ+ATB−2]Z−1[−ZD+B−2A] ≥ 0,

where Z is defined in (3.20). Furthermore, we can simplify β(W +DWD+D2B−2)−
Q11 as

AT (β(I +B2)−1 −B−2)A+ (β − 1)[I +D2B−2 +D2]

+DAT (β(I +B2)−1 −B−2)AD −ATB−2D −DB−2A,

which helps us to expand condition (3.22) to

AT
(
β(I +B2)−1 −B−2

)
A+ (β − 1)

(
I +D2B−2 +D2

)
+DAT

(
β(I +B2)−1 −B−2

)
AD −ATB−2D −DB−2A

−D
(
AT
(
β(I +B2)−1 −B−2

)
A+ (β − 1)(B−2 + I)

)
D

+ATB−2D +DB−2A−ATB−2Z−1B−2A ≥ 0.(3.23)

Hence, it follows from (3.23) that (3.22) can be simplified as

AT
(
β(I +B2)−1 −B−2

)
A−ATB−2Z−1B−2A ≥ 0.(3.24)

The condition (3.20) is satisfied for all plants P ∈ P if β ≥ 1 + 1/ε2, since in this
case β(I +B2)−1 −B−2 ≥ 0. (Recall that any matrix B is diagonal and its diagonal
elements are lower-bounded by ε.) Furthermore, for all β ≥ 1 + 1/ε2, it is easy to
see that Z ≥ (β − 1)(B−2 + I). As a result, it can be shown that condition (3.24) is
satisfied if

(3.25) AT
(
β(I +B2)−1 − B−2 − (β − 1)−1B−2(B−2 + I)−1B−2

)
A+ (β − 1)I ≥ 0.

Now, condition (3.25) is satisfied if

β(I +B2)−1 −B−2 − (β − 1)−1B−2(B−2 + I)−1B−2 ≥ 0.(3.26)

Noting that the matrix B = diag(b11, . . . , bnn), one can rewrite (3.26) as

β

1 + b2ii
− 1

b2ii
− 1

β − 1

1

b2ii(1 + b2ii)
≥ 0(3.27)

for all bii ≥ ε. Retracing our steps backward, it easy to see that the set

{
β | β ≥ 1 +

1

ε2
and (3.27) satisfied

}
=

{
β ≥ 2ε2 + 1 +

√
4ε2 + 1

2ε2

}
⊆ M.

Therefore, we get

(3.28) rP(ΓΔ) = sup
P∈P

JP (Γ
Δ(A,B,D))

JP (K∗(P ))
≤ 2ε2 + 1 +

√
4ε2 + 1

2ε2
.

Now, we have to show that this upper bound can be achieved by a family of
plants. Consider a one-parameter family of matrices {A(r)} defined as A(r) = reje

T
i

for each r ∈ R. It is always possible to find indices i and j such that i �= j and
(sP)ji �= 0, because of the assumption that there be no isolated node in the plant
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graph. Let B = εI and D = I. For each r ∈ R, the matrix A(r) is a nilpotent matrix
of degree two, that is, A(r)2 = 0. Thus, using Lemma 3.5, we get

JP (K
∗
C(P )) = JP (K

∗(P ))

for this special plant. The solution to the discrete algebraic Riccati equation in (3.6) is

X =

[
A(r)TA(r) + I εA(r)T

εA(r) ε2/(1 + ε2)A(r)TA(r) + (ε2 + 1)I

]
.

Thus, if we assume that

(3.29) x0 =
(ε2 + 1)(

√
4ε2 + 1 + 1)

2εr
ei

and

(3.30) w0 =
(ε2 + 1)(

√
4ε2 + 1+ 1)

2ε2r
ei − ej ,

the cost of the optimal control design strategy is

JP (K
∗(P )) =

(ε2 + 1)
√
4ε2 + 1 + 5ε2 + 4ε4 + 1

2ε2
(3.31)

+
(2ε2 +

√
4ε2 + 1 + 1)

√
4ε2 + 1

2ε2r2
,

and the cost of the deadbeat control design strategy is

JP (Γ
Δ(A,B,D)) =

(ε2 + 1)(3ε2
√
4ε2 + 1 + 5ε2 + 4ε4 +

√
4ε2 + 1 + 1)

2ε4

+
(ε2 + 1)(ε2

√
4ε2 + 1 + ε4

√
4ε2 + 1 + ε2 + 3ε4 + 2ε6)

2ε4r2
.(3.32)

This results in

(3.33) lim
r→∞

JP (Γ
Δ(A,B,D))

JP (K∗(P ))
=

2ε2 + 1+
√
4ε2 + 1

2ε2
.

Equation (3.28) together with (3.33) concludes the proof.
Remark 3.3. Consider the limited model information design problem given by

the plant graph GP in Figure 2.1(a) and the control graph GK in Figure 2.1(b). Theo-
rem 3.6 shows that if we apply the deadbeat control design strategy to this particular
problem, the performance of the deadbeat control design strategy, at most, can be
(2ε2 + 1 +

√
4ε2 + 1)/(2ε2) times the cost of the optimal control design strategy K∗.

In fact, Theorem 3.6 states that this relationship between the performance of the
deadbeat control design and the optimal control design with full model information
holds for a rather general class of systems. For the case that B = {I}, the relationship
is given by (3 +

√
5)/2 ≈ 2.62, so the deadbeat control design strategy is never worse

than two or three times the optimal.
Remark 3.4. We only proved the results for the case where there is a uniform

lower bound on the entries of matrices B ∈ B(ε). A theorem similar to Theorem 3.6

D
ow

nl
oa

de
d 

10
/1

6/
14

 to
 1

30
.2

37
.3

7.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1560 F. FAROKHI, C. LANGBORT, AND K. H. JOHANSSON

can still be proved when we have a nonuniform lower bound on the diagonal entries
of the matrices B ∈ B in (2.3). Let us in that case define the set of matrices

B′({εi}ni=1) = {B̄ ∈ R
n×n | B̄ ≥ diag(ε1, . . . , εn), b̄ij = 0 for all 1 ≤ i �= j ≤ n}

for given {εi}ni=1 such that εi > 0 for all 1 ≤ i ≤ n. In the proof of Theorem 3.6, we
can then use that {

β ≥ 2ε2∗ + 1 +
√
4ε2∗ + 1

2ε2∗

}
⊆ M,

where ε∗ = min1≤i≤n εi, based on the fact that inequality (3.26) should be satisfied
for each diagonal entry bii ≥ εi. Using the definition of the set M in the proof of
Theorem 3.6, we get

rP(ΓΔ) ≤ 2ε2∗ + 1 +
√
4ε2∗ + 1

2ε2∗
.

The rest of the results in this paper can be similarly generalized to a nonuniform lower
bound on the entries of the matrices B ∈ B′({εi}ni=1).

Remark 3.5. In the proof of Theorem 3.6, we use a special family of plants to
achieve the competitive ratio of the deadbeat control design strategy. In this family of
plants, only a single entry of the A-matrix approaches infinity, while the other entries
are zero. As this specific entry goes to infinity, its corresponding subsystem becomes
tightly coupled to another subsystem. Note that the overall system is controllable
because σ(B) ≥ ε. This special family of plants plays an important role in determining
a lower bound for the competitive ratio of control design strategies for various design
graphs also in later proofs of this paper.

With this characterization of ΓΔ in hand, we are now ready to tackle prob-
lem (2.11).

4. Plant graph influence on achievable performance. In this section, we
study the relationship between the plant graph and the achievable closed-loop perfor-
mance in terms of the competitive ratio as a performance metric and the domination
as a partial order on the set of limited model information control design strategies. To
this end, we first state and prove two lemmas which will simplify further developments.

Lemma 4.1. Fix real numbers a ∈ R and b ∈ R. For any x ∈ R, we have
x2 + (a+ bx)2 ≥ a2/(1 + b2).

Proof. Consider the function x �→ x2 + (a + bx)2. Since this function is both
continuously differentiable and strictly convex, we can find its unique minimizer as
x̄ = −ab/(1 + b2) by setting its derivative to zero. As a result, we get

x2 + (a+ bx)2 ≥ x̄2 + (a+ bx̄)2 = a2/(1 + b2).

This concludes the proof.
Lemma 4.2. Let the design graph GC be a totally disconnected graph, and GK ⊇

GP . Furthermore, assume that node i is not a sink in the plant graph GP . Then,
the competitive ratio of a control design strategy Γ ∈ C is bounded only if aij +
bii(dΓ)ij(A,B,D) = 0 for all j �= i and all matrices A ∈ A(SP ), B ∈ B(ε), and
D ∈ D.

Proof. The proof is by contrapositive. Let us assume that there exist matri-
ces Ā ∈ A(SP), B ∈ B(ε), D ∈ D and indices i and j such that i �= j and
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Fig. 4.1. State evolution of the closed-loop system with any control design strategy Γ when x0 = 0.

āij+bii(dΓ)ij(Ā, B,D) �= 0. Let 1 ≤ 	 ≤ n be an index such that 	 �= i and (sP)�i �= 0.
(Such an index always exists because node i is not a sink in the plant graph GP .)
Define matrix A such that Ai = Āi, A� = reTi , and At = 0 for all t �= i, 	. Because the
design graph is a totally disconnected graph, we know that Γi(Ā, B,D) = Γi(A,B,D).
Using the structure of the cost function in (2.9) and plant dynamics in (2.1), the cost
of this control design strategy for w0 = ej and x0 = 0 is lower-bounded by

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ (u�(2) + w�(2))
2
+ x�(3)

2

= (u�(2) + w�(2))
2
+ (rxi(2) + b��[u�(2) + w�(2)])

2
.

Based on Lemma 4.1 and the fact that xi(2) = (aij + bii(dΓ)ij(A,B,D))bjj (see
Figure 4.1), we get

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ r2xi(2)
2/(1 + b2��)

= (aij + bii(dΓ)ij(A,B,D))2b2jjr
2/(1 + b2��).

On the other hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ej)(Γ
Δ(A,B,D)) = eTj B

T (ATB−2A+B−2 + I)Bej

= b2jj + 1 + a2ijb
2
jj/b

2
ii.

Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . This gives

rP(Γ) = sup
P∈P

JP (Γ(A,B,D))

JP (K∗(P ))

= sup
P∈P

[
JP (Γ(A,B,D))

JP (ΓΔ(A,B,D))

JP (Γ
Δ(A,B,D))

JP (K∗(P ))

]

≥ sup
P∈P

JP (Γ(A,B,D))

JP (ΓΔ(A,B,D))

≥ (aij + bii(dΓ)ij(A,B,D))2b2jj/(1 + b2��)

b2jj + 1+ a2ijb
2
jj/b

2
ii

lim
r→∞ r2 = ∞.(4.1)

This inequality proves the statement by contrapositive as the competitive ratio is
not bounded in this case.

4.1. Plant graphs without sinks. First, we assume that there is no sink in
the plant graph and try to characterize the optimal control design strategy in terms
of the competitive ratio and domination.
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Theorem 4.3. Let the plant graph GP contain no sink, the design graph GC be a
totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of any control
design strategy Γ ∈ C satisfies

rP(Γ) ≥ 2ε2 + 1 +
√
4ε2 + 1

2ε2
.

Proof. Consider a one-parameter family of matrices {A(r)} defined as A(r) =
reje

T
i for each r ∈ R. It is always possible to find indices i and j such that i �= j

and (sP )ji �= 0, because of the assumption that there is no isolated node in the plant
graph. Let B = εI and D = I. Let Γ ∈ C be a control design strategy with design
graph GC . Without loss of generality, we can assume that (dΓ)ji(A,B,D) = −r/ε
since otherwise, using Lemma 4.2, we get that rP (Γ) is infinity, and as a result the
inequality in the theorem statement is trivially satisfied. Thus, for each r ∈ R, the cost
of the control design strategy Γ for x0 in (3.29) and w0 in (3.30) is lower-bounded by

JP (Γ(A,B,D)) ≥ (uj(0) + wj(0))
2 + xj(1)

2

=

(
(ε2 + 1)(

√
4ε2 + 1 + 1)

2ε2
+ 1

)2

+ ε2

=
(ε2 + 1)(3ε2

√
4ε2 + 1 + 5ε2 + 4ε4 +

√
4ε2 + 1 + 1)

2ε4
.

On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Consequently, using Lemma 3.5, the cost of the optimal
control design strategy K∗(P ) for x0 in (3.29) and w0 in (3.30) is given by (3.31).
This results in

rP(Γ) ≥ lim
r→∞

JP (Γ(A,B,D))

JP (K∗(P ))
=

2ε2 + 1 +
√
4ε2 + 1

2ε2
.

Theorem 4.3 shows that the deadbeat control design method ΓΔ is a minimizer of
the competitive ratio rP as a function over the set of limited model information design
methods C. The following theorem shows that it is also undominated by methods of
this type if and only if the plant graph GP has no sink.

Theorem 4.4. Let the design graph GC be a totally disconnected graph, and
GK ⊇ GP . Then, the control design strategy ΓΔ is undominated if and only if there
is no sink in the plant graph GP .

Proof. First, we have to prove the sufficiency part of the theorem. Assume
that there is no sink in the plant graph. For proving this claim, we are going to
prove that for any control design method Γ ∈ C \ {ΓΔ}, there exists a plant P =
(A,B,D, x0, w0) ∈ P such that JP (Γ(A,B,D)) > JP (Γ

Δ(A,B,D)). First, assume
that there exist matrices Ā ∈ A(SP ), B ∈ B(ε), and D ∈ D and an index j such
that Āj + bjj(DΓ)j(Ā, B,D) + djje

T
j �= 0. Without loss of generality, we can assume

that ājj + bjj(dΓ)jj(Ā, B,D) + djj �= 0, because otherwise, using (4.1) in the proof of
Lemma 4.2, we know that if there exists 	 �= j such that āj� + bjj(dΓ)j�(Ā, B,D) �= 0,
the ratio of the cost of the control design strategy Γ to the cost of the deadbeat design
strategy ΓΔ is unbounded. Therefore, the control design strategy Γ cannot dominate
the deadbeat control design strategy ΓΔ. Pick an index i �= j such that (sP )ij �= 0.
It is always possible to pick such index i because there is no sink in the plant graph.
Define matrix A such that Aj = Āj , Ai = reTj , and A� = 0 for all 	 �= i, j. It
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should be noted that Γj(A,B,D) = Γj(Ā, B,D) because the design graph is a totally
disconnected graph. We know that r + bii(dΓ)ij(A,B,D) = 0 because otherwise the
control design strategy Γ cannot dominate the deadbeat control design strategy. The
cost of this control design strategy for w = ej and x0 = 0 satisfies

JP (Γ(A,B,D)) ≥ (ui(1) + wi(1))
2 + (ui(2) + wi(2))

2 + xi(3)
2

= r2b2jj/b
2
ii + (ui(2) + wi(2))

2 + (xj(2)r + bii[ui(2) + wi(2)])
2,

because of the structure of the cost function (2.9) and the plant dynamics (2.1). Now,
using Lemma 4.1, we have

JP (Γ(A,B,D)) ≥ r2b2jj/b
2
ii + xj(2)

2r2/(1 + b2ii).

As a result

JP (Γ(A,B,D)) − JP (Γ
Δ(A,B,D))

≥ (ājj + bjj(dΓ)jj(Ā, B,D) + djj)
2b2jjr

2/(1 + b2ii)− (b2jj + 1 + a2jj),(4.2)

since xj(2) = (ājj + bjj(dΓ)jj(Ā, B,D) + djj)bjj (see Figure 4.1) and

J(A,B,D,0,ej)(Γ
Δ(A,B,D)) = eTj B

T (ATB−2A+B−2 + I)Bej

= b2jj + 1 + r2b2jj/b
2
ii + a2jj .

Thus, if we pick r large enough, the difference in (4.2) becomes positive, which
shows that the control design strategy Γ cannot dominate the deadbeat control de-
sign strategy ΓΔ. Now, assume that there exist matrices Ā ∈ A(SP ), B ∈ B(ε),
and D̄ ∈ D and an index j such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jje

T
j = 0 but

Γj(Ā, B, D̄) �= ΓΔ
j (Ā, B, D̄). Define matrix A such that Aj = Āj and A� = 0 for

all 	 �= j and matrix D as djj = d̄jj and d�� = 0 for all 	 �= j. Let x0 = 0. If
there exists an index i �= j such that γij(Ā, B,D) �= γΔ

ij (Ā, B,D), pick w0 = ei;
otherwise, pick w0 = ej . For this special case, the state of the closed-loop system
with the controller Γ(A,B,D) is equal to the state of the closed-loop system with the
controller ΓΔ(A,B,D) for the first and second time-steps (see Figures 4.1 and 4.2).
As a result, the state of the subsystem j reaches zero in two time-steps. Now, since
Γj(Ā, B, D̄) �= ΓΔ

j (Ā, B, D̄), in the next time-step the state of the subsystem j be-
comes nonzero again. This results in a performance cost greater than the performance
cost of the control design strategy ΓΔ. Thus, the control design ΓΔ is undominated
by the control design method Γ.

Now, we have to prove the necessary part of the theorem. Proving this part is
equivalent to proving that if there exists (a sink) j such that for every i �= j, (sP)ij = 0,
then there exists a control design strategy Γ which can dominate the deadbeat control
design strategy. Without loss of generality, let j = n; i.e., assume that (sP)in = 0 for
all i �= n. In this situation, we can rewrite the matrix A as

A =

⎡
⎢⎢⎢⎣

a11 · · · a1,n−1 0
...

. . .
...

...
an−1,1 · · · an−1,n−1 0
an1 · · · an,n−1 ann

⎤
⎥⎥⎥⎦.D
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Define x̄0 = [x1(0) · · · xn−1(0)]
T and w̄0 = [w1(0) · · · wn−1(0)]

T . Let Γ(A,B,D) be
defined as AΓ(A,B,D) = D, CΓ(A,B,D) = I,

BΓ(A,B,D) =

⎡
⎢⎢⎢⎢⎣
− d2

11

b11
· · · 0 0

...
. . .

...
...

0 · · · − d2
n−1,n−1

bn−1,n−1
0

(bΓ)n1 · · · (bΓ)n,n−1 (bΓ)nn

⎤
⎥⎥⎥⎥⎦ ,

DΓ(A,B,D) =

⎡
⎢⎢⎢⎢⎣
−a11+d11

b11
· · · −a1,n−1

b11
0

...
. . .

...
...

− an−1,1

bn−1,n−1
· · · −an−1,n−1+dn−1,n−1

bn−1,n−1
0

(dΓ)n1 · · · (dΓ)n,n−1 (dΓ)nn

⎤
⎥⎥⎥⎥⎦ ,

where B̄Γ = [(bΓ)n1 · · · (bΓ)nn] and D̄Γ = [(dΓ)n1 · · · (dΓ)nn] are tunable gains
for the last subsystem. We denote the cost of applying the deadbeat controller to

subsystems 1, . . . , n − 1 by J
(1)
(A,B,D,x̄0,w̄0)

. This cost is independent of the control

design parameters B̄Γ and D̄Γ, because the last subsystem is a sink and it cannot
affect the other subsystems. The overall cost of the controller is

J(A,B,x0,w0)(Γ(A,B,D)) = J
(1)
(A,B,D,x̄0,w̄0)

+ J
(2)
(A,B,D,x0,w0)

(B̄Γ, D̄Γ),

where J
(2)
(A,B,D,x0,w0)

(B̄Γ, D̄Γ) is the cost of the controller designed for the last sub-

system. This cost J
(2)
(A,B,D,x0,w0)

(B̄Γ, D̄Γ) is independent of the rest of the system’s

model, because the deadbeat (for subsystems 1, . . . , n−1) cancel out all dependencies
in matrix A; thus, one can design the optimal controller for the lower part of the sys-
tem without the model information of the upper part. Now, we can use the method
mentioned in subsection 3.1 to design the optimal controller for the lower part and
find the optimal gains

B̄Γ =
dnn
bnn

((α+ 1)An −Dn) , D̄Γ =
1

bnn
(αAn −Dn) ,

where

α =
2

b2nn + a2nn + 1 +
√
a4nn + 2a2nnb

2
nn − 2a2nn + b4nn + 2b2nn + 1

− 1.

Note that this new control design strategy is always applicable since the control graph
GK is supergraph of the plant graph GP . Therefore, there exists a control design
strategy which satisfies

J(A,B,D,x0,w0)(Γ(A,B,D)) ≤ J(A,B,D,x0,w0)(Γ
Δ(A,B,D))

for all matrices A ∈ A(SP ), B ∈ B(ε), and D ∈ D and all vectors x0 ∈ Rn and
w0 ∈ Rn. Consider the matrix A ∈ A(SP) such that An = reTn and A� = 0 for all
	 �= n. Let B = εI and D = I. For this special system, for all r > 0, we have

J(A,B,D,0,en)(Γ(A,B,D)) =

√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 + ε2 + 1

2

< r2 + ε2 + 1

= J(A,B,D,0,en)(Γ
Δ(A,B,D)).
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Fig. 4.2. State evolution of the closed-loop system with deadbeat control design strategy ΓΔ

when x0 = 0.

Thus, the control design strategy Γ dominates the deadbeat control design strat-
egy ΓΔ.

Remark 4.1. Consider the limited model information design problem given by
the plant graph G′

P in Figure 2.1(a′), the control graph G′
K in Figure 2.1(b′), and the

design graph G′
C in Figure 2.1(c′). Theorems 4.3 and 4.4 show that the deadbeat con-

trol design strategy ΓΔ is the best control design strategy that one can propose based
on local model of the subsystems and the plant graph, because the deadbeat control
design strategy is the minimizer of the competitive ratio and it is undominated.

We use the construction in proof of the “only if” part of Theorem 4.4 to build a
control design strategy for the plant graphs with sinks in the next subsection.

4.2. Plant graphs with sinks. In this section, we study the case where there
are c ≥ 1 sinks in the plant graph. By renumbering the sinks as subsystems number
n− c+ 1, . . . , n the matrix SP can be written as

(4.3) SP =

[
(SP)11 0(q−c)×(c)

(SP)21 (SP )22

]
,

where

(SP)11 =

⎡
⎢⎣

(sP)11 · · · (sP)1,n−c

...
. . .

...
(sP)n−c,1 · · · (sP)n−c,n−c

⎤
⎥⎦ ,

(SP)21 =

⎡
⎢⎣
(sP)n−c+1,1 · · · (sP)n−c+1,n−c

...
. . .

...
(sP)n,1 · · · (sP)n,n−c

⎤
⎥⎦ ,

and

(SP)22 =

⎡
⎢⎣
(sP)n−c+1,n−c+1 · · · 0

...
. . .

...
0 · · · (sP)nn

⎤
⎥⎦ .

From now on, without loss of generality, we assume that the structure matrix is
the one defined in (4.3). The control design method ΓΘ for this type of systems is
defined as

(4.4) ΓΘ(A,B,D) =

[
D B−1D(F (A,B) + I)A−B−1D2

I B−1(F (A,B)A −D)

]
∀P ∈ P ,
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where

F (A,B) = diag(−1, . . . ,−1, fn−c+1(A,B), . . . , fn(A,B))

and

(4.5) fi(A,B) =
2

b2ii + a2ii + 1 +
√
a4ii + 2a2iib

2
ii − 2a2ii + b4ii + 2b2ii + 1

− 1

for all i = n− c+ 1, . . . , n.
The control design strategy ΓΘ applies the deadbeat to every subsystem that is

not a sink and, for every sink, applies the same optimal control law as if the node
was isolated. We will show that when the plant graph contains sinks, the control
design method ΓΘ has, in the worst case, the same competitive ratio as the deadbeat
strategy. However, unlike the deadbeat strategy, it has the additional property of
being undominated by limited model information methods for plants in P when the
plant graph GP has sinks.

Theorem 4.5. Let the plant graph GP contain at least one sink, and GK ⊇ GP .
Then, the competitive ratio of the design method ΓΘ introduced in (4.4) is

rP (ΓΘ) =

{
2ε2+1+

√
4ε2+1

2ε2 if (SP )11 �= 0 is not diagonal,
1 if both (SP )11 = 0 and (SP)22 = 0.

Proof. Based on Theorem 3.6, we know that

(4.6) J(A,B,D,x0,w0)(K
∗(P )) ≥ 2ε2

2ε2 + 1 +
√
4ε2 + 1

J(A,B,D,x0,w0)(Γ
Δ(A,B,D)),

and by the proof of the “only if” part of Theorem 4.4, we know that

(4.7) J(A,B,D,x0,w0)(Γ
Δ(A,B,D)) ≥ J(A,B,D,x0,w0)(Γ

Θ(A,B,D))

for all x0 ∈ Rn and w0 ∈ Rn. Putting (4.7) into (4.6) results in

J(A,B,D,x0,w0)(K
∗(P )) ≥ 2ε2

2ε2 + 1 +
√
4ε2 + 1

J(A,B,D,x0,w0)(Γ
Θ(A,B,D))

and, therefore, in

J(A,B,D,x0,w0)(Γ
Θ(A,B,D))

J(A,B,D,x0,w0)(K
∗(P ))

≤ 2ε2 + 1 +
√
4ε2 + 1

2ε2
∀P = (A,B, x0, w) ∈ P .

As a result

rP(ΓΘ) = sup
P∈P

J(A,I,x0,w)(Γ
Θ(A,B,D))

J(A,I,x0,w)(K∗(P ))
≤ 2ε2 + 1 +

√
4ε2 + 1

2ε2
.

If (SP)11 has an off-diagonal entry, then there exist 1 ≤ i, j ≤ n − c and i �= j such
that (sP)ij �= 0. Define A(r) such that A(r) = reje

T
i . In this case, using the proof of

Theorem 4.3, we know

rP (ΓΘ) =
2ε2 + 1 +

√
4ε2 + 1

2ε2
,
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because the control design ΓΘ acts as the deadbeat controller on that part of the
system. Using both these inequalities proves the statement.

If (SP)11 = 0 and (SP)22 = 0, every matrix A with structure matrix (SP) is a
nilpotent matrix of degree two. Thus, using Lemma 3.5, we get

JP (K
∗(P )) = JP (K

∗
C(P )).

Now, based on the proof of Lemma 3.5, we also know that the optimal controller gain
for this plant model is

K∗
C(P ) =

[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]
.

For control design strategy ΓΘ, we will have

ΓΘ(A,B,D) =

[
D B−1D(B(I +B2)−1B − I)A−B−1D2

I B−1(−B(I +B2)−1BA−D)

]

=

[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]

based on (4.4). Thus, rP (ΓΘ) = 1.
Theorem 4.6. Let the plant graph GP contain at least one sink, the design graph

GC be a totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of any
control design strategy Γ ∈ C satisfies

rP (Γ) ≥ 2ε2 + 1 +
√
4ε2 + 1

2ε2

if (SP)11 is not diagonal.
Proof. First, suppose that (SP)11 �= 0 and (SP)11 is not a diagonal matrix;

then there exist 1 ≤ i, j ≤ n − c and i �= j such that (sP)ij �= 0. Consider the
family of matrices A(r) defined by A(r) = reie

T
j . Based on Lemma 4.2, if we want

to have a bounded competitive ratio, the control design strategy should satisfy r +
bii(dΓ)ij(A(r), B,D) = 0 (because node 1 ≤ i ≤ n− c is not a sink). The rest of the
proof is similar to the proof of Theorem 4.3.

Remark 4.2. Combining Theorems 4.5 and 4.6 implies that if (SP)11 �= 0 is
not diagonal (i.e., the nodes that are not sink can affect each other), control design
method ΓΘ is a minimizer of the competitive ratio over the set of limited model infor-
mation control methods and consequently a solution to problem (2.11). Furthermore,
if (SP )11 and (SP)22 are both zero, then the ΓΘ becomes equal to K∗, which shows
that ΓΘ is a solution to problem (2.11) in this case too. The rest of the cases are still
open here.

The next theorem shows that ΓΘ is a more desirable control design method than
the deadbeat when plant graph GP has sinks, since it is then undominated by limited
model information design methods for plants in P .

Theorem 4.7. Let the plant graph GP contain at least one sink, the design graph
GC be a totally disconnected graph, and GK ⊇ GP . Then, the control design method
ΓΘ is undominated by all limited model information control design methods.

Proof. Assume that there are c ≥ 1 sinks in the plant graph. For proving this
claim, we are going to prove that for any control design method Γ ∈ C\{ΓΘ}, there
exits a plant P = (A,B,D, x0, w0) ∈ P such that JP (Γ(A,B,D)) > JP (Γ

Θ(A,B,D)).
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We will proceed in several steps, which require us to partition the set of limited model
information control design strategies C as follows:

C = W2 ∪W1 ∪W0 ∪ {ΓΔ},
where

W2:= {Γ ∈ C | ∃j, n− c+ 1 ≤ j ≤ n,

such that Γj(A,B,D) �= ΓΘ
j (A,B,D)},

W1:= {Γ ∈ C \W2 | ∃j, 1 ≤ j ≤ n− c,

and ∃P ∈ P , (DΓ)j(A,B,D) �= (DΘ
Γ )j(A,B,D)},

and

W0:= {Γ ∈ C \W2 ∪W1 | ∃j, 1 ≤ j ≤ n− c, ∃P ∈ P ,

such that Γj(A,B,D) �= ΓΘ
j (A,B,D)}.

First, we prove that the ΓΘ is undominated by control design strategies in W2.
We assume that there exist index n − c + 1 ≤ j ≤ n and matrices Ā ∈ A(SP ),
B ∈ B(ε), D̄ ∈ D such that Γj(Ā, B, D̄) �= ΓΘ

j (Ā, B, D̄). Consider matrices A and

D defined as Aj = Āj and Ai = 0 for all i �= j and djj = d̄jj and dii = 0. For this
particular matrix A, any x0, and any w0, we know from the proof of the “only if”
part of Theorem 4.4 that ΓΘ(A,B,D, x0, w0) is the globally optimal controller with
limited model information. Hence, every other control design method in C leads to
a controller with greater performance cost than ΓΘ for this particular type of plants.
Therefore, the control design ΓΘ is undominated by control design methods in W2.

Second, we prove that the control design strategy ΓΘ is undominated by the
control design strategies in W1. Let Γ be a control design strategy in W1 and let
index 1 ≤ j ≤ n − c be such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jje

T
j �= 0 for some

matrices Ā ∈ A(SP), B ∈ B(ε), and D̄ ∈ D. It is always possible to pick an index
i �= j such that (sP)ij �= 0 because node j is not a sink in the plant graph. If
1 ≤ i ≤ n − c, the proof is the same as the proof of the “if” part of Theorem 4.4;
therefore, without any loss of generality, we assume that n − c + 1 ≤ i ≤ n. Again,
with the same argument as in the proof of the “if” part of Theorem 4.4, without loss
of generality, we can assume that ajj+bjj(dΓ)jj(A,B,D)+djj �= 0 (because otherwise
the ratio of the cost the control design strategy Γ to the cost of the control design
strategy ΓΘ becomes infinity). Define matrix A such that Aj = Āj , Ai = reTj , and

A� = 0 for all 	 �= i, j. Let D ∈ D be such that djj = d̄jj and d�� = 0 for all 	 �= j. It
should be noted that Γj(A,B,D) = Γj(Ā, B, D̄) because the design graph is a totally
disconnected graph. The cost of this control design strategy for w0 = ej and x0 = 0
would satisfy

JP (Γ(A,B,D)) ≥ (ui(1) + wi(1))
2 + xi(2)

2 + (ui(2) + wi(2))
2 + xi(3)

2

= r2b2jj/(b
2
ii + 1) + (ui(2) + wi(2))

2 + (xj(2)r + bii[ui(2) + wi(2)])
2

≥ (r2b2jj + xj(2)
2r2)/(1 + b2ii).

This results in

J(A,I,B,D,0,ej)(Γ(A,B,D))− J(A,I,B,D,0,ej)(Γ
Θ(A,B,D))

≥ (ajj + bjj(dΓ)jj(A,B,D) + djj)
2b2jjr

2/(1 + b2ii)− κ(Aj , bjj),
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where κ(Aj , bjj) is only a function Aj and bjj and represents the part of the cost of
the control design strategy ΓΘ that is related to subsystem j only. If we pick r large
enough, the difference would become positive, which shows that the control design
strategy Γ cannot dominate the control design strategy ΓΘ.

Finally, we prove that the control design strategy ΓΘ is undominated by the
control design strategies in W0. The same argument as in the proof of the “if” part
of Theorem 4.4 holds here too.

Remark 4.3. Consider the limited model information design problem given by
the plant graph GP in Figure 2.1(a), the control graph G′

K in Figure 2.1(b′), and the
design graph G′

C in Figure 2.1(c′). Theorems 4.5, 4.6, and 4.7 together show that the
control design strategy ΓΘ is the best control design strategy that one can propose
based on local subsystems’ model and the plant graph, because the control design
strategy ΓΘ is a minimizer of the competitive ratio and it is undominated.

5. Design graph influence on achievable performance. In the previous
section, we approached the optimal control design under limited model information
when GC is a totally disconnected graph. The next step is to determine the necessary
amount of the model information needed in each subcontroller to be able to set up
a control design strategy with a smaller competitive ratio than the deadbeat control
design strategy. We tackle this question here.

Theorem 5.1. Let the plant graph GP and the design graph GC be given, and
GK ⊇ GP . Assume that the plant graph GP contains the path i → j → 	 with distinct
nodes i, j, and 	, while (	, j) /∈ EC. Then, we have

rP(Γ) ≥ 2ε2 + 1 +
√
4ε2 + 1

2ε2
.

Proof. Let i, j, and k be three distinct nodes such that (sP)ji �= 0 and (sP)�i �= 0
(i.e., the path i → j → 	 is contained in the plant graph GP ). Define the two-
parameter family of matrices A(r, s) = reje

T
i + se�e

T
j . Let B = εI, D = I, and Γ ∈ C

be a limited model information with design graph GC . The cost of this control design
strategy for w0 = ei and x0 = 0 satisfies

J(A,B,D,0,ei)(Γ(A,B,D)) ≥ (u�(2) + w�(2))
2 + x�(3)

2

= (u�(2) + w�(2))
2
+ (sxj(2) + ε[u�(2) + w�(2)])

2
,

because of the structure of the cost function in (2.9) and the system dynamic in (2.1).
Now, using Lemma 4.1 and the fact that xj(2) = (r + ε(dΓ)ji(r))ε (see Figure 4.1),
we get

J(A,B,D,0,ei)(Γ(A,B,D)) ≥ s2xj(2)
2/(1 + ε2)

= (r + ε(dΓ)ji(r))
2ε2s2/(1 + ε2).

Note that (dΓ)ji(r) is a function of only r and not s since (	, j) /∈ EC . On the other
hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ei)(Γ
Δ(A,B,D)) = eTi B

T (ATB−2A+B−2 + I)Bei

= ε2 + 1 + r2.
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Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . We have

rP (Γ) = sup
P∈P

JP (Γ(A,B,D))

JP (K∗(P ))

= sup
P∈P

[
JP (Γ(A,B,D))

JP (ΓΔ(A,B,D))

JP (Γ
Δ(A,B,D))

JP (K∗(P ))

]

≥ sup
P∈P

JP (Γ(A,B,D))

JP (ΓΔ(A,B,D))

≥ (r + ε(dΓ)ji(r))
2ε2/(1 + ε2)

ε2 + 1 + r2
lim
s→∞ s2.(5.1)

Using (5.1) it is easy to see that the competitive ratio rP(Γ) is bounded only if
r + ε(dΓ)ji(r) = 0 for all r ∈ R. Therefore, there is no loss of generality in assuming
that (dΓ)ji(r) = −r/ε because otherwise the rP (Γ) is infinity and the inequality in
the statement of the theorem is trivially satisfied. Now, let us fix s = 0 and use the
notation A(r) = reje

T
i . Since the parameters of the subsystem j are not changed

and (	, j) /∈ EC , we have (dΓ)ji(r) = −r/ε. Therefore, for each r ∈ R, similar to the
proof of Theorem 4.3, the cost of the control design strategy Γ for x0 in (3.29) and
w0 in (3.30) is lower-bounded by

JP (Γ(A,B,D)) ≥ (ε2 + 1)(3ε2
√
4ε2 + 1 + 5ε2 + 4ε4 +

√
4ε2 + 1 + 1)

2ε4
.

On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Similar to the proof of Theorem 4.3, for x0 in (3.29) and w0

in (3.30), we get

JP (K
∗(P )) =

(ε2 + 1)
√
4ε2 + 1 + 5ε2 + 4ε4 + 1

2ε2
+

(2ε2 +
√
4ε2 + 1 + 1)

√
4ε2 + 1

2ε2r2

since JP (K
∗(P )) = JP (K

∗
C(P )) according to Lemma 3.5. This results in

rP(Γ) ≥ lim
r→∞

JP (Γ(A,B,D))

JP (K∗(P ))
=

2ε2 + 1+
√
4ε2 + 1

2ε2
.

This finishes the proof.
Remark 5.1. Consider the limited model information design problem given by

the plant graph G′
P in Figure 2.1(a′), the control graph GK in Figure 2.1(b), and the

design graph GC in Figure 2.1(c). Theorem 5.1 shows that because the plant graph
GP contains the path 2 → 1 → 4 but the design graph GC does not contain 4 → 1,
the competitive ratio of any control design strategy Γ ∈ C would be greater than or
equal to rP(ΓΔ).

Remark 5.2. Theorem 5.1 shows that when GP and GK is a complete graph,
achieving a better competitive ratio than the deadbeat design strategy requires each
subsystem to have full knowledge of the plant model when constructing each subcon-
troller.

6. Proportional-integral deadbeat control design strategy. In this sec-
tion, we use some of the results of the paper on familiar control design problems like
step disturbance rejection and step reference tracking.
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6.1. Step disturbance rejection. For the case of step disturbance rejection,
we can model the disturbance as in (2.2) with matrix D = I. For each plant P =
(A,B, I, x0, w0) ∈ P , the deadbeat controller design strategy is

ΓΔ(A,B, I) �
[

I −B−1

I −B−1(A+ I)

]
.

This controller can be realized as

u(k) = −B−1Ax(k)−B−1
k∑

i=0

x(i),

which is a proportional-integral controller. Thus, we call the restricted mapping
ΓΔ
step : A(SP)×B(ε) → K(SK), defined as ΓΔ

step(A,B) = ΓΔ(A,B, I), the proportional-
integral deadbeat control design strategy. The proportional term regulates the states
of the system and the integral term compensates for the disturbance. For instance, in
this case, Theorem 4.3 shows that when the plant graph GP contains no sink and the
design graph GC is a totally disconnected graph, the deadbeat proportional-integral
control design strategy is an undominated minimizer of the competitive ratio. Note
that the integral part of this control design strategy is fully decentralized and the
proportional part only needs the neighboring subsystems state measurements.

6.2. Step reference tracking. Consider the case in which we are interested
is tracking a step reference signal r ∈ Rn. We need to define the difference x̄(k) =
x(k)− r, which gives

x̄(k + 1) = x(k + 1)− r = Ax(k) +Bu(k)− r = Ax̄(k) +Bu(k) +Ar − r.

Now if the subsystems do not want to share the reference points with each other, we
can think of the additional term Ar − r as the constant disturbance vector w(k) =
B−1(Ar − r). Thus, we have

x̄(k + 1) = Ax̄(k) +B(u(k) + w(k)).

The subsystems only need to transmit the relative error between the state measure-
ments and reference points. In this case, we can use the cost function

(6.1) JP (K) =

∞∑
k=0

[x̄(k)T x̄(k) + (u(k) + w(k))T (u(k) + w(k))]

to make sure that the error x̄(k) goes to zero as time tends to infinity. Note that if we
want to have a complete state regulation limk→∞ x̄(k) = 0, the control signal should
have a limit as

lim
k→∞

u(k) = −B−1(Ar − r).

Thus, the second term of the cost function (6.1) only penalizes the difference of the
control signal and its steady-state value.
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7. Conclusions. We considered the design of optimal disturbance rejection and
servomechanism dynamic controllers under limited plant model information. We pro-
vided insight into the value of model information in control design and studied how
local subsystem interaction, limited state measurements, and limited plant model
information influenced the achievable closed-loop performance. To do so, we inves-
tigated the relationship between the closed-loop performance and the control design
strategies with limited model information using the metric called competitive ratio.
We found an explicit minimizer of the competitive ratio. The optimal controller is
dynamic and composed of a static state feedback law and a dynamic disturbance ob-
server. It was shown that this special structure corresponds to proportional-integral
controllers when dealing with step disturbances. Possible future work will focus on
extending the present framework to situations where the subsystems and disturbances
are not scalar and extending the set of applicable controllers to include adaptive and
nonlinear controllers to possibly achieve better closed-loop performance.
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[10] M. Ikeda, D. D. Šiljak, and K. Yasuda, Optimality of decentralized control for large-scale
systems, Automatica J. IFAC, 19 (1983), pp. 309–316.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents
using nearest neighbor rules, IEEE Trans. Automat. Control, 48 (2003), pp. 988–1001.

[12] C. Johnson, Optimal control of the linear regulator with constant disturbances, IEEE Trans.
Automat. Control, 13 (1968), pp. 416–421.

[13] C. Johnson, Accomodation of external disturbances in linear regulator and servomechanism
problems, IEEE Trans. Automat. Control, 16 (1971), pp. 635–644.

[14] N. Komaroff, Iterative matrix bounds and computational solutions to the discrete algebraic
Riccati equation, IEEE Trans. Automat. Control, 39 (1994), pp. 1676–1678.

[15] R. Kondo and K. Furuta, On the bilinear transformation of Riccati equations, IEEE Trans.
Automat. Control, 31 (1986), pp. 50–54.

[16] C. Langbort and J.-C. Delvenne, Distributed design methods for linear quadratic control
and their limitations, IEEE Trans. Automat. Control, 55 (2010), pp. 2085–2093.

D
ow

nl
oa

de
d 

10
/1

6/
14

 to
 1

30
.2

37
.3

7.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTURBANCE ACCOMMODATION WITH LIMITED MODEL 1573

[17] S. Liu, L. Xie, and H. Zhang, Distributed consensus for multi-agent systems with delays and
noises in transmission channels, Automatica J. IFAC, 47 (2011), pp. 920–934.

[18] A. Mahajan and D. Teneketzis, Optimal performance of networked control systems with
nonclassical information structures, SIAM J. Control Optim., 48 (2009), pp. 1377–1404.

[19] R. R. Negenborn, Z. Lukszo, and H. Hellendoorn eds., Intelligent Infrastructures,
Springer, Dordrecht, Netherlands, 2010.
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