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Abstract—This paper analyzes the exponential stability
of a discrete-time linear plant in feedback control over a
communication network with N sensor nodes, dynamic
quantization, large communication delays, variable sam-
pling intervals, and round-robin scheduling. The closed-
loop system is modeled as a switched system with multiple-
ordered time-varying delays and bounded disturbances. We
propose a time-triggered zooming algorithm implemented
at the sensors that preserves exponential stability of the
closed-loop system. A direct Lyapunov approach is pre-
sented for initialization of the zoom variable. The proposed
framework can be applied to the plants with polytopic type
uncertainties. The effectiveness of the method is illustrated
on cart-pendulum and quadruple-tank processes.

Index Terms—Dynamic quantization, Lyapunov method,
networked control systems (NCSs), round-robin protocol,
switched time-delay systems.

I. INTRODUCTION

T HE rapidly developing wireless communication tech-
nology enables networked control systems (NCSs) with

increased flexibility, ease of installation, and reduced costs [9],
[26]. In many such systems, the transmissions are constrained
by bandwidth limitations and interference [3], [7], [33].

In such systems, one of the constraints associated with con-
trol over communication networks is that only a subset of
sensors and actuators can transmit their data over the channel
at each transmission instant. Therefore, protocols are needed
to schedule which node is given access to the network at
each time instant. There are three main classes of scheduling
protocols: 1) periodic protocols, of which round-robin is a spe-
cial case [7], [20], [21]; 2) quadratic protocols, which include
try-once-discard protocol [7], [20], [21], [30]; and 3) stochastic
protocols [2], [3], [18], [28].
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Another communication constraint is that transmitted data
should be quantized before they are sent from the sensor to
the controller/actuator [11], [32], [34]. Quantization is imple-
mented by a device that converts a real-valued signal into a
piecewise constant one with a finite set of values. Quantized
control has been paid considerable attention in recent years.
When the system is affected by a static quantizer, a simple
approach is to treat the quantization interval as uncertainty
[6], [25], and to bound the uncertainty by using the sector
bound approach [5]. Dynamic quantization was proposed in
[1], where the quantizer incorporated an adjustable “zoom”
variable. General types of dynamic quantizers were studied in
[11]–[13].

By simultaneously considering dynamic quantization and
scheduling protocols, a unified framework was provided in
[20] for the analysis of NCSs via a hybrid system approach.
However, delays were not included in the analysis. A linear
matrix inequality (LMI)-based time-triggered zooming algo-
rithm was presented in [17] via a time-delay system approach
for NCSs with dynamic quantization and variable communi-
cation delays. As pointed out in [17], taking communication
delays into consideration leads to additional challenges: 1) the
closed-loop system and the resulting solution bounds should be
formulated in terms of updating time instants at the actuators,
while the zooming algorithm should be given in terms of sam-
pling instants at the sensors; and 2) the solution bounds should
include additional bounds on the first time interval of the delay
length [15]. In [17], the zooming algorithm was proposed in
terms of sampling instants at the sensors and a direct Lyapunov
approach was presented for initialization of the zoom variable.
However, scheduling protocols were not taken into account.
This observation and the need for scheduling in wireless NCSs
motivate us to develop a time-delay system approach for linear
NCSs under scheduling and dynamic quantization.

In this paper, we consider the stability analysis of discrete-
time NCSs with N sensor nodes. The system involves dynamic
quantization, large communication delays, variable sampling
intervals, and round-robin scheduling protocol. The closed-loop
quantized system is modeled as a switched system with multi-
ple and ordered time-varying delays and bounded disturbances.
In the presence of the round-robin protocol, a time-triggered
zooming algorithm, which is implemented at the sensors, is
proposed and it is shown to lead to an exponentially stable
closed-loop system. After each zooming-in instant, we sug-
gest waiting for all the N latest transmitted measurements to
arrive at the controller side and then sending them together to
the actuator side. Following [15], we present a direct Lyapunov
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Fig. 1. NCSs with quantizers and round-robin scheduling.

approach for initialization of the zoom variable. Polytopic type
uncertainties in the plant model can be easily incorporated in
the framework.

This paper is organized as follows. Section II defines the
model of the considered quantized discrete-time NCSs under
round-robin scheduling. An input-to-state stability (ISS) condi-
tion is derived by a Lyapunov method for the switched closed-
loop system model. Based on this ISS condition, Section III
proposes an LMI-based zooming algorithm for the dynamic
quantization. It is shown that it leads to exponential stability of
the closed-loop system. Two illustrative examples are discussed
in Section IV. The conclusion and future work are finally stated
in Section V.

Notations: The superscript “T ” stands for matrix transposi-
tion, Rn denotes the n-dimensional Euclidean space with vector
norm | · |, Rn×m is the set of all n×m real matrices, and the
notation P >0, for P ∈ R

n×n means that P is symmetric and
positive definite. The symbol ∗ represents the symmetric term
of a symmetric matrix. Z+ and N denote the set of nonnega-
tive and positive integers, respectively. �x� denotes the largest
integer k such that k ≤ x, i.e., �x� = max{k ∈ Z : k ≤ x}.
�x� denotes the smallest integer k such that k ≥ x, i.e., �x� =
min{k ∈ Z : k ≥ x}.

II. NCS MODEL AND PROBLEM FORMULATION

In this section, we present the considered discrete-time NCS
model and some preliminary results on the problem to be solved
in this paper.

A. Quantized NCS Under Round-Robin Scheduling

The quantized NCS is depicted schematically in Fig. 1. It
consists of a linear discrete-time plant, N distributed sensors
and quantizers, a controller node and an actuator node, which
are all connected via communication networks. The discrete-
time plant is given by

x(k + 1) = Ax(k) +Bu(k), k ∈ Z
+ (1)

where x(k) ∈ R
n denotes the state of the plant, and u(k) ∈

R
nu the control input. The matrices A and B may be certain

or uncertain. The initial condition is given by x(0) = x0. It
is assumed that x0 may be unknown, but satisfies the bound

|x0| < X0, where X0 > 0 is known. The assumption on bound-
edness of the initial state is common, e.g., for interval observer
design [23].

The measurement outputs of the plant are described
by yi(k) = Cix(k) ∈ R

ni , i = 1, . . . , N,
∑N

i=1 ni = ny . We

denote C =
[
CT

1 · · · CT
N

]T
, y(k) =

[
yT1 (k) · · · yTN (k)

]T ∈
R

ny . Following [6], we consider the quantization effect from
the sensors to the controller.

Let zi(k) ∈ R
ni , i = 1, . . . , N, be the vectors to be

quantized. The quantizers are piecewise constant functions
qi(zi(k)): Rni → Di, where Di is a finite subset of Rni , i =
1, . . . , N . It is assumed that there exist real numbers Mi >
Δi > 0, i = 1, . . . , N, such that the following two conditions
hold:

1) if |zi(k)| ≤ Mi, then |qi(zi(k))− zi(k)| ≤ Δi;
2) if |zi(k)| > Mi, then |qi(zi(k))| > Mi −Δi

where Δi and Mi are the quantization interval bounds and
ranges, respectively. Condition 1) gives a bound on the quan-
tization interval when the quantizer does not saturate, and
condition 2) provides a way to detect saturation.

We consider quantized measurements as in [11]

qiμ(zi(k)) := μ(k)qi

(
zi(k)

μ(k)

)
, i = 1, . . . , N (2)

where μ(k) > 0 is the zoom variable. The range of the quan-
tizer qiμ is μ(k)Mi and the quantization interval is μ(k)Δi,
i = 1, . . . , N . The zoom variable μ(k) changes dynamically to
achieve exponential stability.

Let sp represent the unbounded and monotonously increas-
ing sequence of sampling instants, i.e.,

0 = s0 < s1 < · · · < sp < · · · , p ∈ Z
+

lim
p→∞ sp = ∞, sp+1 − sp ≤ MATI (3)

where {sp} is a subsequence of Z
+ and MATI denotes

the maximum allowable transmission interval. Denote by
qμ(ŷ(sp)) = [qT1μ(ŷ1(sp)) · · · qTNμ(ŷN (sp))]

T ∈ R
ny the out-

put information submitted to the scheduling protocol. At
each sampling instant sp, one of the outputs yi(sp) ∈ R

ni is
quantized and transmitted over the network, i.e., one of the
qiμ(ŷi(sp)) values is updated with the recent quantized output
qiμ(yi(sp)). Let i∗p ∈ I = {1, . . . , N} denote the active output
node at the sampling instant sp, which will be chosen according
to the scheduling protocol below.

Consider round-robin scheduling for the choice of the active
quantized output node: qiμ(yi(k)) = qiμ(Cix(k)), k ∈ Z

+, is
transmitted only at the sampling instant k = sN�+i−1, � ∈ Z

+,
i = 1, . . . , N . After each transmission and reception, the val-
ues in qiμ(yi(k)) are updated with the newly received values,
while the values of qjμ(yj(k)) for j �= i remain the same, as no
additional information is received. This leads to the constrained
data exchange expressed as

qiμ(ŷi(sp)) ={
qiμ(yi(sp)) = qiμ(Cix(sp)), p = N�+ i− 1,

qiμ(ŷi(sp−1)), p �= N�+ i− 1,
� ∈ Z

+.

(4)
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It is assumed that data packet loss does not occur. Denote by
tp the updating time instant of the zero-order holder (ZOH).
Suppose that the updating data at the instant tp on the actuator
side has experienced a variable transmission delay ηp = tp −
sp. As in [19], the delays may be either smaller or larger than
the sampling interval provided that the transmission order of
data packets is maintained. Assume that the network-induced
delay ηp and the time span between the updating and the current
sampling instants are bounded

tp+1 − 1− tp + ηp ≤ τNM , 0 ≤ ηm ≤ ηp ≤ ηM , p ∈ Z
+

(5)
where τNM , ηm, and ηM are known nonnegative integers. Then,
we have

(tp+1 − 1)− sp = sp+1 − sp + ηp+1 − 1
≤ MATI + ηM − 1 = τNM

(tp+1 − 1)− sp−N+j = sp+1 − sp−N+j + ηp+1 − 1
≤ (N − j + 1)MATI + ηM − 1
= (N − j + 1)τNM − (N − j)ηM

+N − j
Δ
= τ jM , j = 1, . . . , N − 1

tp+1 − tp ≤ τNM − ηm + 1.
(6)

B. Switched System Model

Next, we introduce a switched system model as the closed-
loop system of NCS provided above. Suppose that the controller
and the actuator are event-driven. The most recent output infor-
mation on the controller side is denoted by qμ(ŷ(sp)). Assume
that there exists a matrix K = [K1 . . . KN ], Ki ∈ R

m×ni

such that A+BKC is Schur stable. Consider the static output
feedback controller

u(k) = Kqμ(ŷ(sp)), k ∈ [tp, tp+1 − 1], k ∈ Z
+. (7)

Due to (4), the controller (7) can be represented as

u(k) = Ki∗pqi∗pμ(yi∗p(tp − ηp))

+
N∑

i=1,i�=i∗p

Kiqiμ(ŷi(tp−1−ηp−1)), k ∈ [tp, tp+1−1]

(8)
where i∗p is the index of the active node at sp and ηp is the com-
munication delay. The closed-loop system with round-robin
scheduling is modeled as a switched system

x(k + 1) = Ax(k) +
N∑
j=1

Aθ(i,j)x(tp−N+j − ηp−N+j)

+

N∑
j=1

Bθ(i,j)ωθ(i,j)(k), k ∈ [tp, tp+1−1], i = 1, . . . , N

(9)
where Aθ(i,j) = BKθ(i,j)Cθ(i,j), Bθ(i,j) = BKθ(i,j)

p =

{
N�+ i− 1, for i ∈ I\{N}, � ∈ N

N�− 1, for i = N, � ∈ N

θ(i, j) =

{
i+ j, if i+ j ≤ N,
i+ j −N, if i+ j > N, j = 1, . . . , N

and

ωθ(i,j)(k) = qθ(i,j)μ(yθ(i,j)(sp−N+j))− yθ(i,j)(sp−N+j)
i ∈ I, j = 1, . . . , N

denote the quantization intervals. If |yθ(i,j)(sp−N+j)| ≤
μ(k)Mθ(i,j), then |ωθ(i,j)(k)| ≤ μ(k)Δθ(i,j), i ∈ I, j =
1, . . . , N, for k ∈ [tp, tp+1 − 1].

We represent tp−N+j − ηp−N+j = k − τj(k), j =
1, . . . , N, where

τϑ(k) < τϑ−1(k), ϑ = 2, . . . , N
τϑ(k) = k − tp−N+ϑ + ηp−N+ϑ

τϑ−1(k) = k − tp−N+ϑ−1 + ηp−N+ϑ−1

τj(k) ∈ [ηm, τ jM ], k ∈ [tp, tp+1 − 1], j = 1, . . . , N.

(10)

Therefore, (9) can be considered as a system with N
time-varying interval delays, where τϑ(k) < τϑ−1(k), ϑ =
2, . . . , N .

The objective of this paper is to find an LMI-based
time-triggered zooming algorithm [i.e., to choose a suitable
time-varying parameter μ(k)] for exponential stability of the
switched system (9). To do so, we first present a lemma for
ISS of system (9) with static quantization [i.e., μ(k) ≡ μ]. This
lemma plays a key role in achieving the main results.

C. ISS Under Round-Robin Scheduling and Static
Quantization

Definition 1: The switched system (9) is said to be ISS if
there exist constants b > 0, 0 < κ < 1 and b′ > 0 such that,
for initial condition xtN−1

∈ R
n × · · · × R

n︸ ︷︷ ︸
τ1
M+1 times

and for distur-

bances ωi, i = 1, . . . , N, the solutions of the switched system
(9) satisfy

|x(k)|2 ≤ bκ2(k−tN−1)‖xtN−1
‖2c

+ b′ max{|ω(tN−1)|2, . . . , |ω(k)|2}, k ≥ ttN−1

where ‖xtN−1
‖c = suptN−1−τ1

M≤s≤tN−1
|x(s)| and ω =

col{ω1, . . . , ωN}.
Consider first static quantizers with a constant zoom vari-

able μ(k) ≡ μ. We apply the following discrete-time Lyapunov
functional to (9) with time-varying delay from the maximum
delay interval [ηm, τ1M ] [4]

V (xk) = xT (k)Px(k) +
k−1∑

s=k−ηm

λk−s−1xT (s)S0x(s)

+ηm

−1∑
j=−ηm

k−1∑
s=k+j

λk−s−1ηT (s)R0η(s)

+

k−ηm−1∑
s=k−τ1

M

λk−s−1xT (s)S1x(s)

+(τ1M − ηm)

−ηm−1∑
j=−τ1

M

k−1∑
s=k+j

λk−s−1ηT (s)R1η(s)

η(k) = x(k + 1)− x(k),
P > 0, Si > 0, Ri > 0, i = 0, 1, 0 < λ < 1

(11)
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where xk(j)
Δ
= x(k + j), j = −τ1M , . . . ,−1, 0, and x(k) =

x0, k = −τ1M , . . . ,−1, 0. Following [4], we find conditions
such that

V (xk+1)− λV (xk)−
N∑
i=1

bi|ωi(k)|2 ≤ 0, k ≥ tN−1

(12)
holds, where 0 < λ < 1, bi > 0, i = 1, . . . , N . Then, we arrive
at the following conditions to guarantee (12) and thus, for ISS
of the switched system (9).

Lemma 1: Given scalar 0 < λ < 1, positive integers 0 ≤
ηm < τNM , and Ki, i = 1, . . . , N , assume that there exist scalars
bi > 0, i = 1, . . . , N, n× n matrices P > 0, Si > 0, Ri >
0, i = 0, 1, Gi

�,ϑ i = 1, . . . , N, � = 1, . . . , N, ϑ = 2, . . . , N +
1, � < ϑ, such that the following LMIs are feasible:

Ωi =

[
R1 ∗

(Gi
�,ϑ)

T R1

]
≥ 0 (13)⎡

⎣ Ψ ∗ ∗
PF i

0 −P ∗
H(F i

0 − F1) 0 −H

⎤
⎦ < 0 (14)

where

F i
0 = [A 0n×n Aθ(i,N) . . . Aθ(i,1) 0n×n Bθ(i,N) . . . Bθ(i,1)]

F1=[In 0n×((N+2)n+ny)], F2=[0n×n In 0n×((N+1)n+ny)],
. . . , FN+3 = [0n×((N+2)n) In 0n×ny

]

Σ = diag{S0 − λP,−ληm(S0 − S1), 0(Nn)×(Nn),−λτ1
MS1,

−bθ(i,N)Iθ(i,N), . . . ,−bθ(i,1)Iθ(i,1)}
Ψ = Σ− ληm(F1 − F2)

TR0(F1 − F2)

−λτ1
M

N+2∑
i=2

(Fi − Fi+1)
TR1(Fi − Fi+1)

−2λτ1
M

N+1∑
j=2

(Fj − Fj+1)
T

N+2∑
s=j+1

Gi
j−1,s−1(Fs − Fs+1)

H = η2mR0 + (τ1M − ηm)2R1, i = 1, . . . , N.
(15)

Let μ > 0 be a constant and |ωi(k)| ≤ μΔi, i = 1, . . . , N .
Then, the solutions of the switched system (9) with the ini-
tial conditions xtN−1

∈ R
n × · · · × R

n︸ ︷︷ ︸
τ1
M+1 times

satisfy the following

inequalities:

V (xk) ≤ λk−tN−1V (xtN−1
) +

μ2

1− λ

N∑
i=1

biΔ
2
i , k ≥ tN−1.

(16)

Proof: See the Appendix. �
In order to derive a bound on V (tN−1) in terms of x0 in a

simple way, we suggest waiting for all the N latest transmitted
measurements q1μ(y1(s0)), q2μ(y2(s1)), . . . , qNμ(yN (sN−1))
on the controller side and then sending them together to the
actuator side. This is a reasonable approach which can be easily
implemented. Then for k = 0, 1, . . ., tN−1 − 1, (1) is given by

x(k + 1) = Ax(k), k = 0, 1, . . ., tN−1 − 1. (17)

Remark 1: A common Lyapunov functional (11) has been
applied to the switched system (9) to derive sufficient con-
ditions for ISS. It should be pointed out that the multiple

Lyapunov functional method and dwell time approach can be
utilized to find a suitable switching signal to improve perfor-
mance [8], [27].

III. MAIN RESULTS: DYNAMIC QUANTIZATION OF NCSS

UNDER ROUND-ROBIN SCHEDULING

In the following, based on ISS of system (9), we present
the main results on dynamic quantization of NCSs in the
presence of round-robin scheduling. By defining the initial
and level sets in Section III-A, in Section III-B, we propose
an LMI-based time-triggered zooming algorithm for exponen-
tial stability of the switched system (9). In Section III-C, we
develop a novel Lyapunov-based method to initialize the zoom
parameter. Under the round-robin protocol scheduling, digit “1”
is transmitted in the protocol along with the measurements at
the zooming-in sampling instants (otherwise, digit “0” is trans-
mitted). Thus, on the controller side, it is known whether the
zoom variable μ of the received measurement is updated or
not. Once the value of μ is updated, all N latest transmitted
measurements are waited on the controller side and then sent
together to the actuator side.

A. Initial and Level Sets

Given positive numbers σ and ρ, the initial and level sets are
defined as

Sσ = {xtN−1
∈ R

n × · · · × R
n︸ ︷︷ ︸

τ1
M+1 times

: V (xtN−1
) < σ,

xT (k)Px(k) < σ, k ∈ [tN−1 − ηM , tN−1]}
(18)

and

Xk∗,ρ={xk ∈R
n ×. . .× R

n︸ ︷︷ ︸
τ1
M+1 times

: V (xk)<ρ, k=k∗, k∗+1, . . . }

respectively. Given positive numbers μ, M0, β < 1 and ν <
1, the following lemma ensures that all solutions of (9) with
xtN−1

∈ Sμ2M2
0

stay inside the region XtN−1,(1+βν2)μ2M2
0

for
all k ≥ tN−1, and enter a smaller region XtN−1+T,ν2μ2M2

0
in a

finite time T .
Lemma 2: Given Mj > 0, j = 0, 1, . . . , N, Δi > 0, i =

1, . . . , N, positive integers 0 ≤ ηm < τNM and tuning parame-
ters 0 < λ < 1, 0 < ν < 1, assume that there exist scalars 0 <
β < 1, bi, i = 1, . . . , N, n× n matrices P > 0, Si > 0, Ri >
0, i = 0, 1, Gi

�,j i = 1, . . . , N, � = 1, . . . , N, j = 2, . . . , N +
1, � < j, such that LMIs (13) and (14) and

(1 + βν2)M2
0C

T
i Ci < PM2

i , i = 1, . . . , N (19)

1

1− λ

N∑
i=1

biΔ
2
i < βν2M2

0 (20)

hold. Let μ > 0 be a constant. Then, the solutions of (9) that
start in the region Sμ2M2

0

1) satisfy |Cix(tp − ηp)| = |yi(tp − ηp)| < μMi,
p ∈ Z

+, (implying |ωi(k)| ≤ μΔi for all i ∈ I and
k = tN−1, tN−1 + 1, . . . );



LIU et al.: QUANTIZED CONTROL UNDER ROUND-ROBIN COMMUNICATION PROTOCOL 4465

Fig. 2. Algorithm for dynamic quantization and round-robin scheduling.

2) remain in the set XtN−1,(1+βν2)μ2M2
0

;
3) enter a smaller set XtN−1+T,ν2μ2M2

0
in a finite time T =

�T̃ �, where T̃ is the solution of

λT̃ = (1− β)ν2. (21)

The proof of Lemma 2 follows from [17]. The second
inequality in (18) allows us to guarantee the bounds on
y(sp), sp < tN−1 by verifying (19).

Remark 2: The functional V (xk) is a standard Lyapunov
functional for delay-dependent analysis. The LMIs of Lemma 2
are feasible for small enough delay bound τNM , large enough
quantization ranges M1, . . . ,MN , and small enough quanti-
zation intervals Δ1, . . . ,ΔN . Indeed, the LMIs (13) and (14)
are feasible for τNM = 0 (i.e., in the absence of delay) since
A+BKC is Schur stable. Hence, (13) and (14) are feasible
for small enough τNM . The LMIs (19) and (20) are feasible for
large enough quantization ranges and small enough quantiza-
tion intervals. Moreover, the initial values of λ and ν can be set
to be 1. It is noted that the conditions are sufficient only and
always may be improved.

B. Dynamic Quantization and Zooming Algorithm

In this section, we consider dynamic quantizers with the
zoom variable μ. Zooming is performed on the sensor level.
Therefore, in the closed-loop system, μ = μ(sp) is constant on
[tp, tp+1 − 1].

Given μ0 > 0, let μ = μ0, xtN−1
∈ Sμ2M2

0
= Sμ2

0M
2
0

. We
will show how to choose μ0 in Theorem 1 below. Assume that
LMIs of Lemma 2 are feasible. In the sequel, we propose a
zooming-in algorithm in Fig. 2, where μ is decreased and thus,
the resulting quantization interval is reduced to drive the state
of (9) to the origin exponentially.

Definition 2: If there exist constants b > 0 and 0 < κ < 1
such that

|x(k)|2 ≤ bκ2(k−tN−1)μ2
0M

2
0 ∀k ≥ tN−1, k ∈ N

for the solutions of the system (9) initialized with xtN−1
∈

Sμ2
0M

2
0

, then the system (9) with |ωi(k)| ≤ μΔi, i = 1, . . . , N,
is said to be exponentially stable with decay rate κ for some
choice of the zoom variable μ > 0.

Proposition 1: Assume that the LMIs of Lemma 2 are feasi-
ble. Given μ0 > 0, let μ = μ0, xtN−1

∈ Sμ2
0M

2
0

. Then under the
algorithm in Fig. 2, the system (9) is exponentially stable with

a decay rate κ = ν
1

τ̄M , where

τ̄M = T +NτNM + 2ηM −Nηm − ηm +N. (22)

Proof: Set r = 0. Since

tp1
−ηM =sp1

+ ηp1
−ηM≥tN−1+T + ηp1

−ηm≥tN−1+T

application of Lemma 2 with μ = μ0 leads to

xT (k)Px(k) ≤ V (xk) < ν2μ2
0M

2
0 ∀k ≥ tp1

− ηM , k ∈ N.

Set r = 1. We wait for all N latest transmitted mea-
surements to arrive into the reduced domain with
xT (sp)C

T
i Cix(sp) < μ2

0ν
2M2

i , i = 1, . . . , N for p ≥ p1,
where |ωi(k)| ≤ μ0νΔi, k ≥ tp1

, k ∈ N. After sampling
instant sp1+N−1, the resulting closed-loop system has initial
condition

xtp1+N−1
∈ R

n × · · · × R
n︸ ︷︷ ︸

τ1
M+1 times

: V (xtp1+N−1
) < ν2μ2

0M
2
0 .

(23)
Then, Lemma 2 is applied with μ = μ0ν, where tN−1 and
ηN−1 are changed by tp1+N−1 and ηp1+N−1, respectively.
Thus, the solutions of (9) initiated by (23) remain in a
region Xtp1+N−1,(1+βν2)ν2μ2

0M
2
0

for all k ≥ tp1+N−1, k ∈
N. Since sp1+N−1 = tp1+N−1 − ηp1+N−1 ≥ tp1+N−1 − ηM ,
from (19) it follows that:

xT (sp)C
T
i Cix(sp) <

xT (sp)Px(sp)·ν2μ2
0M

2
i

(1+βν2)ν2μ2
0M

2
0

< ν2μ2
0M

2
i ,

i = 1, . . . , N ∀p ≥ p1 +N − 1

and thus, |ωi(k)| ≤ νμ0Δi, i = 1, . . . , N, k ≥ tp1+N−1 =
sp1+N−1 + ηp1+N−1. Therefore, for k ≥ tp2

− ηM ≥
tp1+N−1 + T

V (xk) ≤ λk−tp1+N−1V (xtp1+N−1
) +

ν2μ2
0

1− λ

N∑
i=1

biΔ
2
i

≤ λTV (xtp1+N−1
) +

ν2μ2
0

1− λ

N∑
i=1

biΔ
2
i

< (1− β)ν2 · ν2μ2
0M

2
0 + βν2μ2

0M
2
0 · ν2

= ν4μ2
0M

2
0 .

Similarly, for r = 2, 3, . . . we have V (xk) < ν2rμ2
0M

2
0 for all

k ∈ [tpr
− ηM , tpr+1

− ηM − 1]. Noting that

rT + (r − 1)(2ηM − ηm +N − 1) + tN−1 ≤ tpr
− ηM

≤ k ≤ tpr+1
− ηM − 1 < (r + 1)τ̄M − 1 + tN−1
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we obtain

V (xk) < ν2rμ2
0M

2
0 < ν

2
(

k−tN−1
τ̄M

− τ̄M−1

τ̄M

)
μ2
0M

2
0

= ν
− 2(τ̄M−1)

τ̄M

(
ν

1
τ̄M

)2(k−tN−1)

μ2
0M

2
0 ,

k ∈ [tpr
− ηM , tpr+1

− ηM − 1], r ∈ N.

Then, the following holds for k ≥ tN−1:

|x(k)|2 ≤ ν
− 2(τ̄M−1)

τ̄M [λmin(P )]−1

×
(
ν

1
τ̄M

)2(k−tN−1)

μ2
0M

2
0 . �

Remark 3: In the above analysis, it is assumed that data
packet dropout does not occur. However, for small delays ηp <
sp+1 − sp, if the number of successive packet dropouts is upper
bounded by d̄, in the presence of round-robin scheduling we
could accommodate for packet dropouts by modeling them as
prolongations of the transmission interval and replace T by
T + 2d̄ ·MATI in the algorithm.

C. Initialization of the Zoom Variable

The algorithm of the previous section is given in terms of the
initial set Sμ2

0M
2
0

that involves the bound on V (xtN−1
). In this

section, we find the ball of initial conditions x(0) = x0, starting
from which the solutions of (9) and (17) remain in the initial set
Sμ2

0M
2
0

. From (5) and the bound

sN−2 = sN−2 − sN−3 + sN−3 − · · ·+ s1 − s0
≤ (N − 2)(τNM − ηm + 1)

it holds that

tN−1 ≤ sN−2 + τNM + 1

≤ (N − 2)(τNM − ηm + 1) + τNM + 1
Δ
= τ̂M .

(24)

Then following [15], we derive a bound on V (xtN−1
) in terms

of x0 in the next lemma:
Lemma 3: [15] Consider Lyapunov functional V (xk) given

by (11) and denote V0(k) = xT (k)Px(k). Under the constant
initial condition x(k) = x0, k < 0, if there exist 0 < λ < 1 and
c > 1 such that the following inequalities:

V0(k + 1)− cV0(k) ≤ 0 (25a)

V (xk+1)− λV (xk)− (c− 1)V0(k) ≤ 0 (25b)

hold for k = 0, 1, . . . , tN−1 − 1 along (17), then we have

V0(k) ≤ λmax(c
τ̂MP )|x0|2, k = 0, 1, . . . , tN−1

V (xtN−1
) ≤ λmax(c

τ̂MP +Ω)|x0|2 (26)

where τ̂M is given by (24) and

Ω = ηmS0 + ληm(τ1M − ηm)S1. (27)

As a consequence, we achieve our main result:
Theorem 1: Given Mj > 0, j = 0, 1, . . . , N, Δi > 0, i =

1, . . . , N, positive integers 0 ≤ ηm ≤ ηM < τNM and tuning
parameters 0 < λ < 1, 0 < ν < 1, c > 1, assume that there
exist scalars 0 < β < 1, bi, i = 1, . . . , N, n× n matrices P >

0, Si > 0, Ri > 0, i = 0, 1, Gi
�,ϑ i = 1, . . . , N, � = 1, . . . , N,

ϑ = 2, . . . , N + 1, � < ϑ, such that the LMIs (13) and (14),
(19) and (20) and the following LMIs are feasible:[−cP ∗

PA −P

]
< 0 (28)⎡

⎣ Ψ̃ ∗ ∗
PF̃0 −P ∗

H(F̃0 − F̃1) 0 −H

⎤
⎦ < 0 (29)

where

F̃0 = [A 0n×((N+2)n)], F̃1 = [In 0n×((N+2)n)]

F̃2=[0n×n In 0n×((N+1)n)], . . . , F̃N+3=[0n×((N+2)n) In]

Σ̃ = diag{S0 − λP − (c− 1)P,−ληm(S0 − S1),

0(Nn)×(Nn),−λτ1
MS1}

Ψ̃ = Σ̃− ληm(F̃1 − F̃2)
TR0(F̃1 − F̃2)

−λτ1
M

N+2∑
i=2

(F̃i − F̃i+1)
TR1(F̃i − F̃i+1)

−2λτ1
M

N+1∑
j=2

(F̃j − F̃j+1)
T

N+2∑
s=j+1

G1
j−1,s−1(F̃s − F̃s+1)

(30)
and the notation H is given by (15). If the initial condition satis-
fies the inequality |x0| < X0, where X0 > 0 is known, then the
zooming-in algorithm of Section III-B starting with μ(s0) = μ0

with μ0 given by

μ2
0 =

λmax(c
τ̂MP +Ω)

M2
0

X2
0 (31)

exponentially stabilizes system (9) and (17), where τ̂M and Ω
are given by (24) and (27), respectively.

Proof: From [15], it follows that the matrix inequali-
ties (13), (28), and (29) guarantee (25) along (17) for k =
0, 1, . . . , tN−1 − 1. Therefore, if the initial condition satisfies
the inequality |x0| < X0, then

max{V0(k), V (xtN−1
)} ≤ λmax(c

τ̂MP +Ω)X2
0

= μ2
0M

2
0 , k = 0, 1, . . . , tN−1

meaning that xtN−1
∈ Sμ2

0M
2
0

. The result then follows from
Proposition 1. �

Remark 4: Note that given a bound X0 > 0 on the state ini-
tial conditions and the values of the quantizer range Mi > 0 and
interval Δi > 0, i = 1, . . . , N, (31) defines the initial value of
the zoom variable, starting from which the exponential stability
is guaranteed by using zooming-in only. If the initial value of
the zoom variable is given by μ0, then the zooming-in algorithm
of Section III-B starting with μ(s0) = μ0 exponentially stabi-
lizes all the solutions of (9) and (17) starting from the initial
ball

|x0| < X0, X0 =
μ0M0√

λmax(cτ̂MP +Ω)
(32)

where τ̂M and Ω are given by (24) and (27), respectively. In
order to maximize the initial ball (32), the condition cτ̂MP +
Ω− γI < 0 can be added to the conditions of Theorem 1,
where γ > 0 is to be minimized.
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Remark 5: The conditions of Theorem 1 possess (N +
1) of 2n× 2n, one of (N + 5)n× (N + 5)n, N of ((N +
5)n+ ny)× ((N + 5)n+ ny) LMIs, and have the number
N2(N+1)+5

2 n2 + 2.5n+N + 1 of decision variables. The huge
numerical complexity is caused by the switched closed-loop
system (9) composed of N subsystems.

Remark 6: The LMIs of Theorem 1 are affine in the system
matrices. Therefore, in the case of system matrices from the
uncertain time-varying polytope

Θ =

M∑
j=1

gj(k)Θj , 0 ≤ gj(k) ≤ 1

M∑
j=1

gj(k) = 1, Θj =
[
A(j) B(j)

]
where gj(k), j = 1, . . . ,M, are uncertain time-varying param-
eters and the system matrices A(j) and B(j), j = 1, . . . ,M,
are known with appropriate dimensions, one has to solve these
LMIs simultaneously for all the M vertices Θj , applying the
same decision matrices.

Remark 7: The time-delay system approach has been devel-
oped in [16] and [18] for NCSs with nonquantized measure-
ments under try-once-discard protocol and under stochastic
protocol, respectively. The proposed zooming algorithm in the
present paper for round-robin protocol could be extended to the
case of try-once-discard and stochastic protocols. In addition, to
facilitate the static output-feedback controller design, it will be
useful to eliminate the coupling between the Lyapunov matrices
and system matrices. To this end, one may resort to the methods
proposed in, e.g., [24], and [35].

Remark 8: In a particular case of N = 1, the achieved con-
ditions could be applied to the output tracking control that
was studied in [14] and [31] for complex industrial processes.
The discrete-time system theory for sampled-data control was
applied in [14] and [31], whereas a time-delay approach is
adopted in this paper.

IV. ILLUSTRATIVE EXAMPLES

A. Example 1: Inverted Pendulum

The inverted pendulum system is widely used as a bench-
mark for testing control algorithm. The dynamics of the
inverted pendulum on a cart shown in Fig. 3 can be described
in the following as in, e.g., [36]:⎡

⎢⎣
ẋ
ẍ

θ̇

θ̈

⎤
⎥⎦=

⎡
⎢⎢⎢⎣
0 1 0 0

0 − (a+ml2)b
a(M+m)+Mml2 − m2gl2

a(M+m)+Mml2 0

0 0 0 1

0 − mlb
a(M+m)+Mml2 − mgl(M+m)

a(M+m)+Mml2 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
x
ẋ
θ

θ̇

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
a+ml2

a(M+m)+Mml2

0
ml

a(M+m)+Mml2

⎤
⎥⎥⎥⎦u (33)

with M = 1.096 kg, m = 0.109 kg, l = 0.25 m,
g = 9.8 m/s2, a = 0.0034 kg ·m2 and b = 0.1 N/m/s.

Fig. 3. Inverted pendulum system.

In the model, x, θ, a, and b represent cart position coordinate,
pendulum angle from vertical, the friction of the cart, and
inertia of the pendulum, respectively.

By choosing a sampling time Ts = 0.01 s, we obtain the
following discrete-time system model:

x(k + 1) =

⎡
⎢⎢⎣
1 0.01 0 0
0 0.9991 0.0063 0
0 0 1.0014 0.01
0 −0.0024 0.2784 1.0014

⎤
⎥⎥⎦x(k)

+

⎡
⎢⎢⎣

0
0.0088
0.0001
0.0236

⎤
⎥⎥⎦u(k), k ∈ Z

+. (34)

The pendulum can be stabilized by a state feedback u(k) =
Kx(k) with the gain K = [K1 K2]

K1 =
[
0.9163 2.0169

]
, K2 =

[−27.4850 −5.3437
]

which leads to the closed-loop system having eigen-
values {0.9419, 0.9865 + 0.0035i, 0.9865− 0.0035i, 0.9813}.
Suppose that the spatially distributed components of the state
of the cart-pendulum system (34) are not accessible simultane-
ously.

Consider N = 2 and

C1 =

[
1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 1 0
0 0 0 1

]
. (35)

The quantizer is chosen as

qμ(y
i) =

{
100μ sgn(yi), if |yi| > 100μ

μ
⌊
yi

μ + 0.01
⌋
, if |yi| ≤ 100μ

where yi is the ith component of y, i = 1, . . . , 4. Therefore, we
can take M1 = M2 = 100, Δ1 = Δ2 = 0.01. Choose μ0 = 1,
M0 = 100, ν = 0.9, λ = 0.984, c = 1.37, τNM = 4, ηm = 0,
ηM = 2. Then from (5), it follows that the network-induced
delays ηp and the sampling intervals are bounded by 0 ≤ ηp ≤
2 and 1 ≤ sp+1 − sp ≤ 3, p ∈ Z

+, respectively. It is observed
that we allow network-induced delays larger than the sampling
intervals.

The initial state is assumed to be x0 = [0.5 0.3−0.2
−0.9]T . In the simulation, the network-induced delays are
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Fig. 4. Example 1: transmission delays.

Fig. 5. Example 1: evolution of the zoom variable µ in the zooming-in
algorithm.

Fig. 6. Example 1: (a) evolution of the control input and (b) trajectory of
the closed-loop system.

generated randomly according to the aforementioned assump-
tion, and shown in Fig. 4. By Theorem 1, we find T =

�− ln(1−β)+2lnν
lnλ � = 15 from (21). Then, the zooming-in algo-

rithm of Section III-B and round-robin protocol with T = 15
and ν = 0.9 exponentially stabilizes all the solutions of (9) and
(17) starting from the initial ball |x0| < 1.2376. Fig. 5 shows
the evolution of the zoom variable μ(k).

Moreover, it is found that the system is exponentially stable

with a decay rate κ = ν
1

τ̄M = 0.9964, where [following (22)]
τ̄M = T + 2τNM + 2ηM − 3ηm + 2 = 29. The evolution of the
control input and the state are depicted in Fig. 6.

For the case of N = 1, i.e., the scheduling is not taken
into account and y(k) = [CT

1 CT
2 ]

Tx(k), we achieve a
slightly better κ = 0.9950 for essentially larger initial ball
|x0| < 11.1951.

B. Example 2: Quadruple-Tank Process

We also illustrate the efficiency of the given conditions on
the example of the quadruple-tank process [10] described in
Fig. 7. The linear discrete-time model obtained in [29] is

Fig. 7. Schematic diagram of the quadruple-tank process.

given by

x(k + 1) =

⎡
⎢⎢⎣
0.975 0 0.042 0
0 0.977 0 0.044
0 0 0.958 0
0 0 0 0.956

⎤
⎥⎥⎦x(k)

+

⎡
⎢⎢⎣
0.0515 0.0016
0.0019 0.0447

0 0.0737
0.0850 0

⎤
⎥⎥⎦u(k), k ∈ Z

+. (36)

Here, the open-loop system is exponentially stable with a decay
rate κ = 0.9770.

Consider N = 2 and choose the controller gain K =
[K1 K2], where

K1=

[
0.0449 −0.3007
−0.3080 0.0469

]
, K2=

[
0.1651 −0.5644
−0.6275 0.1681

]
.

The measurement outputs are yi(k) = Cix(k) with Ci, i =
1, 2, given by (35). Suppose that the components of the state
of system (36) are not accessible simultaneously. The quantizer
is chosen as

qμ(y
i) =

{
150μ sgn(yi), if |yi| > 150μ

μ
⌊
yi

μ + 0.001
⌋
, if |yi| ≤ 150μ

where yi is the ith component of y, i = 1, . . . , 4. Therefore, we
can take M1 = M2 = 150, Δ1 = Δ2 = 0.001.

Choose τNM = 2, ηm = 0, ηM = 1. From (5), it follows
that the network-induced delays ηp and the sampling intervals
are bounded by 0 ≤ ηp ≤ 1 and 1 ≤ sp+1 − sp ≤ 2, p ∈ Z

+,
respectively. The network-induced delays are depicted in Fig. 8.

Then, we find that given μ0 = 1, M0 = 100, ν = 0.1, λ =
0.926, c = 1.10, the zooming-in algorithm of Section III-B
and round-robin protocol with T = 60 exponentially stabilizes
all the solutions of (9) and (17) starting from the initial ball
|x0| < 23.7748 with a decay rate κ = 0.9667. The decay rate
for closed-loop system is improved compared to the one for the
open-loop system. The evolution of the zoom variable μ(k) is
presented in Fig. 9. The evolution of the control input and the
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Fig. 8. Example 2: transmission delays.

Fig. 9. Example 2: evolution of the zoom variable µ in the zooming-in
algorithm.

Fig. 10. Example 2: (a) evolution of the control input and (b) trajectory
of the closed-loop system.

state with the initial state x0 = [5 2 − 2 − 4]T are given in
Fig. 10.

Moreover, for the case of N = 1, it is shown that the
zooming-in algorithm with T = 60 exponentially stabilizes all
the solutions of the closed-loop system (9) and (17) (N = 1)
starting from a larger initial ball |x0| < 91.4413 with a slightly
better decay rate κ = 0.9647.

V. CONCLUSION

This paper has investigated linear discrete-time NCSs that
are subject to dynamic quantization, variable communication
delays, variable sampling intervals, and round-robin schedul-
ing. An LMI-based time-triggered zooming algorithm, which
includes proper initialization of the zoom parameter, has been
proposed for exponential stability of the switched closed-loop
system. The interesting future research may include quan-
tized input, stochastic communication delays, and dynamic
scheduling protocols.

APPENDIX

Proof: Given i ∈ I, consider k ∈ [tp, tp+1 − 1], k ∈
Z+ and define ξ(k) = col{x(k), x(k − ηm), x(k −
τN (k)), . . . , x(k − τ1(k)), x(k − τ1M ), ω1(k), . . . , ωN (k)}.
Applying Cauchy–Schwarz inequality, taking advantage of the
ordered delays and using convex analysis [22], we have

V (xk+1)− λV (xk)−
N∑
i=1

bi|ωi(k)|2

≤ ξT (k)[Ψ+(F i
0)

TPF i
0+(F i

0−F1)
TH(F i

0−F1)]ξ(k) ≤ 0
(37)

if Ψ+ (F i
0)

TPF i
0 + (F i

0 − F1)
TH(F i

0 − F1) < 0, i.e., by
Schur complement, if (14) is feasible.

Since |ωi(k)| ≤ μΔi, i = 1, . . . , N, the inequality (37)
implies for k ∈ [tp, tp+1 − 1]

V (xk) ≤ λV (xk−1) + μ2
N∑
i=1

biΔ
2
i

...

≤ λk−tN−1V (xtN−1
) +

μ2

1− λ

N∑
i=1

biΔ
2
i

that completes the proof. �
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