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Abstract:
The communication channel is a shared resource in networked control systems, and channel access
at every instant cannot be guaranteed. In this paper, we propose a novel architecture for control over
wireless networks with integrated medium access control (MAC). We evaluate the impact of constrained
channel access on the cost of controlling a single plant over a network and establish that the separation
principle holds under certain conditions on the MAC. We arrive at a classification of random access
methods for networked control systems and identify a structure for each method. Then, by evaluating
the increase in cost compared to a conventional setup, we identify an adaptive random access method
which uses a threshold-based decision criteria on the current data to determine channel access. Finally,
we give stability criteria for control applications using these medium access methods.
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1. INTRODUCTION

In a traditional control system, the controller receives mea-
surements of the plant state from sensors through dedicated
channel resources. Large bandwidths, guaranteed channel ac-
cess and negligible packet losses or delays characterize these
systems, making them transparent to the control designer. With
the advent of wireless networked control systems, the commu-
nication channel is far from ideal, and imposes constraints on
the application layer. In addition to limited bandwidth, packet
loss and delay, these networks do not guarantee channel access.
To arbitrate channel access amongst multiple sources of data,
networks use a multiple access mechanism, which is dealt with
by the MAC Layer.

Determining a multiple access strategy for control over net-
works is an open problem, with little work published so far, an
exception being Liu et al. (2004). There are many challenges
to be overcome while integrating feedback control and multiple
access. Most multiple access methods in communication litera-
ture try to divide the shared resource in a fair manner, with no
notion of priority. Delay-aware methods are required to ensure
that the channel is allotted to the packet whose delivery is crit-
ical to meet the system’s performance constraints. But, how do
we determine which packet is most critical to the performance
of its control system?

To answer this question, we must evaluate the impact of a
decision to transmit this packet or not. We are thus evaluating
the impact of medium access methods on the cost of controlling
a linear plant over a network. We consider random access
methods in particular, as they are used by open architectures
in the ISM band, like IEEE 802.15.4. When channel access
is not guaranteed at every sampling instant, the plant must
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settle for limited channel access and a higher cost of controlling
the process. We try to quantify this trade-off between channel
access and control cost for random access methods.

We consider a single plant controlled over a network in a dual
predictor architecture, which has a predictor at both ends of the
channel. This architecture has been proposed earlier by others
such as Xu et al. (2004). We design the MAC to be a decision
process, which decides to transmit the current packet or not.
This decision could be based on a coin flip, or on past channel
use, or even on the data in the current packet. But, in all cases,
a decision taken at the current step affects the plant state and
possibly decisions to be taken in the future. What decision law
would then be appropriate? Also, what control law should be
used? Does the separation principle still hold, when the decision
to transmit or not is taken based on the data in the current
packet?

In this paper, we try to answer the above questions. We find that
for a quadratic cost, under certain constraints, the separation
principle does hold. We classify random access methods based
on their decision criteria and derive the increase in cost for each
MAC. We identify an adaptive MAC that attempts to reduce the
increase in cost, with an adaptive decision law.

Random access methods from literature [Rom and Sidi (1990)]
can be classified on the basis outlined in this paper. Carrier
Sense Multiple Access (CSMA) methods with fixed or ex-
ponential backoff and p-persistent methods are examples of
random access methods that belong to categories in our clas-
sification. But, the Adaptive MAC does not seem to exist in
the literature today, as it is adapted to the application layer.
However, as we show, it may hold significant advantages over
other methods.

The analysis in this paper can be assigned other interpretations,
such as packet losses over an independent and identically
distributed (IID) erasure channel and an erasure channel with



Table 1. Signal Flow in the Dual Predictor Architecture

k 0 1 . . . n−1 n . . . N−1 N
Plant State x0 x1 xn−1 xn xN−1 xN

Prediction at Sensor x̂s
1 x̂s

2 x̂s
n x̂s

n+1 x̂s
N

Decision on Transmission γ0 γ1 γn−1 = 1 γn γN−1
Prediction at Controller x̂c

0 = x̂s
0 x̂c

1 x̂c
n−1 x̂c

n = x̂s
n x̂c

N−1
Control Signal u0 u1 un−1 un uN−1

Last Received Index τ0 =−1 τ1 τn−1 τn = n−1 τN−1

memory. These problems have been dealt with in the past by
Sinopoli et al. (2005) and Gupta et al. (2005). We also identify
conditions for stability, given packet losses or random channel
access, and find that we obtain results for the former consistent
with previous studies.

The rest of the paper is organized as follows. In Section 2, we
describe the system architecture and notation used in the paper.
We derive the Linear Quadratic Gaussian (LQG) cost function
with medium access control, and evaluate the increase in cost
due to limited channel access in Section 3. We present some
simulation results in Section 4 and conclude in Section 5.

2. DUAL PREDICTOR WITH MAC

In this section, we describe each block of the dual predictor
along with the MAC and introduce the notation we use to define
our problem.

We consider a single plant and controller, which communicate
over a network, as shown in Fig. 1. The plant has a state x∈Rn,
which evolves as

xk+1 = Axk +Buk +wk (1)
where A ∈ Rn×n is the state transition matrix and B ∈ Rn×p.
u ∈ Rp is the control signal. The process noise w is zero mean
white Gaussian with covariance Rw ∈ Rn×n.

The smart sensor attached to the plant consists of a sensor and
a predictor. The sensor measures y ∈ Rm, which can be related
to the plant state by

yk = Cxk + vk (2)
where C ∈Rm×n. The measurement noise v, uncorrelated to the
process noise w, is zero mean white Gaussian with covariance
Rv ∈ Rm×m. The predictor at the sensor (KFs) tracks the best
possible linear estimate of the state x̂s, with access to all
measurements until time k− 1. The state estimate is updated
as

Fig. 1. The system architecture (dual predictor) with MAC

x̂s
k+1 = Ax̂s

k +Buk +Kk(yk−Cx̂s
k)

Ps
k+1 = APs

k AT −KkRek KT
k +Rw

Rek = CPs
kCT +Rv

Kk = APs
kCT R−1

ek

(3)

The control signal uk is generated by running a copy of the
observer based controller at the smart sensor.

The sensor transmits the prediction x̂s over the network. Chan-
nel Access is controlled by a MAC block, whose functionality
is represented as

γk = f (τk, x̂s
k+1|k− x̂c

k+1|τk
) (4)

where γk is a binary random variable that assumes a value of 1
when the packet is granted channel access. Thus, we limit our
analysis to the class of random access methods in this paper.
The parameter, x̂c, is the predicted estimate at the controller
and τk is the index of the last packet to have been successfully
transmitted over the channel. The last received index τk can be
defined as

τk = max{i : γi = 1 and −1≤ i≤ k−1}
τk+1 = γ̄kτk + γkk,τ0 =−1

(5)

The observer-based controller consists of an observer (KFc)
and a time-varying control gain Lk. The observer determines an
estimate x̂c of the plant state, which is pegged to the estimate at
the sensor when the packet has access to the channel. When the
packet is denied channel access, this estimate is updated with
knowledge of the state model. Thus, we have

x̂c
k+1 = γ̄k(Ax̂c

k +Buk)+ γkx̂s
k+1 (6)

where γ̄k is the binary complement of γk. A control signal
uk =−Lkx̂c

k is generated, where Lk is derived in the next section.

This paper primarily investigates the MAC Layer, and hence we
assume that the physical channel is perfect, whenever accessed.
We also do not consider random access for the control signal.

Table 1 depicts the signal flow in this architecture. From the
table, we define the information sets Is

k and Ic
k, which describe

the information available to the predictors at the sensor and the
controller respectively.

Is
k = {Yk,Γk−1}; Ic

k = {Yτk ,Γk−1}
Yi = [y0...yi]T ; Γi = [γ0...γi]T

(7)

Now, our system definition is complete but for the function f
in the MAC block (4) and the time varying control gain Lk.
In the following sections, we evaluate the impact of the binary
decision variable γ on the cost of controlling the plant P, for the
generic function f defined in (4). While doing so, we derive the
time-varying optimal control gain Lk. Furthermore, we classify
the MAC based on the arguments of the function f and identify
suitable functions for each class, thus designing the MAC for
the dual predictor structure described above.



3. LQG AND MEDIUM ACCESS CONTROL

In this section, we introduce a classification of medium access
control methods and derive the Linear Quadratic Gaussian cost
for each. We identify three classes of random access methods,
relevant to this analysis.

• Static MAC: Static MAC protocols are random access
methods with a fixed channel access probability. The
access probability is independent of the current data or
the past history of transmissions. The functional block in
this method is a binary random number generator, such as
a coin flip.
• Dynamic MAC: Dynamic MAC protocols are random

access methods with a channel access probability that
evolves over time. The access probability is still inde-
pendent of the current data, but now depends on the past
history of transmissions. The functional block here is γk =
f (τk,0).

• Adaptive MAC: Adaptive MAC protocols are random ac-
cess methods with a channel access probability that de-
pends on the current data packet, and possibly, evolve over
time as well. The functional block here is given in (4).

We use the LQG cost criterion for the following analysis. The
expected loss criterion for a control loop with process state x
and control signal u is

E

[
xT

NQ0xN +
N−1

∑
s=0

(xT
s Q1xs +uT

s Q2us)

]
(8)

where Q0, Q1 and Q2 denote positive semi-definite matrices
of appropriate orders that penalize the path taken by the state
from x0 to xN and the required control signal. The optimal LQG
cost achieved with channel access at every sampling instant is
denoted J0 and defined as

J0 = x̂T
0 S0x̂0 + tr{S0P0}+

N-1

∑
s=0

tr{Q1Ps
s }+

N-1

∑
s=0

tr{Ss+1KsRes KT
s }+ tr{Q0Ps

N}

where Sk and Pk are solutions to the control and filter Riccati
equations, respectively. J is the LQG cost obtained with con-
strained channel access. For all three classes of MAC protocols,
we state the following theorem.
Theorem 1. Consider the system defined by (1)–(6). Suppose
that

i. γk is independent of x̂c
k+1|τk

, as in (4).
ii. f (τ,e) is symmetric in e for all τ .

Then, the LQG cost is equal to J = J0 + Jε , where J0 is given
above and Jε is given by

Jε =−
N−1

∑
k=0

tr{Sk+1KkRek KT
k }+

N−1

∑
k=0

E[tr{Sk+1

×E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kk+1−s ek+1−s eT
k+1−r

KT
k+1−r

Ar−1T
]}]

+E[tr{Q0 E[γ̄2
N−1

N−1−τN−1

∑
s=1

N−1−τN−1

∑
r=1

As−1KN−s eN−s

× eT
N−r

KT
N−r

Ar−1T
]}]+

N−1

∑
k=1

E[tr{Q1

×E[γ̄2
k−1

k−1−τk−1

∑
s=1

k−1−τk−1

∑
r=1

As−1Kk−s ek−s eT
k−r

KT
k−r

Ar−1T
]}]

(9)

Proof. We follow the approach outlined in Åström (2006), in
the proof of the separation principle, and express the cost at any
time k in terms of the cost at time k +1. Using the property

min
u

E[ f (x,u)] = E
θ

[
min

u
E[ f (x,u)|θ ]

]
we can write E[Vk], the minimum cost at time k, where

E[Vk] = min
uk,..,uN−1

E[xT
N

Q0xN +
N−1

∑
s=k

(xT
s Q1xs +uT

s Q2us)]

Vk = min
uk

E[xT
k Q1xk +uT

k Q2uk +Vk+1 | Ic
k]

is the Bellman Equation. The net cost is then given by J = E[V0],
where V0 is the minimal cost at time 0.

The dimension of the set Ic
k+1 increases with time. But, note

that any new measurements yi can be written as yi = ŷc
i + ec

i
for τk ≤ i ≤ τk+1. Using predictor (6), the innovation in the
measurements (ec

i ) is independent of the predicted estimate at
the controller (x̂c

i ) by design, and we note that x̂c
i contains all the

information in the set Yτi . Also, from τi, we can deduce γi−1.
Then, {x̂c

k,τk} are a sufficient statistic for the set Ic
k, and we can

write
E[Vk] = min

uk
E[xT

k Q1xk +uT
k Q2uk +Vk+1 | x̂c

k,τk]

Note that, for ec
i to be independent of x̂c

i , γi−1 must be indepen-
dent of x̂c

i (Condition (i) of Theorem 1).

We will show, using induction, that the solution to the Bellman
Equation is a quadratic function E[Vk] = x̂cT

k Skx̂c
k + sk for 0 ≤

k ≤ N, where S is a positive semi-definite matrix. The initial
condition at time N follows from this relationship

E[xT
i Qxi] = mT

i Qmi + tr{Q E[(xi−mi)(xi−mi)T ]}
where mi is the mean of the state xi, and Q is a positive semi-
definite matrix. Assuming that our conjecture is true at time
k +1, we have at time k -

E[Vk] = min
uk

E[xT
k Q1xk +uT

k Q2uk + x̂cT

k+1Sk+1x̂c
k+1 + sk+1|x̂c

k,τk]

We can express xk in terms of x̂c
k and τk as follows -

xk = x̂c
k + x̃c

k

x̃c
k = x̃s

k + γ̄k−1

k−1−τk−1

∑
s=1

As−1Kk−sek−s
(10)

Pc
k = Ps

k +E[γ̄2
k−1

k−1−τk−1

∑
s=1

k−1−τk−1

∑
r=1

As−1Kk−s ek−s eT
k+1−r

KT
k−r

Ar−1T
]

where x̃ denotes the estimation errors. Here, it cannot be
established that x̃c

k has zero mean, until we evaluate the ex-
pected value of the estimation error between the predictor at
the controller and the sensor (E[γ̄k−1 ∑

k−1−τk−1
s=1 As−1Kk−sek−s]).

Similarly, x̂c
k+1 can be written as

x̂c
k+1 = Ax̂c

k +Buk + γk

k−τk

∑
s=1

As−1Kk+1−sek+1−s

= x̂s
k+1− γ̄k

k−τk

∑
s=1

As−1Kk+1−sek+1−s

(11)

The expressions within expectations in (10) and (11) can be
simplified depending on the relationship between γk, {ek} and
Ic

k, where by {ek}, we refer to the set of innovations which have
not been communicated to the observer-based controller. For
a generic medium access controller, γk could depend on {ek}
and Ic

k. Hence, it is not possible to simplify the expressions
in (11). This also means that it is not trivial to define the
mean and variance of the conditional distribution of (xk|x̂c

k,τk)
or (x̂c

k+1|x̂c
k,τk). We simplify the problem by assuming that



the decision criterion in our scheduling strategy is symmet-
ric in {ek} (Condition (ii) of Theorem 1). This ensures that
E[γ̄k−1 ∑

k−1−τk−1
s=1 As−1Kk−sek−s] = 0 and consequently, in (10)

above, x̃c
k is zero mean. Then, we have

E[xk|x̂c
k,τk] = x̂c

k and E[x̃c
k x̃cT

k |x̂
c
k,τk] = Pc

k

E[x̂c
k+1|x̂

c
k,τk] = Ax̂c

k +Buk (12)

E[(x̂c
k+1−Ax̂c

k−Buk) (x̂c
k+1−Ax̂c

k−Buk)T |x̂c
k,τk]

= E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kek+1−s eT
k+1−r

KT Ar−1T
]

Now, we can simplify the cost at k, to get

E[Vk] = min
uk

[x̂cT

k Q1x̂c
k + tr{Q1Pc

k }+uT
k Q2uk

+ sk+1 +(Ax̂c
k +Buk)T Sk+1(Ax̂c

k +Buk)

+ tr{Sk+1 E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kek+1−s eT
k+1−r

KT Ar−1T
]}]

= x̂cT

k [Q1 +AT Sk+1A−AT Sk+1B(Q2 +BT Sk+1B)−1

×BT Sk+1A]x̂c
k + tr{Q1Pc

k }+ sk+1

+ tr{Sk+1 E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kek+1−s eT
k+1−r

KT Ar−1T
]}

= x̂cT

k Sk x̂c
k + sk and Lk = (Q2 +BT Sk+1B)−1BT Sk+1A

Thus, the induction is true at step k, and we have a solution to
the Bellman Equation. The control signal uk that minimizes the
cost here is a linear function of the estimated state at the con-
troller. Thus, we claim that the separation principle does hold
for random medium access methods under two constraints. The
first constraint requires the MAC decision to be independent of
the estimate at the controller at any time k. Thus, a decision to
transmit a packet must depend on the innovation in the data, or
the amount of data in the packet which is not already available
to the controller. The second constraint requires the criterion
(function f ) to be a symmetric function of the innovations set
{ek}. This constraint is sufficient, along with the first necessary
constraint, for the proof outlined above. It simply requires that
the absolute value of innovation, and not its sign, be taken into
account.

Now that we have the cost at any time k, we can find the net
cost of controlling this plant.

J = E[V0] = x̂T
0 S0x̂0 + tr{S0P0}+

N−1

∑
k=0

tr{Q1Ps
k}+ tr{Q0Ps

N}

+
N−1

∑
k=0

E[tr{Sk+1 E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kk+1−s ek+1−s

× eT
k+1−r

KT
k+1−r

Ar−1T
]}]+

N−1

∑
k=1

E[tr{Q1

×E[γ̄2
k−1

k−1−τk−1

∑
s=1

k−1−τk−1

∑
r=1

As−1Kk−s ek−s eT
k−r

KT
k−r

Ar−1T
]}]

+E[tr{Q0 E[γ̄2
N−1

N−1−τN−1

∑
s=1

N−1−τN−1

∑
r=1

As−1KN−s eN−s

× eT
N−r

KT
N−r

Ar−1T
]}]

Finally, the increase in cost is given by Jε in (9). This concludes
our proof of Theorem 1. 2

It is easy to show that Jε is always a positive quantity, and
it takes the value 0 when we have channel access at every
instant of time. When channel access is denied, the third and
fourth terms in (9) become non-zero quantities as they relate
to the increase in covariance of the estimate at the controller
with respect to the estimate at the sensor. Eventually, when

Fig. 2. A static medium access controller

the packet arrives, the first term exceeds the second term, as it
reflects the unused information at the sensor until this time. We
now derive corollaries for the three classes of medium access
control methods defined earlier.

3.1 Static MAC

Recall that γ here is independent of the data, or the innovations
set and the history of transmissions, or the information at the
controller, as depicted in Fig. 2. Thus, in a static MAC, p =
1− p̄ is the probability of accessing the channel. Then, the
probability distribution of τk, pτk , can be defined as

Pr(γ = 1) = p and Pr(γ = 0) = p̄ = 1− p

Pr(τk+1 = i) =
{

p̄k−i p 0≤ i≤ k
p̄k+1 i =−1

We now state the corollary of Theorem 1 applicable to Static
MACs.
Corollary 2. The condition for closed loop stability with the
use of a Static MAC is p̄ρ(A)2 < 1. The increase in LQG cost
over the nominal cost J0 is JεS, which is given by

JεS =
N−1

∑
k=0

p tr{Sk+1

k−1

∑
i=−1

Pr(τk = i)
k−i

∑
s=1

As−1Kk+1−s

×Rek+1−s KT
k+1−s

As−1T
]}]−

N−1

∑
k=0

tr{Sk+1KkRe,kKT
k }

+ p̄ tr{Q0

N−2

∑
i=−1

Pr(τN−1 = i)
N−1−i

∑
s=1

As−1KN−s

×ReN−s KT
N−s

As−1T
]}]+

N−1

∑
k=1

p̄ tr{Q1

k−2

∑
i=−1

Pr(τk−1 = i)

×
k−1−i

∑
s=1

As−1KRek−s KT As−1T
]}]

(13)

Proof. As γ is independent of the innovations and τ , we can
write

E[γ̄k−1

k−1−τk−1

∑
s=1

As−1Kk−sek−s]

= E[γ̄k−1]
k−1−τk−1

∑
s=1

As−1Kk−s E[ek−s] = 0

Thus, we have
E[x̂c

k+1|x̂
c
k,τk] = Ax̂c

k +Buk

E[γ2
k

k−τk

∑
s=1

k−τk

∑
r=1

As−1Kk+1−s ek+1−s eT
k+1−r

KT
k+1−s

Ar−1T
|x̂c

k,τk]

= γk

k−τk

∑
s=1

As−1Kk+1−s Rek+1−s KT
k+1−s

As−1T

Substituting these terms in the expression for Jε (9), we get
JεS (13), which is the increase in the LQG cost due to a Static
MAC.



Fig. 3. A dynamic medium access controller

The condition for stability is obtained from the Discrete Lya-
punov recursion, where ρ(A) is the spectral radius of the state
transition matrix.

Pc
k −Ps

k = p̄
k−2

∑
i=−1

Pr(τk−1 = i)
k−1−i

∑
s=1

As−1Kk−s Rek−s KT
k−s

As−1T

Pc
k+1−Ps

k+1 = p̄A(Pc
k −Ps

k )AT + p̄KkRek KT
k

The difference between Pc and Ps remains bounded, if
p̄ρ(A)2 < 1. Ps is the error covariance of a Kalman filter that
receives measurements at every sampling instant from a linear
plant driven by a known input. Thus, Ps is bounded, and stabil-
ity is ensured. This concludes our proof of Corollary 2. 2

Note that the results derived here are also applicable to an IID
Binary Erasure channel with packet loss probability p̄. This
case has been dealt with in Sinopoli et al. (2005).

3.2 Dynamic MAC

Here, γk depends on τk, or the history of transmissions, as
depicted in Fig. 3. If pi is the probability of accessing the
channel after i attempts in a Dynamic MAC with memory NM ,
then pτk+1 is given by

pi = Pr(γk = 1|τk = k− i)

pτk+1 =


NM

∑
i=1

pi Pr(τk = k− i) τk+1 = k

p̄i Pr(τk = k− i) τk+1 = k− i
where p̄i = 1− pi for 1≤ i≤ NM

(14)

We now state the Corollary of Theorem 1 applicable to Dy-
namic MACs.
Corollary 3. The condition for closed loop stability with a
Dynamic MAC is p̄iρ(A)2 < 1 for 2≤ i≤ NM and the increase
in LQG cost over the nominal cost J0 is given by

JεD =
N−1

∑
k=0

NM

∑
i=1

pi Pr(τk = k− i) tr{Sk+1

i

∑
s=1

As−1Kk+1−s

×Rek+1−s KT
k+1−s

As−1T
]}]−

N−1

∑
k=0

tr{Sk+1KkRek KT
k }

+
NM

∑
i=1

p̄i Pr(τN−1 = N−1− i) tr{Q0

i

∑
s=1

As−1KN−s ReN−s

×KT
N−s

As−1T
]}]+

N−1

∑
k=1

NM

∑
i=1

p̄i Pr(τk−1 = k−1− i)

× tr{Q1

i

∑
s=1

As−1Kk−s Rek−s KT
k−s

As−1T
]}]

for 1≤ i≤ NM

(15)

Proof. As γ is independent of the innovations, we can write

E[γ̄k−1

k−1−τk−1

∑
s=1

As−1Kk−sek−s]

= E

[
E[γ̄k−1|τk−1]

k−1−τk−1

∑
s=1

As−1Kk−sE[ek−s]

]
= 0

Fig. 4. An adaptive medium access controller

Then, we have
E[x̂c

k+1|x̂c
k,τk] = Ax̂c

k +Buk

Substituting these in the expression for Jε , we get JεD, which
is the increase in the LQG cost due to a Dynamic MAC.
The stability condition is derived from the following Discrete
Lyapunov recursion.

Pc
k −Ps

k =
NM

∑
i=1

(Pc
k −Ps

k )i

(Pc
k −Ps

k )i = p̄i Pr(τk−1 = k−1− i)
i

∑
s=1

As−1Kk−s Rek−s KT
k−s

As−1T

(Pc
k+1−Ps

k+1)i = p̄i+1A(Pc
k −Ps

k )iAT

Pc
k+1−Ps

k+1 =
NM

∑
i=1

(Pc
k+1−Ps

k+1)i +Pr(γk = 0)KkRek KT
k

This concludes our proof of Corollary 3. 2

Note that the results in this section are also applicable to a
Binary Erasure channel with memory.

3.3 Adaptive MAC

For the most general case, γ depends on the data in the packet
to be transmitted, or the innovations set and the history of
transmissions, or the information at the controller, as depicted
in Fig. 4. Jε was derived for the most general case, which is the
Adaptive MACs. We would like to design an Adaptive MAC
that reduces Jε and somehow stabilizes the closed loop system
as well. We can rewrite Pc

k from (10) as

Pc
k = Ps

k +E[(x̂s
k− x̂c

k)(x̂
s
k− x̂c

k)
T ]

By choosing to transmit when the error in the predicted esti-
mates exceeds a threshold ε , we achieve stability in the closed
loop. Thus, our decision criterion is

γk = 1 : |x̂s
k+1− x̂c

k+1|τk
|2 ≥ ε;

|x̂s
k+1− x̂c

k+1|τk
|2 = tr{(x̂s

k+1− x̂c
k+1|τk

)(x̂s
k+1− x̂c

k+1|τk
)T}

= tr{
k−τk

∑
s=1

k−τk

∑
r=1

As−1Kek+1−sek+1−r K
T Ar−1T }

This decision criterion also reduces Jε . Note that this criterion
satisfies both the constraints mentioned in the statement of The-
orem 1. Then, the term in the last equation above approximately
takes the value ε when a packet gains channel access, and is al-
ways less than ε when it does not. Thus, we can approximately
upper bound Jε when x ∈ R.

Jε .
N−1

∑
k=1

Q1ε Pr(γk−1 = 0)+Q0ε Pr(γN−1 = 0)

+
N−1

∑
k=0

Sk+1ε Pr(γk = 1)−
N−1

∑
k=0

Sk+1KkRek KT
k

Also, for ε < KkRek KT
k , the Adaptive MAC permits channel

access at every sampling instant, and Jε = 0.



Fig. 5. A comparison of the control cost with different MACs against the conventional cost. The parameter index refers to varying
the probability of channel access in the first attempt for all three MACs. The Adaptive MAC results in a significant reduction
in the cost of controlling the same plant over a network as against using a Static or Dynamic MAC.

For the Adaptive MAC designed above, the probability of
channel access at any time k is given by

Pr(γk = 1) = Pr(τk+1 = k) =
k+1

∑
i=1

pi Pr(τk = k− i)

Pr(γk = 0) = Pr(τk+1 6= k) =
k+1

∑
i=1

p̄i Pr(τk = k− i)

where pi is the probability of accessing the channel after i at-
tempts. In the above equation, pτk is the probability distribution
of τ , which evolves as shown below.

pτk =



k

∑
i=1

pi Pr(τk−1 = k−1− i) τk = k−1

p̄i−1 Pr(τk−1 = k− i) τk = k− i
...
p̄k Pr(τk−1 =−1) τk =−1

where p̄i = 1− pi

Finally, pi is defined as

pi = Pr(|x̂s
k+1− x̂c

k+1|k−i|
2 ≥ ε)

= 1−φ
χ2

1

(
ε

∑
i
s=1 As−1Kk+1−sRek+1−s K

T
k+1−s

As−1T

)
where φ

χ2
1

is the cumulative distribution function of a Chi-
squared distribution with one degree of freedom.

4. SIMULATION

Fig. 5 shows the results of a simulation of a scalar plant with
different MACs. For the static MAC, the cost of controlling
the plant increases drastically over the conventional cost as p
varies from 1 to 0.3. For the dynamic MAC, the increase in
cost is considerably reduced for a similar variation in p1 as
the maximum delay is bounded by the memory of the channel.
For the adaptive MAC, ε varies from 0 to 0.7, which results in
nearly the same p1. However, the performance improvement
is dramatic, and such methods show considerable potential

in reducing the cost of controlling a plant over an unreliable
network.

5. CONCLUSION

We have analyzed the effect of the medium access controller
on a quadratic cost function, and find that there is an additive
increase in cost associated with the decision statistics of the
MAC. Furthermore, we were able to establish that the separa-
tion principle holds for decision criteria based on (a symmetric
function of) the innovation in the data to be transmitted. An
adaptive MAC, which uses a threshold based decision criterion,
has been designed, and verified through simulations, to reduce
the increase in cost associated with MAC. But, finding the
optimal adaptive method remains a challenge, especially when
the problem is extended to include multiple loops over a shared
network.
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