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a b s t r a c t

Networked control strategies based on limited information about the plant model usually result in worse
closed-loop performance than optimal centralized control with full plant model information. Recently,
this fact has been established by utilizing the concept of competitive ratio, which is defined as the worst-
case ratio of the cost of a control design with limited model information to the cost of the optimal
control design with full model information. We show that an adaptive controller, inspired by a controller
proposed by Campi andKumar,with limited plantmodel information, asymptotically achieves the closed-
loop performance of the optimal centralized controller with full model information for almost any plant.
Therefore, there exists, at least, one adaptive control design strategywith limited plantmodel information
that can achieve a competitive ratio equal to one. The plant model considered in the paper belongs to a
compact set of stochastic linear time-invariant systems and the closed-loop performance measure is the
ergodic mean of a quadratic function of the state and control input.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Networked control systems are often complex large-scale engi-
neered systems, such as power grids [1], smart infrastructures [2],
intelligent transportation systems [3–5], or future aerospace sys-
tems [6,7]. These systems consist of several subsystems each one
often having many unknown parameters. It is costly, or even un-
realistic, to accurately identify all these plant model parameters
offline. This fact motivates us to focus on optimal control design
under structured parameter uncertainty and limited plant model
information constraints.

There are some recent studies in optimal control design with
limited plant model information [8–12]. The problem was initially
addressed in [8] for designing static centralized controllers for a
class of discrete-time linear time-invariant systems composed of
scalar subsystem, where control strategies with various degrees
of model information were compared using the competitive ratio,
i.e., the worst-case ratio of the cost of a control design with limited
model information scaled by the cost of the optimal control design
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with full model information. The result was generalized to the
static decentralized controllers for a class of systems composed of
fully-actuated subsystems of arbitrary order in [9]. More recently,
the problem of designing optimal H2 dynamic controllers using
limited plant model information was considered in [10]. It was
shown that, when relying on local model information, the smallest
competitive ratio achievable for any control design strategy for
distributed linear time-invariant controllers is strictly greater than
one; specifically, equal to the square root of twowhen the B-matrix
was assumed to be the identity matrix.

In this paper, we generalize the set of applicable controllers
to include adaptive controllers. We use the ergodic mean of a
quadratic function of the state and control as a performance mea-
sure of the closed-loop system. Choosing this closed-loop per-
formance measure allows us to use certain adaptive algorithms
available in the literature [13–16]. In particular, we consider an
adaptive controller proposed by Campi and Kumar [13], which
uses a cost-biased (i.e., regularized) maximum-likelihood estima-
tor for learning the unknown parts of the model matrices. We
prove that this adaptive control design achieves a competitive ra-
tio equal to one and, hence, the smallest competitive ratio that a
control design strategy using adaptive controllers can achieve is
equal to one (since this ratio is always lower-bounded by one). This
is contrary to control design strategies that construct linear time-
invariant control laws [8–12]. This shows that, although the design
of each subcontroller is only relying on local model information,
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the closed-loop performance can still be as good as the optimal
control design strategy with full model information (in the limit).

The rest of the paper is organized as follows. In Section 2,
we present the mathematical problem formulation. In Section 3,
we introduce the Campi–Kumar adaptive controller using only
local model information and show that it achieves a competitive
ratio equal to one. We use this adaptive algorithm on a vehicle
platooning problem in Section 4 and conclude the paper in
Section 5.

1.1. Notation

The sets of natural and real numbers are denoted by N and R,
respectively. Let N0 = N ∪ {0}. Additionally, all other sets are
denoted by calligraphic letters such as P .

Matrices are denoted by capital Roman letters such as A.
The entry in the ith row and the jth column of matrix A is aij.
Moreover, Aij denotes a submatrix of matrix A, the dimension and
the position of which will be defined in the text. A > (≥)0 means
that symmetric matrix A ∈ Rn×n is positive definite (positive
semidefinite) and A > (≥)Bmeans A− B > (≥)0. Let Sn

++
(Sn
+
) be

the set of positive definite (positive semidefinite) matrices inRn×n.
LetmatricesA ∈ Rn×n, B ∈ Rn×m,Q ∈ Sn

+
, and R ∈ Sm

++
be given

such that the pair (A, B) is stabilizable and the pair (A,Q 1/2) is
detectable. We define X(A, B,Q , R) as the unique positive definite
solution of

X = A⊤XA− A⊤XB

B⊤XB+ R

−1
B⊤XA+ Q .

In addition, we define

L(A, B,Q , R) = −

B⊤X(A, B,Q , R)B+ R

−1
B⊤X(A, B,Q , R)A.

WhenQ and R are not relevant or can be deduced from the text, we
use X(A, B) and L(A, B) instead of X(A, B,Q , R) and L(A, B,Q , R),
respectively.

All graphs G considered in this paper are directed with vertex
set {1, . . . ,N} for a given N ∈ N. The adjacency matrix S ∈
{0, 1}N×N of G is a matrix whose entry sij = 1 if (j, i) ∈ E and
sij = 0 otherwise for all 1 ≤ i, j ≤ N .

A measurable function f : Z → R is said to be essentially
bounded if there exists a constant c ∈ R such that |f (z)| ≤ c
almost everywhere. The greatest lower bound of these constants
is called the essential supremum of f (z), which is denoted by
ess supz∈Zf (z). Let mappings f , g : Z → R be given. Denote f (k)
= O(g(k)) and f (k) = o(g(k)), respectively, if lim supk→∞ |f (k)/
g(k)| < ∞ and lim supk→∞ |f (k)/g(k)| = 0. Finally, χ(·) denotes
the characteristic function, i.e., it gives a value equal to one if its
statement is satisfied and a value equal to zero otherwise.

2. Problem formulation

2.1. Plant model

Consider a discrete-time linear time-invariant dynamical sys-
tem composed of N subsystems, such that the state-space repre-
sentation of subsystems i, 1 ≤ i ≤ N , is

xi(k+ 1) =
N
j=1

[Aijxj(k)+ Bijuj(k)] + wi(k); xi(0) = 0,

where xi(k) ∈ Rni , ui(k) ∈ Rmi , and wi(k) ∈ Rni are state, con-
trol input, and exogenous input vectors, respectively. We assume
that {wi(k)}∞k=0 are independent and identically distributed Gaus-
sian random variables with zero means E{wi(k)} = 0 and unit co-
variances E{wi(k)wi(k)⊤} = I . The assumption of unit covariance
is without loss of generality and is only introduced to simplify the
presentation. To show this, assume that E{wi(k)wi(k)⊤} = Hi ∈
S
ni
++ for all 1 ≤ i ≤ N . Now, using the change of variables x̄i(k) =

H−1/2i xi(k) and w̄i(k) = H−1/2i wi(k) for all 1 ≤ i ≤ N , we get

x̄i(k+ 1) =
N
j=1

[Āijx̄j(k)+ B̄ijuj(k)] + w̄i(k),

in which Āij = H−1/2i AijH
1/2
j and B̄ij = H−1/2i Bij for all 1 ≤ i, j ≤ N .

This gives E{w̄i(k)w̄i(k)⊤} = I . In addition, let wi(k) and wj(k) be
statistically independent for all 1 ≤ i ≠ j ≤ N . Note that this
assumption is often justified by the fact that in many large-scale
systems, such as smart grids, the subsystems are scattered geo-
graphically and, hence, the sources of their disturbances are inde-
pendent. We introduce the augmented system as

x(k+ 1) = Ax(k)+ Bu(k)+ w(k); x(0) = 0,

where the augmented state, control input, and exogenous input
vectors are

x(k) = [x1(k)⊤ · · · xN(k)⊤]⊤ ∈ Rn,

u(k) = [u1(k)⊤ · · · uN(k)⊤]⊤ ∈ Rm,

w(k) = [w1(k)⊤ · · ·wN(k)⊤]⊤ ∈ Rn,

with n =
N

i=1 ni and m =
N

i=1 mi. In addition, the augmented
model matrices are

A =

A11 · · · A1N
...

. . .
...

AN1 · · · ANN

 ∈ A ⊂ Rn×n,

B =

B11 · · · B1N
...

. . .
...

BN1 · · · BNN

 ∈ B ⊂ Rn×m.

Let a directed plant graph GP with its associated adjacency ma-
trix SP be given. The plant graph GP captures the interconnection
structure of the plants, that is, Aij ≠ 0 only if sPij ≠ 0. Hence, the
sets A and B are structured by the plant graph:

A ⊆ Ā = {A ∈ Rn×n
| sPij = 0⇒ Aij = 0 ∈ Rni×nj

for all i, j such that 1 ≤ i, j ≤ N},

B ⊆ B̄ = {B ∈ Rn×m
| sPij = 0⇒ Bij = 0 ∈ Rni×mj

for all i, j such that 1 ≤ i, j ≤ N}.

From now on, we present a plant with its pair of corresponding
model matrices as P = (A, B) and define P = A×B as the set of
all possible plants. We make the following assumption on the set
of all plants:

Assumption 1. The set A × B is a compact set (with nonzero
Lebesgue measure in the space Ā × B̄) and the pair (A, B) is
controllable for almost all (A, B) ∈ A×B.

The assumption that the pair (A, B) is controllable for almost all
(A, B) ∈ A × B is guaranteed if and only if the family of systems
is structurally controllable [17,18].

2.2. Adaptive controller

We consider (possibly) infinite-dimensional nonlinear con-
trollers Ki = (K(k)

i )k∈N0 for each subsystem i, 1 ≤ i ≤ N , with
control law

ui(k) = K(k)
i ({x(t)}kt=0 ∪ {u(t)}

k−1
t=0), ∀ k ∈ N0,

where K(k)
i :

k
i=1 Rn

×
k−1

i=1 Rm
→ Rmi is the feedback control

law employed at time k ∈ N0. Let Ki denote the set of all such
control laws. We also define K =

N
i=1 Ki as the set of all

admissible controllers.
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2.3. Control design strategy

A control design strategy Γ is a mapping from the set of plants
P = A×B to the set of admissible controllersK .We can partition
Γ using the control input size as

Γ =

Γ1
...

ΓN

 ,

where, for each 1 ≤ i ≤ N , we have Γi : A × B → Ki.
Let a directed design graph GC with its associated adjacency ma-
trix SC be given. We say that the control design strategy Γ sat-
isfies the limited model information constraint enforced by the
design graph GC if, for all 1 ≤ i ≤ N , Γi is only a function of
{[Aj1 · · · AjN ], [Bj1 · · · BjN ] | sCij ≠ 0}. The set of all control design
strategies that obey the structure given by the design graph GC is
denoted by C.

2.4. Performance metric

In this paper, we are interested in minimizing the performance
criterion

JP(K) = lim sup
T→∞

1
T

T−1
k=0

x(k)⊤Qx(k)+ u(k)⊤Ru(k), (1)

where Q ∈ Sn
+
and R ∈ Sm

++
. We make the following assumption

concerning the performance criterion.

Assumption 2. The pair (A,Q 1/2) is observable for almost all
A ∈ A.

Considering that the observability of the pair (A,Q 1/2) is equiv-
alent to the controllability of the pair (A⊤,Q 1/2), we can verify
Assumption 2 using the available results on structural controlla-
bility [17,18].

Remark 1. Assumptions 1 and 2, that the pair (A, B) is controllable
and the pair (A,Q 1/2) is observable for almost all (A, B) ∈ A ×
B, originate from the results of Campi and Kumar [13]. They
used these assumptions to guarantee that the underlying algebraic
Riccati equation admits a unique positive-definite solution for
almost any selection of model matrices (A, B) ∈ A × B [13,
p. 1892]. We can relax these assumptions for the results in this
paper to that the pair (A, B) is stabilizable and the pair (A,Q 1/2)
is detectable for almost all (A, B) ∈ A×B [19].

Note that for linear controllers the performance measure (1)
represents the H2-norm of the closed-loop system from w(k) to
output y(k) = [(Q 1/2x(k))⊤ (R1/2u(k))⊤]⊤.

Definition 1. Let a plant graph GP and a design graph GC be given.
Assume that, for every plant P ∈ P , there exists an optimal con-
troller K∗(P) ∈ K such that JP(K∗(P)) ≤ JP(K), ∀K ∈ K . The aver-
age competitive ratio of a control designmethodΓ ∈ C is defined as

raveP (Γ ) =


ξ∈P

Jξ (Γ (ξ))

Jξ (K∗(ξ))
f (ξ) dξ, (2)

where f : P → R is a positive continuous function which shows
the relative importance of plants in P . Without loss of generality,
we assume that


P
f (P)dP = 1 (up to rescaling f by a constant fac-

tor since P is a compact set and f is a continuous mapping). The
supremum competitive ratio of a control design method Γ ∈ C is
defined as

rsupP (Γ ) = ess sup
P∈P

JP(Γ (P))

JP(K∗(P))
. (3)
ThemappingK∗ is not required to lie in the setC and is obtained
by searching over the set of centralized controllers with access to
the full plant model information. Hence, K∗(P) = L(A, B) for all
plants P = (A, B) ∈ P .

The supremum competitive ratio rsupP is a modified version
of the competitive ratio considered in [8–12]. Note that using
essential supremum in (3), we are neglecting a subset of plants
with zero Lebesgue measure. However, this is not crucial for
practical purposes since it is unlikely to encounter such plants in
a real situation. As a starting point, let us prove an interesting
property relating the average and supremum competitive ratios.

Lemma 1. For any control design strategy Γ ∈ C, we have 1 ≤
raveP (Γ ) ≤ rsupP (Γ ).

Proof. See [20]. �

In this paper, we are interested in solving the optimization
problem

arg min
Γ ∈C

rP (Γ ), (4)

where rP is either raveP or rsupP . This problem was studied in [10]
when the set of plants is fully-actuated discrete-time linear time-
invariant systems and the set of admissible controllers is finite-
dimensional discrete-time linear dynamic time-invariant systems.
It was shown that a modified deadbeat control strategy (which
constructs static controllers) is a minimizer of the competitive
ratio. Specifically, it was proved that the smallest competitive
ratio that a control design strategy which gives decentralized
linear time-invariant controllers can achieve is strictly greater
than one when relying on local model information. Note that
since the optimal control design with full model information is
unique (due to Assumption 2), even when considering a compact
set of plants, the competitive ratio is strictly larger than one
for limited model information control design strategies. In this
paper, we generalize the formulation of [10] to include adaptive
controllers. We prove in the next section that we can achieve a
competitive ratio equal to one for adaptive controllers. Therefore,
we can achieve the optimal performance asymptotically, even if
the complete model of the system is not known in advance when
designing the subcontrollers.

3. Main results

We introduce a specific control design strategy Γ ∗, and
subsequently, prove that Γ ∗ is a minimizer of both the average
and supremum competitive ratios raveP and rsupP . For each plant
P ∈ P , this control design strategy constructs an adaptive
controller Γ ∗(P) using a modified version of the Campi–Kumar
adaptive algorithm [13]; see Algorithm 1. Note that in the
Campi–Kumar adaptive algorithm, a central controller estimates
the model of the system and controls the system. However, in our
modified Campi–Kumar adaptive algorithm in Algorithm 1, each
subcontroller estimates the model of the system independently
and controls its corresponding subsystem separately. Hence, each
adaptive subcontroller arrives at different model estimates.

At even time steps in Algorithm 1, each subcontroller solves
a cost-biased (i.e., regularized) maximum-likelihood problem to
extract estimates of the parts of the model matrices that it does
not know. In this optimization problem, subcontroller i fixes the
known parts of the model matrices, i.e., {[Aj1 · · · AjN ], [Bj1 · · · BjN ]|

sCij ≠ 0}, and searches over the unknown parts (see the constraints
in Line 6 of Algorithm 1). Due to this information asymmetry,
subcontrollers arrive at differentmodel estimates. Upon extracting
these estimates, subcontroller i calculates the optimal control
law (by solving the associated Riccati equation) and implements
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the part that is related to its actuators (see Lines 10 and 11 in
Algorithm 1).

Remark 2. Most often, in practice, some of the entries of the
unknown parts of the model matrices are determined by the
physical nature of the problem while the rest can vary (due to the
parameter uncertainties and the lack of model information from
other subsystems). For instance, in heavy-duty vehicle platooning
(see Section 4), since the position can ideally be calculated by
integrating the velocity over time, some of the entries in the
model matrices are fixed (to zero or one). However, other entries
may depend on the parameters of the vehicle (e.g., vehicle mass,
viscous drag coefficient, and power conversion quality coefficient).
Considering that these entries are universally-known constants,
one can add them as constraints to the cost-biased maximum-
likelihood optimization problem in Algorithm 1 to reduce the
number of decision variables.

In Algorithm 1, we use the notation (A(i)(k), B(i)(k)), at each
time step k ∈ N0, to denote subsystem i’s estimate of the global
systemmodel P = (A, B). For each 1 ≤ i ≤ N , we use the mapping
Ti : Rm×n

→ Rmi×n defined as

Ti

X11 · · · X1N
...

. . .
...

XN1 · · · XNN

 = 
Xi1 · · · XiN


,

where Xℓj ∈ Rmℓ×nj for each 1 ≤ ℓ, j ≤ N . Let us also, for all k ∈ N0,
introduce the notation

K(k) =

T1K (1)(k)
...

TNK (N)(k)

 ∈ Rm×n,

where matrices K (i)(k) are defined in Line 10 of Algorithm 1. For
each δ > 0, we introduce

Wδ(A, B) := {(Ā, B̄) ∈ A×B | ∥[A+ BL(Ā, B̄)]
− [Ā+ B̄L(Ā, B̄)]∥ ≥ δ}.

Let us start by presenting a result on the convergence of the global
plant model estimates to the correct value.

Lemma 2. Let Γ ∗(P) be defined as in Algorithm 1 for all plant P ∈ P .
There exists a set N ⊂ P with zero Lebesgue measure (in the space
Ā× B̄) such that, if P ∉ N , then

lim
k→∞

X(A(i)(k), B(i)(k))
as
≤ X(A, B), (5)

k
t=0

χ((A(i)(t), B(i)(t)) ∈ Wδ(A, B)) as
= O(µ(k)), (6)

k
t=0

χ(∥K (i)(t)− L(A, B)∥ > ρ)
as
= O(µ(k)), (7)

k
t=0

χ(∥K(t)− L(A, B)∥ > ρ)
as
= O(µ(k)), (8)

for all δ, ρ > 0, where x as
= y and x

as
≤ y mean P{x = y} = 1 and

P{x ≤ y} = 1, respectively. In addition, we get

lim sup
T→∞

1
T

T−1
k=0

∥x(k)∥p + ∥u(k)∥p
as
<∞, ∀ p ≥ 1. (9)

Proof. See [20]. �
Algorithm 1 Control design strategy Γ ∗(P).
1: Parameter: {µ(k)}∞k=0 such that limk→∞ µ(k) = ∞butµ(k) =

o(log(k)).
2: Initialize (A(i)(0), B(i)(0)) for all i ∈ {1, . . . ,N}.
3: for k = 1, 2, . . . do
4: for i = 1, 2, . . . ,N do
5: if k is even then
6: Update subsystem i estimate as

(A(i)(k), B(i)(k)) =arg min(Â,B̂)∈A×BW(Â, B̂, Fk),

subject to Âℓj = Aℓj, B̂ℓj = Bℓj,

∀ j, ℓ ∈ {1, . . . ,N}, sCℓi ≠ 0,

Âzq = 0,

∀ z, q ∈ {1, . . . ,N}, sPzq = 0,
where

W(Â,B̂, Fk) = µ(k)tr(X(Â, B̂))

+

k
t=1

∥x(t)− Âx(t − 1)− B̂u(t − 1)∥22.

7: else
8: (A(i)(k), B(i)(k))← (A(i)(k− 1), B(i)(k− 1)).
9: end if

10: K (i)(k)← L(A(i)(k), B(i)(k)).
11: ui(k)← TiK (i)(k)x(k).
12: end for
13: end for

Note that, according to Lemma 2, we know that there exists a
set N ⊂ P with zero Lebesgue measure such that, if P ∉ N ,
the estimates in the modified Campi–Kumar adaptive algorithm
(Algorithm 1) converge to the correct global plant model. This fact
is a direct consequence of using regularized maximum-likelihood
estimators in the Campi–Kumar algorithm [21]. Now, we are ready
to present the main result of this section.

Theorem 3. Let Γ ∗(P) be defined as in Algorithm 1 for each plant
P ∈ P . There exists a set N ⊂ P with zero Lebesgue measure such
that, if P ∉ N , then

JP(Γ ∗(P))
as
= JP(K∗(P)).

Proof. See [20]. �

Now, we are ready to present the solution of problem (4).

Corollary 4. For any plant graph GP and design graph GC , we get
raveP (Γ ∗)

as
= 1 and rsupP (Γ ∗)

as
= 1.

Proof. The proof of the corollary follows from combining Lemma 1
and Theorem 3. See [20]. �

Corollary 4 shows that, irrespective of the plant graph GP and
design graph GC , there exists a limited model information control
design strategy that can achieve a competitive ratio equal one.
This control design strategy gives adaptive controllers achieving
asymptotically the closed-loop performance of optimal control
design strategy with full model information. Note that earlier
results stated that such a competitive ratio cannot be achieved by
static or linear time-invariant dynamic controllers [8–12].

4. Example

As a simple numerical example, let us consider the problem of
regulating the distance betweenN vehicles in a platoon.Wemodel
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vehicle i, 1 ≤ i ≤ N , as
xi(k+ 1)
vi(k+ 1)


=


I +1T


0 1
0 −αi/mi

 
xi(k)
vi(k)


+


0

1Tβi/m


ūi(k)+


w̄i

1(k)
w̄i

2(k)


,

where xi(k) is the vehicle’s position, vi(k) its velocity,mi the mass,
αi the viscous drag coefficient, βi the power conversion quality
coefficient, and 1T the sampling time. For each vehicle, stochastic
exogenous inputs w̄i

j(k) ∈ Rn, j = 1, 2, capture the effect of wind,
road quality, friction, etc. A discussion regarding the modeling can
be found in [22]. For simplicity of presentation, let us consider the
case of N = 2 vehicles. In addition, assume that 1T = 1. As
performance objective, the designer wants to minimize the cost
function

J = lim sup
T→∞

1
T

T−1
k=0


qd(x1(k)− x2(k)− d∗)2

+


i=1,2

qv(vi(k)− v∗)2 + r(ūi(k)− ū∗i )
2,

where qd, qv , and r are positive constants that adjust the penalty
terms on the position error, the velocity errors, and the control
actions. Moreover, d∗ and v∗ denote the desired distance and
velocity of the platoon. Through minimizing J , we can regulate
the distance between the trucks and their velocity using the least
amount of control effort. Note that ū∗i = αiv

∗/βi is the average
control signal. We can write the reduced-order system using the
distance between vehicles and their velocities as state variables in
the form

z(k+ 1) = Az(k)+ Bu(k)+ w(k), z(0) = 0, (10)

where

z(k) = [v1(k)− v∗, x1(k)− x2(k)− d∗, v2(k)− v∗]⊤,

u(k) = [ū1(k)− ū∗1, ū2(k)− ū∗2]
⊤,

w(k) = [w̄1
2(k), w̄1

1(k)+ w̄2
1(k), w̄2

2(k)]
⊤,

and

A =


1−

α1

m1
0 0

1 1 −1

0 0 1−
α2

m2

 , B =


β1

m1
0

0 0

0
β2

m2

 .

This model leads to

J = lim sup
T→∞

1
T

T−1
k=0

z(k)TQz(k)+ u(k)TRu(k), (11)

where Q = diag(qv, qd, qv) and R = diag(r, r). To simplify the
presentation, let Q = I and R = I .

Note that z(0) = 0 in (10) indicates that the vehicles start at the
desired distance d∗ of each other and with velocity v∗. However,
due to the exogenous inputs w(k), the vehicles drift away from
this ideal situation. By minimizing the closed-loop performance
criterion in (11), the designer minimizes this drift using the least
amount of control effort possible.

We define the first subsystem as z1(k) = z1(k) and the second
subsystem as z2(k) = [z2(k) z3(k)]T . Therefore,

z1(k+ 1) = a11z1(k)+ b11u1(k)+ w1(k),

z2(k+ 1) =

1
0


z1(k)+


1 −1
0 a22


z2(k)

+


0
b22


u2(k)+


w2(k)
w3(k)


,

Fig. 1. The running cost of the closed-system for four controllers.

where (aii, bii) are local parameters of subsystem i. Assume that

A =


A ∈ R3×3

A =
a11 0 0

1 1 −1
0 0 a22


, a11, a22 ∈ [0, 1]


,

B =


B ∈ R3×2

B =
b11 0

0 0
0 b22


, b11, b22 ∈ [0.5, 1.5]


.

We compare the performance of the introduced adaptive
controller with a deadbeat control design strategy Γ ∆

: P →
R2×3 for this special family of systems as

Γ ∆(P) =


−a11/b11 0 0
1/b22 1/b22 −(1+ a22)/b22


,

for all P = (A, B) ∈ P . Note thatΓ ∆ is a limitedmodel information
control design strategy, because each local controller i is based
on only parameters of subsystem i, i = 1, 2. We also compare
the results with the centralized Campi–Kumar adaptive controller
Γ C(P) in [13]. Notice that this control design strategy does not
use the model information that is already available to each local
controller.

Fig. 1 illustrates the running cost of the closed-system with the
optimal control design with full model information K∗(P) (solid
red curve), the modified Campi–Kumar adaptive controller Γ ∗(P)
(dashed green curve), the deadbeat control design strategy Γ ∆(P)
(dotted black curve), and the centralized Campi–Kumar adap-
tive controller Γ C(P) (dashed–dotted magenta curve). The run-
ning costs of the closed-system with the modified Campi–Kumar
adaptive controller Γ ∗(P), the centralized Campi–Kumar adap-
tive controller Γ C(P), and the optimal control design with full
model information K∗(P) both converge to tr{X(A, B)} (the hori-
zontal line) as time goes to infinity. The cost of the optimal con-
trol design strategy with global model knowledge is always lower
than the cost of the adaptive controllers. Moreover, the cost of the
modified Campi–Kumar adaptive controller Γ ∗(P) is always lower
than the centralized Campi–Kumar adaptive controller Γ C(P)
because Γ ∗(P) uses the private model information that is avail-
able is each local controller; however, Γ C(P) ignores this infor-
mation. The simulation is done for randomly-selected parameters
(a11, b11) = (0.4360, 1.0497) and (a22, b22) = (0.0259, 0.9353).
Fig. 2 illustrates the convergence of the individual model param-
eters (aii, bii), i = 1, 2, for the adaptive subcontrollers. Note that
only one of the subsystems needs to estimate each parameter (as
each one has access to its own model parameters). Moreover, the
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Fig. 2. Estimation error of model parameters for the modified Campi–Kumar
adaptive controller Γ ∗(P).

results of Lemma 2 imply that the number of instances that the
parameter estimation error is above a fixed threshold grows loga-
rithmically. Therefore, such occurrences become rarer in average.
However, this does not imply that at any given time, or even on any
finite horizon, the estimation error is decreasing as onemay notice
from |b22 − b(1)

22 (k)| (the dashed–dotted curve) in Fig. 2.

5. Conclusion

In this paper, as a generalization of earlier results in optimal
control design with limited model information, we searched
over the set of control design strategies that construct adaptive
controllers. We found a minimizer of the competitive ratio both
in average and supremum senses. We used the Campi–Kumar
adaptive algorithm to setup an adaptive control design strategy
that achieves a competitive ratio equal to one contrary to control
design strategies that construct linear time-invariant control
laws. This adaptive controller asymptotically achieves closed-loop
performance equal to the optimal centralized controller with
full model information. As a future work, we suggest studying
decentralized adaptive controllers.
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