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Multiple-Loop Self-Triggered Model Predictive
Control for Network Scheduling and Control
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and Karl Henrik Johansson, Fellow, IEEE

Abstract— We present an algorithm for controlling and
scheduling multiple linear time-invariant processes on a shared
bandwidth-limited communication network using adaptive
sampling intervals. The controller is centralized and not only
computes at every sampling instant the new control command
for a process but also decides the time interval to wait until
taking the next sample. The approach relies on model predictive
control ideas, where the cost function penalizes the state and
control effort as well as the time interval until the next sample is
taken. The latter is introduced to generate an adaptive sampling
scheme for the overall system such that the sampling time
increases as the norm of the system state goes to zero. This paper
presents a method for synthesizing such a predictive controller
and gives explicit sufficient conditions for when it is stabilizing.
Further explicit conditions are given that guarantee conflict free
transmissions on the network. It is shown that the optimization
problem may be solved offline and that the controller can be
implemented as a lookup table of state feedback gains. The
simulation studies which compare the proposed algorithm to
periodic sampling illustrate potential performance gains.

Index Terms— Networked control systems, predictive control,
process control, scheduling, self-triggered control, stability.

I. INTRODUCTION

W IRELESS sensing and control systems have received
increased attention in the process industry in

recent years. Emerging technologies in low-power wake-up
radio enable engineering of a new type of industrial
automation systems where sensors, controllers, and actuators
communicate over a wireless channel. The introduction of
a wireless medium in the control loop gives rise to new
challenges, which need to be handled [1]. The aim of this paper
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Fig. 1. Actuators A and processes P are wired to the controller C while the
sensors S communicate over a wireless network, which in turn is coordinated
by the network manager.

is to address the problem of how the medium access to the
wireless channel could be divided between the loops, taking
the process dynamics into consideration. We investigate the
possibilities to design a self-triggered controller that adaptively
chooses the sampling period for multiple control loops. The
aim is to reduce the amount of generated network traffic, while
maintaining a guaranteed level of performance in respect of
driving the initial system states to zero and the control effort
needed.

Consider the networked control system in Fig. 1, which
shows how the sensors and the controller are connected
through a wireless network. The wireless network is
controlled by a network manager that allocates medium access
to the sensors and triggers their transmissions. This setup is
motivated by current industry standards based on the
IEEE 802.15.4 standard [2], [3], which utilizes this structure
for wireless control in process industry. Here, the triggering
is in turn generated by the controller that, in addition to com-
puting the appropriate control action, dynamically determines
the time of the next sample by a self-triggering approach [4].
In doing so, the controller gives varying attention to the loops
depending on their state, while trying to communicate only few
samples. To achieve this, the controller must, for every loop,
trade control performance against intersampling time and give
a quantitative measure of the resulting performance.

The main contribution of this paper is to show that a self-
triggering controller can be derived using a receding horizon
control formulation, where the predicted cost is used to jointly
determine what control signal to be applied as well as the time
of the next sampling instant. Using this formulation, we can
guarantee a minimum and a maximum time between samples.

We will initially consider a single-loop system. We will
then extend the approach to the multiple-loop case, which
can be analyzed with additional constraints on the
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communication pattern. The results presented herein are
extensions to [5]. These results have been extended to handle
multiple control loops on the same network while maintaining
control performance and simultaneously guaranteeing
conflict-free transmissions on the network.

The development of control strategies for wireless automa-
tion has become a large area of research in which, up until
recently, most efforts have been made under the assumption
of periodic communication [6]. However, the idea of
adaptive sampling is receiving increased attention. The efforts
within this area may coarsely be divided into the two para-
digms of event- and self-triggered control. In event-triggered
control [7]–[15], the sensor continuously monitors the process
state and generates a sample when the state violates some
predefined condition. Self-triggered control [4], [16]–[18]
utilizes a model of the system to predict when a new sam-
ple needs to be taken to fulfill some predefined condition.
A possible advantage of event-over self-triggered control is
that the continuous monitoring of the state guarantees that
a sample will be drawn as soon as the design condition
is violated, thus resulting in an appropriate control action.
The self-triggered controller will instead operate in open
loop between samples. This could potentially be a problem
as disturbances to the process between samples cannot be
attenuated. This problem may, however, be avoided by good
choices of the intersampling times. The possible advantage
of self-over event-triggered control is that the transmission
time of sensor packets is known a priori and hence we may
schedule them, enabling sensors and transmitters to be put to
sleep in between samples and thereby saving energy.

The research area of joint design of control and
communication is currently very active, especially in the
context of event-triggered control. In [19], a joint optimiza-
tion of control and communication is solved using dynamic
programming by placing a communication scheduler in the
sensor. In [20]–[22], the control law and event-condition are
codesigned to match performance of periodic control using a
lower communication rate. In [23], this idea is extended to
decentralized systems.

The use of predictive control is also gaining popularity
within the networked control community [24]–[27]. In [28],
predictive methods and vector quantization are used to reduce
the controller-to-actuator communication in multiple input
systems. In [29], model predictive control (MPC) is used to
design multiple actuator link scheduling and control signals.
There have also been developments in using MPC under
event-based sampling. In [30], a method for trading control
performance and transmission rate in systems with multiple
sensors is given. In [31], an event-based MPC is proposed
where the decision to recalculate the control law is based on
the difference between predicted and measured states.

The problem addressed in this paper, namely, the joint
design of a self-triggering rule and the appropriate control
signal using MPC has been less studied than its event-triggered
counterpart. In [32], an approach relying on an exhaustive
search that utilizes sub-optimal solutions giving the control
policy and a corresponding self-triggering policy is presented.
In [33], it is suggested that a portion of the open-loop

trajectory produced by the MPC should be applied to the
process. The time between reoptimizations is then decided via
a self-triggering approach.

The approach taken in this paper differs from the above
two in that the open loop cost we propose the MPC to
solve is designed to be used in an adaptive sampling context.
Further, our extension to handle multiple loops using
a self-triggered MPC is new and so is the guarantee of conflict
free transmissions.

The outline of this paper is as follows. In Section II,
the self-triggered network scheduling and control problem is
defined and formulated as a receding horizon control problem.
Section III presents the open-loop optimal control problem for
a single loop, to be solved by the receding horizon controller.
The optimal solution is presented in Section IV. Section V
presents the receding horizon control algorithm for a single
loop in further detail and gives conditions for when it is
stabilizing. The results are then extended to the multiple-
loop case in Section VII, where conditions for stability and
conflict free transmissions are given. The proposed method
is explained and evaluated on the simulated examples in
Section VIII. The concluding discussion is made in Section IX.

II. SELF-TRIGGERED NETWORKED

CONTROL ARCHITECTURE

We consider the problem of controlling s ≥ 1 processes P1
through Ps over a shared communication network as in Fig. 1.
The processes are controlled by the controller C that computes
the appropriate control action and schedule for each process.
Each process P� is given by a linear time-invariant (LTI)
system

x�(k + 1) = A�x�(k) + B�u�(k)

x�(k) ∈ R
n� , u�(k) ∈ R

m�. (1)

The controller works in the following way: at time k = k�,
sensor S� transmits a sample x�(k�) to the controller that
then computes the control signal u�(k�) and sends it to the
actuator A�. Here, � ∈ {1, 2, . . . , s} is the process index. The
actuator in turn will apply this control signal to the process
until a new value is received from the controller. Jointly
with deciding u�(k�) the controller also decides how many
discrete time steps, say I�(k�) ∈ N

+ � {1, 2, . . . }, it will
wait before it needs to change the control signal the next
time. This value I�(k�) is sent to the network manager, which
will schedule the sensor S� to send a new sample at time
k = k� + I�(k�). To guarantee conflict-free transmissions on
the network, only one sensor is allowed to transmit at every
time instance. Hence, when deciding the time to wait I�(k�),
the controller must make sure that no other sensor Sq , q �= �,
already is scheduled for transmission at time k = k� + I�(k�).

We propose that the controller C should be implemented as
a receding horizon controller that for an individual loop � at
every sampling instant k = k� solves an open-loop optimal
control problem. It does so by minimizing the infinite-horizon
quadratic cost function

∞∑

l=0

(
‖x�(k� + l)‖2

Q�
+ ‖u�(k� + l)‖2

R�

)
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Fig. 2. Prediction horizon. Here, typical signal predictions are shown with
I (k) = 3 and p = 5.

subject to the user defined weights Q� and R�, while
considering system dynamics. In Section III, we will embellish
this cost function such that control performance, inter sampling
time, and overall network schedulability also are taken into
consideration.

Remark 1: The focus is on a networked system where the
network manager and controller are integrated in the same
unit. This means that the controller can send the schedules
that contain the transmission times of the sensors directly to
the network manager. This information needs to be transmitted
to the sensor node such that it knows when to sample and
transmit. For example, using the IEEE 802.15.4 superframe,
described in [3], this can be done without creating additional
overhead. Here, the network manager broadcasts a beacon in
the beginning of each superframe, which occurs at a fixed time
interval. This beacon is received by all devices on the network
and includes a schedule of the sensors that are allowed to
transmit at given times.

III. ADAPTIVE SAMPLING STRATEGY

For pedagogical ease, we will in this section study the case
when we control a single process on the network allowing us
to drop the loop index �. The process we control has dynamics

x(k + 1) = Ax(k) + Bu(k), x(k) ∈ R
n, u(k) ∈ R

m (2)

and the open-loop cost function we propose the controller to
minimize at every sampling instant is

J (x(k), i,U) = α

i
+

∞∑

l=0

(
‖x(k + l)‖2

Q + ‖u(k + l)‖2
R

)
(3)

where α ∈ R
+ is a design variable that is used to trade

off the cost of sampling against the cost of control and
i = I (k) ∈ {1, 2, . . . , p} is the number of discrete time
units to wait before taking the next sample, where p ∈ N

+
is the maximum number of time units to wait until taking
the next sample. Further, the design variables 0 < Q and
0 < R are symmetric matrices of appropriate dimensions.
We optimize this cost over the constraint that the control
sequence U � {u(k), u(k + 1), . . .} should follow the specific
shape shown in Fig. 2, for some fixed period p. The period p
is the maximum amount of time steps the sensor is allowed
to wait before taking the next sample. If p = 1, a sample is

taken at every time instance and a regular receding horizon
cost is obtained. If one, on the other hand, would select a
large value of p, very long sampling intervals can be obtained.
This can though affect the control performance significantly
in case there are disturbances in the system that make the size
of the state increase. Thus, the number of discrete time units
i = I (k) ∈ {1, 2, . . . , p} to wait before taking the next sample
x(k + i) as well as the levels in the control sequence U are
free variables over which we optimize. Note that neither the
state nor the control values have a constrained magnitude.

The constraint on the shape of the control trajectory U is
motivated by the idea that this sequence is applied to the
actuator from time k until time instant k + i . At time x(k + i),
we take a new sample and redo the optimization. By this
method, we get a joint optimization of the control signal
to be applied as well as the number of time steps to the
next sampling instant. The reason for letting the system be
controlled by a control signal with period p after this is that
we hope for the receding horizon algorithm to converge to this
sampling rate. We will provide methods for choosing p so that
this happens in Section V. The reason for wanting convergence
to a down sampled control is that we want the system to be
sampled at a slow rate when it has reached steady state, while
we want it to be sampled faster during the transients.

If one includes the above-mentioned constraints, then (3)
can be rewritten as

J (x(k), i,U(i)) = α

i
+

i−1∑

l=0

(‖x(k + l)‖2
Q + ‖u(k)‖2

R

)

+
∞∑

r=0

⎛

⎝
p−1∑

l=0

(‖x(k + i + r · p + l)‖2
Q

+‖u(k + i + r · p)‖2
R

)
⎞

⎠ (4)

where i and U(i) � {u(k), u(k + i), u(k + i + η · p), . . .},
η ∈ N

+, are the decision variables over which we optimize.
The term α/ i reflects the cost of sampling. We use this cost
to weight the cost of sampling against the classical quadratic
control performance cost. For a given x(k), choosing a large
α will force i to be larger and hence give longer intersampling
times. By the construction of the cost, we may tune Q, R, and
α via simulations to get the desired sampling behavior while
maintaining the desired control performance. One could imag-
ine a more general cost of sampling. Here, however, we found
that α/ i is sufficient to be able to trade control performance
for communication cost (see simulations in Section VIII-B).

IV. COST FUNCTION MINIMIZATION

Having defined the open-loop cost (4), we proceed by
computing its optimal value. We start by noticing that even
though we have a joint optimization problem, we may state
it as

minimize
i

(
minimize

U(i)
J (x(k), i,U(i))

)
. (5)
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We will use this separation and start by solving the inner
problem that of minimizing J (x(k), i,U(i)) for a given value
of i . To derive the solution, and for future reference, we need
to define some variables.

Definition 1: We define notation for the lifted model as

A(i) = Ai , B(i) =
i−1∑

q=0

Aq B.

and notation for the generalized weighting matrices associated
with (4) as

Q(i) = Q(i−1) + A(i−1)T
Q A(i−1)

R(i) = R(i−1) + B(i−1)T
QB(i−1) + R

N (i) = N (i−1) + A(i−1)T
QB(i−1)

where i ∈ {1, 2, . . . , p}, Q(1) = Q, R(1) = R, and N (1) = 0.
Using Definition 1, it is straightforward to show the

following lemma.
Lemma 1: It holds that

i−1∑

l=0

(
‖x(k + l)‖2

Q + ‖u(k)‖2
R

)

= x(k)T Q(i)x(k) + u(k)T R(i)u(k) + 2x(k)T N (i)u(k)

and x(k + i) = A(i)x(k) + B(i)u(k).
Lemma 2: Assume that 0 < Q and 0 < R, and that the

pair (A(p), B(p)) is controllable. Then

min
U(i)

∞∑

r=0

⎛

⎝
p−1∑

l=0

(‖x(k + i + r · p + l)‖2
Q

+‖u(k + i + r · p)‖2
R

)
⎞

⎠ = ‖x(k + i)‖2
P(p)

and the minimizing control signal characterizing U(i) is
given by

u(k + i + r · p) = −L(p)x(k + i + r · p).

In the above

P(p) = Q(p) + A(p)T
P(p) A(p)

−
(

A(p)T
P(p)B(p) + N (p)

)
L(p)

L(p) = (
R(p) + B(p)T

P(p) B(p)
)−1

×
(

A(p)T
P(p) B(p) + N (p)

)T
. (6)

Proof: The proof is given in Appendix A. �
Using the above results, we may formulate the main result

of this section as follows.
Theorem 1 (Closed Form Solution): Assume that 0 < Q

and 0 < R, and that the pair (A(p), B(p)) is controllable. Then

min
U(i)

J (x(k), i,U(i)) = α

i
+ ‖x(k)‖2

P(i) (7)

where

P(i) = Q(i) + A(i)T
P(p) A(i)

− (
A(i)T

P(p) B(i) + N (i))L(i)

L(i) = (
R(i) + B(i)T

P(p) B(i))−1

× (
A(i)T

P(p) B(i) + N (i))T (8)

and P(p) is given by Lemma 2. Denoting the vector of all
ones in R

n as 1n , the minimizing control signal sequence is
given by

U∗ = {− L(i)x(k)1T
i ,−L(p)x(k + i + r · p)1T

p , . . .
}
, r ∈ N

where also L(p) is given by Lemma 2.
Proof: The proof is given in Appendix B. �

Now, getting back to the original problem (5), provided that
the assumptions of Theorem 1 hold, we may apply it giving
that

min
i,U(i)

J (x(k), i,U(i)) = min
i

{α

i
+ ‖x(k)‖2

P(i)

}
.

Unfortunately, the authors are not aware of any method to
solve this problem in general. However, if i is restricted to
a known finite set I0 ⊂ N

+, we may find the optimal value
within this set for a given value of x(k) by simply evaluating
α
i +‖x(k)‖2

P(i) ∀i ∈ I0 and by this obtaining the i , which gives
the lowest value of the cost. This procedure gives the optimum
of (5). Note that the computational complexity of finding the
optimum is not necessarily high, as we may compute
P(i) ∀i ∈ I0 offline prior to execution.

V. SINGLE-LOOP SELF-TRIGGERED MPC

Having presented the receding horizon cost, we now
continue with formulating its implementation in further detail.
We will assume that 0 < Q and 0 < R, and that the
down-sampled pair (A(p), B(p) ) is controllable. Let us also
assume that the finite and nonempty set I0 ⊂ N

+ is given
and let

γ = maxI0. (9)

From this, we may use Theorem 1 to compute the
pairs (P(i), L(i)) ∀i ∈ I0 and formulate our proposed receding
horizon control algorithm for a single loop.

Remark 2: Note that the control signal value is sent to
the actuator at the same time as the controller requests the
scheduling of the next sample by the sensor.

Remark 3: The proposed algorithm guarantees a minimum
and a maximum intersampling time. The minimum time is
1 time step in the time scale of the underlying process (2) and
the maximum inter sampling time is γ time steps. This
implies that there is some minimum attention to every loop
independent of the predicted evolution of the process.

Remark 4: Even though we are working in uniformly
sampled discrete time, the state is not sampled at every time
instant k. Instead, the set of samples of the state actually taken
is given by the set D, assuming that the first sample is taken
at k = 0, is given by

D = {x(0), x(I (0)), x(I (I (0))), . . .}. (10)
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Algorithm 1 Single Loop Self-Triggered MPC

VI. ANALYSIS

Having established and detailed our receding horizon
control law for a single loop, we continue with giving condi-
tions for when it is stabilizing. Letting λ(A) to denote the set
of eigenvalues of A, we first recall the following controllability
conditions.

Lemma 3 [34]: The system (A(i), B(i)) is controllable if
and only if the pair (A, B) is controllable and A has no
eigenvalue λ ∈ λ(A) such that λ �= 1 and λi = 1.

Using the above, and the results of Section IV, we may
now give conditions for when the proposed receding horizon
control algorithm is stabilizing.

Theorem 2 (Practical Stability [35]): Assume 0 < Q and
0 < R and that (A, B) is controllable. If we choose
i ∈ I0 ⊂ N

+ and p = p∗ given by

p∗ = max{i |i ∈ I0,∀λ ∈ λ(A) λi �= 1 if λ �= 1} (11)

and apply Algorithm 1, then the system state is ultimately
bounded as per the following:

α

γ
≤ lim

k→∞ min
i∈I0

(
α

i
+ ‖x(k)‖2

P(i)

)
≤ α

ε

(
1

p∗ − (1 − ε)
1

γ

)
.

In the above, γ is as in (9) and ε is the
largest value in the interval (0, 1] which ∀i ∈ I0

fulfills

(A(i) − B(i)L(i))T P(p∗)(A(i) − B(i)L(i)) ≤ (1 − ε)P(i)

and is guaranteed to exist.
Proof: The proof is given in Appendix C. �

Remark 5: The bound given in Theorem 2 scales linearly
with the choice of α.

Assumption 1: Assume that �λ ∈ λ(A) except possibly
λ = 1 such that |λ| = 1 and the complex argument
� λ = (2π/γ ) · n for some n ∈ N

+.
Lemma 4: Let Assumption 1 hold, then p∗ = γ .

Proof: The proof is given in Appendix D. �
Corollary 1 (Asymptotic Stability of the Origin): Assume

0 < Q and 0 < R, and that (A, B) is controllable. Further
assume that either Assumption 1 holds or α = 0. If we
choose i ∈ I0 ⊂ N

+ and p = p∗ given by (11) and apply

Algorithm 1, then

lim
k→∞ x(k) = 0.

Proof: The proof is given in Appendix E. �
From the above results, we may note the following.
Remark 6: If the assumptions of Theorem 2 hold, then

Corollary 1 can be used to ensure asymptotic stability of the
origin, except in the extremely rare case that the underlying
system (A, B) becomes uncontrollable under down sampling
by a factor γ (see Lemma 3). Otherwise, one may use
Lemma 4 to redesign I0 giving a new value of γ that recovers
the case p∗ = γ .

Remark 7: It is worth noticing that the developed
framework is not limited to just varying the time to the next
sample i as in Fig. 2. One could expand this using a multistep
approach wherein the intersampling time is optimized over
several frames before reverting to constant sampling with
period p.

VII. EXTENSION TO MULTIPLE LOOPS

Having detailed the controller for the case with a single loop
on the network and given conditions for when it is stabilizing,
we now continue with extending to the case when we control
multiple loops on the network, as described in Fig. 1. The
idea is that the controller C now will run s such single-loop
controllers described in Algorithm 1 in parallel, one for each
process P�, � ∈ L = {1, 2, . . . , s}, controlled over the network.
To guarantee conflict-free communication on the network, the
controller C will, at the same time, centrally coordinate the
transmissions of the different loops.

A. Cost Function

We start by extending the results in Section III to the case
when we have multiple loops. The cost function we propose
the controller to minimize at every sampling instant for loop �
is then

J�(x�(k), i,U�(i)) = α�

i
+

i−1∑

l=0

(
‖x�(k + l)‖2

Q�
+ ‖u�(k)‖2

R�

)

+
∞∑

r=0

⎛

⎝
p�−1∑

l=0

(
‖x�(k + i + r · p� + l)‖2

Q�

+ ‖u�(k + i + r · p�)‖2
R�

)
⎞

⎠

derived in the same way as (4) now with α� ∈ R
+, 0 < Q�

0 < R� and period p� ∈ N
+ specific for the control of

process P� given by (1). From this, we can state the following.
Definition 2: We define the notation in the multiple-loop

case following Definition 1. For a matrix E�, e.g., A� and Q�,
we denote (E�)

(i) by E (i)
� .

Theorem 3 (Closed-Form Solution): Assume that 0 < Q�

and 0 < R�, and that the pair (A(p)
� , B(p)

� ) is controllable.
Then

min
U�(i)

J�(x�(k), i,U�(i)) = α�

i
+ ‖x�(k)‖2

P(i)
�
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where

P(i)
� = Q(i)

� + A(i)
�

T
P(p�)

� A(i)
� −

(
A(i)

�

T
P(p�)

� B(i)
� + N (i)

�

)
L(i)

�

L(i)
� =

(
R(i)

� + B(i)
�

T
P(p�)

� B(i)
�

)−1(
A(i)

�

T
P(p�)

� B(i)
� + N (i)

�

)T

and

P(p�)
� = Q(p�)

� + A(p�)
�

T
P(p�)

� A(p�)
�

−
(

A(p�)
�

T
P(p�)

� B(p�)
� + N (p�)

�

)
L(p�)

�

L(p�)
� =

(
R(p�)

� + B(p�)
�

T
P(p�)

� B(p�)
�

)−1

×
(

A(p�)
�

T
P(p�)

� B(p�)
� + N (p�)

�

)T
.

Denoting the vector of all ones in R
n as 1n , the minimizing

control signal sequence is given by

U∗
� =

{
− L(i)

� x�(k)1T
i ,−L(p�)

� x�(k + i + r · p�)1T
p�

, . . .
}
,

r ∈ N.

Proof: Application of Theorem 1 on the individual
loops. �

B. Multiple-Loop Self-Triggered MPC

To formulate our multiple-loop receding horizon control
law, we will reuse the results in Section V and apply them
on a per loop basis.

For each process P� with dynamics given in (1), let the
weights α� ∈ R

+, 0 < Q� 0 < R�, and period p� ∈ N
+

specific to the process be defined. If we further define the
finite set I0

� ⊂ N
+ for loop �, we may apply Theorem 3 to

compute the pairs (P(i)
� , L(i)

� ) ∀ i ∈ I0
� . Provided of course

that the pair (A(p�)
� , A(p�)

� ) is controllable.
As discussed in Section II, when choosing i , the controller

must take into consideration what transmission times other
loops have reserved as well as the overall network
schedulability. Hence, at time k = k�, loop � is restricted
to choose i ∈ I�(k�) ⊆ I0

� where I�(k�) contains the feasible
values of i that gives collision-free scheduling of the network.
Note that at time k = k�, the control input u� and time for the
next sample I� only have to be computed for a single loop �.
How I�(k�) should be constructed when multiple loops are
present on the network is discussed further later in this
section.

We may now continue with formulating our proposed
algorithm for controlling multiple processes over the network.
The following algorithm is executed whenever a sample is
received by the controller.

Remark 8: When the controller is initialized at time k = 0,
it is assumed that the controller has knowledge of the state
x�(0) for all processes P� controlled over the network. It will
then execute Algorithm 2 entering at step 2, in the order of
increasing loop index �.

Algorithm 2 Multiple Loop Self-Triggered MPC

C. Schedulability

What remains to be detailed in the multiple-loop receding
horizon control law is a mechanism for loop � to choose I�(k�)
to achieve collision-free scheduling. We now continue with
giving conditions for when this holds.

First, we note that when using Theorem 3, we make the
implicit assumption that it is possible to apply the correspond-
ing optimal control signal sequence U∗

� . For this to be possible,
we must be able to measure the state x�(k) at the future time
instances

S�(k�) = {k� + I�(k�), k� + I�(k�) + p�,

k� + I�(k�) + 2 p�, k� + I�(k�) + 3 p�, . . .}. (12)

Hence, this sampling pattern must be reserved for use by
sensor S�. We state the following to give conditions for when
this is possible.

Lemma 5: Let loop � choose its set I�(k�) of feasible times
to wait until the next sample to be

I�(k�) =
{

i ∈ I0
� |i �= knext

q − k� + n · pq − m · p�,

m, n ∈ N, q ∈ L \ {�}
}

where knext
q is the next transmission time of sensor Sq . Then

it is possible to reserve the needed sampling pattern S�(k�)
in (12) at time k = k�.

Proof: The proof is given in Appendix F. �
Constructing I�(k�) as above, we are not guaranteed that

I�(k�) �= ∅. To guarantee this, we make the following
assumption.

Assumption 2: Assume that for every loop � on the network
I0

� = I0 and p� = p. Further assume that L ⊆ I0 and
max L ≤ p.

Theorem 4: Let Assumption 2 hold. If every loop � chooses

I�(k�) = {i ∈ I0|i �= knext
q − k� + r · p, r ∈ Z, q ∈L\ {�}}

all transmissions on the network will be conflict free and
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it will always be possible to reserve the needed sampling
pattern S�(k�) in (12).

Proof: The proof is given in Appendix G. �
Remark 9: The result in Lemma 5 requires the reservation

of an infinite sequence. This is no longer required
in Theorem 4 as all loops cooperate when choosing the set of
feasible times to wait. In fact, loop � only needs to know the
current time k�, the period p, and the times when the other
loops will transmit next knext

q ∀ q ∈ L \ {�} to find its own
value I�(k�).

Remark 10: If Assumption 2 holds and every loop on the
network chooses I�(k�) according to Theorem 4, then it is
guaranteed that at time k�, we can reserve (12) and that no
other loop can make conflicting reservations. Hence, at time
k� + I�(k�), the sequence

S�(k� + I�(k�)) = {k� + I�(k�) + p,

k� + I�(k�) + 2 p, k� + I�(k�) + 3 p, . . .}
is guaranteed to be available. Thus, p ∈ I�(k� + I�(k�)).

D. Stability

We continue with giving conditions for when the multiple
loop receding horizon control law described in Algorithm 2
is stabilizing. Extending the theory developed in Section V to
the multiple loop case, we may state the following.

Theorem 5: Assume 0 < Q� and 0 < R�, and that (A�, B�)
is controllable. Further let Assumption 2 hold. If we then
choose i ∈ I�(k) ⊆ I0 ⊂ N

+, with I�(k) chosen as in
Theorem 4, and p = p∗ given by

p∗ = max{i |i ∈ I0,∀ � ∀λ ∈ λ(A�) λi �= 1 if λ �= 1} (13)

and apply Algorithm 2, then as k → ∞
α�

γ
≤ min

i∈I�(k)

(
α�

i
+ ‖x�(k)‖2

P(i)
�

)
≤ α�

ε�

(
1

p∗ − (1 − ε�)
1

γ

)

where γ = max I0 and ε� is the largest value in the
interval (0, 1], which ∀i ∈ I0 fulfills

(
A(i)

� − B(i)
� L(i)

�

)T
P(p∗)

�

(
A(i)

� − B(i)
� L(i)

�

)
≤ (1 − ε�)P(i)

� .

Proof: The proof is given in Appendix H. �
Corollary 2: Assume 0 < Q� and 0 < R�, and

that (A�, B�) is controllable. Further let Assumption 2 hold.
In addition, let I0 be chosen so that the resulting γ = max I0

guarantees that Assumption 1 holds for every loop � or
alternatively let α� = 0 for every loop �. If we then choose
i ∈ I�(k) ⊆ I0 ⊂ N

+, with I�(k) chosen as in Theorem 4,
and p = p∗ given by (13) and apply Algorithm 2, it holds
that

lim
k→∞ x�(k) = 0.

Proof: The proof follows from the results in Theorem 5
analogous to the proof of Corollary 1. �

TABLE I

PRECOMPUTED CONTROL LAWS WITH RELATED COST FUNCTIONS

AND INTERMEDIATE VARIABLES

VIII. SIMULATION STUDIES

To illustrate the proposed theory, we now continue with
giving simulations. First, we show how the control law works
when a single loop is controlled over the network and focus
on the loop-specific mechanisms of the controller. Second,
we illustrate how the controller works when multiple loops
are present on the network and focus on how the controller
allocates network access to different loops.

A. Single Loop

Let us exemplify and discuss how the controller handles
the control performance versus communication rate tradeoff
in an individual loop. We do this by studying the case
with a single system on the network. The system we study
is the single integrator system, which we discretize using
sample and hold with sampling time Ts = 1 s giving us
x(k + 1) = Ax(k) + Bu(k) with (A, B) = (1, 1). Since we
want the resulting self-triggered MPC described
in Algorithm 1 to be stabilizing, we need to make sure
that our design fulfills the conditions of Theorem 2. If we
further want it to be asymptotically stabilizing, we in addition
need it to fulfill the conditions of Corollary 1.

The design procedure is then as follows. First, we note that
the system (A, B) is controllable. The next step is to decide the
weights 0 < Q and 0 < R in the quadratic cost function (3).
This is done in the same way as in classical linear quadratic
control [36]. Here, we for simplicity choose Q = 1 and R = 1.
We note that the system only has the eigenvalue λ = 1,
fulfilling Assumption 1, so that (11) in Theorem 2 gives
p∗ = maxI0. Hence, Corollary 1 and thus Theorem 2,
will hold for every choice of I0. This means that we may
choose the elements in I0, i.e., the possible down sampling
rates freely. A natural way to choose them is to decide on a
maximum allowed down sampling rate and then choose I0 to
contain all rates from 1 up to this number. Let us say that we
here want the system to be sampled at least every 5 ·Ts s, then
a good choice is I0 = {1, 2, 3, 4, 5}, giving p∗ = maxI0 = 5.

Now having guaranteed that the conditions of Theorem 2
and Corollary 1 hold, we have also guaranteed that the
conditions of Theorem 1 are fulfilled. Hence, we may use
it to compute the state feedback gains and cost function
matrices that are used in Algorithm 1. The results from these
computations are shown in Table I, together with some of the
intermediate variables from Definition 1. Here, we see that
the cost functions are quadratic functions in the state x , where
the coefficients P(i) are functions of Q and R. We also see
that the cost to sample α/ i enters linearly and as we change it,
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Fig. 3. Cost functions V (i)(x(k)) (dashed line) together with the partitioning
of the state space and the time to wait I (k) = arg minI0 V (i)(x(k))
(solid line).

we will change the offset level of the curves and thereby their
values related to each other. However, it will not affect the
state feedback gains.

A graphical illustration of the cost functions in Table I, for
the choice α = 0.2, is shown in Fig. 3 together with the
curve I (k) = arg minI0 V (i)(x(k)), i.e., the index of the cost
function which has the lowest value for a given state x(k).
This is the partitioning of the state space that the self-triggered
MPC controller will use to choose which of the state feedback
gains to apply and how long to wait before sampling again.

Applying our self-triggered MPC described in Algorithm 1
using the results in Table I to our integrator system when
initialized in x(0) = 2, we get the response shown in Fig. 4(a).
Note here that the system will converge to the fixed sampling
rate p∗ as the state converges.

It may now appear as it is sufficient to use periodic control
and sample the system every p∗ · Ts s to get good control
performance. To compare the performance of this periodic
sampling strategy with the self-triggered strategy above, we
apply the control that minimizes the same cost function (3)
as above with the exception that the system now may only be
sampled every p∗ · Ts s. This is in fact the same as using the
receding horizon control above while restricting the controller
to choose i = p∗ every time. The resulting simulations are
shown in Fig. 4(b). As seen, there is a large degradation of
the performance in the transient while the stationary behavior
is almost the same. By this, we can conclude that it is not
sufficient to sample the system every p∗ · Ts s if we want
to achieve the same transient performance as with the
self-triggered sampling.

In the initial transient response, the self-triggered
MPC controller sampled after one time instant. This indicates
that there is performance to gain by sampling every time
instant. To investigate this, we apply the control that minimizes
the same cost function (3), now with the exception that the
system may be sampled every Ts s, i.e., classical unconstrained
linear quadratic control. Now simulating the system, we get
the response shown in Fig. 4(c). As expected, we get slightly
better transient performance in this case compared with our
self-triggered sampling scheme; however, it is comparable.

Fig. 4. Comparison of control performance for different sampling policies.
(a) System response of the integrator system when minimizing the cost using
our single-loop self-triggered MPC. (b) System response of the integrator
system when minimizing the cost by sampling every fifth second. (c) System
response of the integrator system when minimizing the cost by sampling every
second.

Note, however, that this improvement comes at the cost of
a drastically increased communication need, which may not
be suitable for systems where multiple loops share the same
wireless medium.
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Fig. 5. Average sampling interval for different values of α for the integrator
system.

From the above, we may conclude that our self-triggered
MPC combines the low communication rate in stationarity of
the slow periodic controller with the quick transient response
of the fast periodic sampling. In fact, we may, using our
method, recover the transient behavior of fast periodic
sampling at the communication cost of one extra sample
compared with slow periodic sampling. The reason for this
is that the fast sampling rate only is needed in the transient
while we in stationarity can obtain sufficient performance with
a lower rate.

B. Comparison With Periodic Control

To make a more extensive comparison between the
self-triggered algorithm and periodic sampling, we sweep the
value of the design parameter α in the cost function and run
100 simulations of 10 000 samples for each value. To add
randomness to the process, the model (1) is extended to include
disturbances such that for process �

x�(k + 1) = A�x�(k) + B�u�(k) + E�ω�(k) (14)

where ω�(k) ∼ N (0, σ 2
� ) is zero-mean normal distributed with

variance σ 2
� = 0.1 and E� = 1. We increase the maximum

allowed sampling interval to p∗ = max I0 = 15. This though
has the effect, that P(1) = 1.83 whereas P(2) = 1.74, such
that it is always more favorable to have a sample interval of
two samples instead of one, even when α = 0. We therefore
changed the cost of control to R = 0.1 such that we
allow for larger control signals and force the process to
sample at every time instance if α = 0 is chosen. The
initial state is randomly generated as x�(0) ∼ N (0, σ 2

x0,�),
where σ 2

x0,�
= 2 500.

Fig. 5 shows the average sampling interval during the
simulations for different choices of α for the integrator system.
The relation between the value of α and the average sampling
interval is in general monotonic but highly affected by the
system to be controlled and the statistics of the disturbances
in the system.

Since we now have the range of values in which we want
to sweep α, we present a simple periodic MPC cost to which
we compare our algorithm. This cost is given by

J�(x�(k),U�)

=
∞∑

r=0

Ts∑

l=0

(
‖x�(k + l + r Ts)‖2

Q�
+ ‖u�(k + l + r Ts)‖2

R�

)

Fig. 6. Performance of the integrator using the self-triggered algorithm
compared with the simple periodic algorithm for different sampling intervals.
Some values of α are marked with the black crosses.

which using Definition 1 and Lemmas 1 and 2 can be
rewritten as

J�(x�(k),U�) =
∞∑

r=0

‖x�(k + r Ts)‖2
Q(Ts )

�

+ ‖u�(k + r Ts)‖2
R(Ts )

�

+ 2x�(k + r Ts)
T N (i)

� u�(k + r Ts) (15)

for sampling period Ts where

x�(k + Ts) = A(Ts)
� x�(k) + B(Ts)

� u�(k).

When Ts = 1, (15) reduces to classical unconstrained linear
quadratic control.

The empiric cost for each simulation is calculated by

1

T

T −1∑

k=0

x�(k)T Q�x�(k) + u�(k)T R�u�(k) (16)

where T = 10 000 is the length of the simulation.
Fig. 6 shows the average performance that is obtained for

different averaged sampling intervals obtained by sweeping α
from 0 to 106. Fig. 6 shows that the self-triggered algorithm
performs significantly better than periodic sampling, especially
when communication costs are medium to high. However, at
sampling intervals of 2 and 3 time steps, the self-triggered
algorithm performs slightly worse than the periodic algorithm.
This is caused by the fact that if the state of the system is close
to zero when sampled, the cost of sampling is much higher
than the cost of the state error and control, hence the time until
the next sample is taken is large. To avoid this phenomenon,
in future work, one could consider the statistics of the process
noise in the cost function. It can further be noted that when
α → ∞, the performance of the self-triggered algorithm is
very close to the cost of the periodic algorithm. This is as
expected, since the cost of α will be greater than the cost of
the state and control, which will result in sample intervals of
i = p∗ = 15. This reduces the self-triggered algorithm to
periodic control.

C. Multiple Loops

We now continue with performing a simulation study, where
we control two systems over the same network. We will
start by showing a simple example followed by a more
extensive performance comparison of the Algorithm 2 with
periodic control. We will keep the integrator system
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from Section VIII-A now denoting it process P1 with
dynamics x1(k + 1) = A1x1(k) + B1u1(k) with (A1, B1) =
(1, 1) as before. In addition, we will the control process P2,
which is a double integrator system, which we discretize using
sample and hold with sampling time Ts = 1 s giving

(
x1

2(k + 1)

x2
2 (k + 1)

)

︸ ︷︷ ︸
x2(k+1)

=
(

1 0
1 1

)

︸ ︷︷ ︸
A2

(
x1

2(k)

x2
2(k)

)

︸ ︷︷ ︸
x2(k)

+
(

1
0.5

)

︸ ︷︷ ︸
B2

u2(k).

We wish to control these processes using our proposed
multiple-loop self-triggered MPC described in Algorithm 2.
As we wish to stabilize these systems, we start by checking
the conditions of Theorem 5 and Corollary 2. First, we may
easily verify that both the pairs (A1, B1) and (A2, B2) are
controllable. To use the stability results, we need Assumption 2
to hold, implying that we must choose p1 = p2 = p,
I0

1 = I0
2 = I0, and choose I0 such that {1, 2} ∈ I0 and 2 ≤ p.

For reasons of performance, we wish to guarantee that the
systems are sampled at least every 5·Ts s and therefore choose
I0

1 = I0
2 = I0 = {1, 2, 3, 4, 5} fulfilling the requirement

above. We also note that λ(A1) = {1} and λ(A2) = {1, 1}
and that hence both system fulfill Assumption 1 for this
choice of I0, implying that (13) in Theorem 5 gives
p∗ = maxI0 = 5. Thus, choosing p = p∗, as stated in
Theorem 5, results in that Assumption 2 holds. What now
remains to be decided are the weights α�, Q�, and R�.

For the integrator process P1, we keep the same tuning as
in Section VIII-A with Q1 = R1 = 1. Having decided
Q1, R1, I0, and p∗, we use Theorem 3 to compute the needed
state feedback gains and cost function matrices (P(i)

1 , L(i)
1 )

∀i ∈ I0 needed by Algorithm 2. We also keep α1 = 0.2 as it
gave a good communication versus performance tradeoff.

For the double integrator process P2, the weights are chosen
to be Q2 = I , as we consider both states equally important
and R2 = (1/10) to favor control performance and allow for
larger control signals. Having decided Q2, R2, I0, and p∗,
we may use Theorem 3 to compute the needed state feedback
gains and cost function matrices (P(i)

2 , L(i)
2 ) ∀ i ∈ I0 needed

by Algorithm 2. The sampling cost is chosen to be α2 = 1,
as this gives a good tradeoff between control performance and
the number of samples.

We have now fulfilled all the assumptions of both
Theorem 5 and Corollary 2. Hence, applying Algorithm 2,
choosing I�(k�) according to Theorem 4 will asymptotically
stabilize both process P1 and P2.

Controlling P1 and P2 using our multiple-loop
self-triggered MPC described in Algorithm 2 with the
above designed tuning, we get the result shown in Fig. 7.
As expected, the behavior of the controller illustrated
in Section VIII-A carries through also to the case when
we have multiple loops on the network. In fact, comparing
Fig. 4(a) by showing how the controller handles process P1
when controlling it by itself on the network and Fig. 7(a)
that shows how P1 is handled in the multiple-loop case, we
see that they are the same. Further we see that, as expected,
in stationarity, the two loops controlling process P1 and P2
both converge to the sampling rate p∗.

Fig. 7. Processes P1 and P2 controlled and scheduled on the same
network using our multiple-loop self-triggered MPC. (a) System response for
process P1. (b) System response for process P2.

As mentioned previously, the controller uses the mechanism
in Theorem 4 to choose the set of feasible times to wait
until the next sample. In Fig. 8, we can observe how the
resulting sets I�(k�) look in detail. At time k = 0, loop 1 gets
to run Algorithm 2 first. As sensor S2 is not scheduled for
any transmissions, yet I1(0) = I0 from which the controller
chooses I1(0) = 1. Then loop 2 gets to run Algorithm 2 at
time k = 0. As sensor S1 now is scheduled for transmission at
time k = 0 + I1(0) = 1, Theorem 4 gives I2(0) = I0 \ {1}
from which the controller chooses I2(0) = 2. The process
is then repeated every time, a sample is transmitted to the
controller, giving the result in Fig. 8. As seen, both the set I�(·)
and the optimal time to wait I�(·) converges to some fixed
value as the state of the corresponding process P� converges
to zero.

D. Comparison With Periodic Control

For a more thorough performance comparison, we simulate
the systems using Algorithm 2 and compare them to the
periodic algorithm that uses the cost function (15). The single
and double integrator processes (P1 and P2) are simulated
using the parameters mentioned in Section VIII. The variance
of the disturbances for both processes are set to σ 2

� = 0.1, ∀�,
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Fig. 8. Sets I�(·) of feasible times to wait until the next sample for
loop 1 and loop 2. The optimal time to wait I�(·) is marked by red circles,
whereas the other feasible times are starred.

Fig. 9. Performance for both processes for the self-triggered algorithm
compared with a simple periodic algorithm for different sampling intervals.
The maximum sampling interval p∗ = 5 done by varying α from 0 to 5 · 104

and calculating the average amount of samples for every value of α.

the variance of the initial state to σ 2
x0,�

= 25, ∀�, and
E2 = [1, 1]T in (14). The value of α is identical for both
processes in each simulation, such that α1 = α2. Further,
R1 = 0.1. The simulation for both algorithms is initialized
as described in Remark 8.

Fig 9 shows the performance for the processes, P1 and P2,
calculated by averaging (16) over 100 simulations each of
length 10 000 for different values of α when p∗

1 = p∗
2 = 5.

Fig. 10 shows the performance when p∗
1 = p∗

2 = 15. The cost
of each process is normalized with respect to its largest cost
for easier viewing.

Both figures show that the self-triggered algorithm in
general outperforms periodic sampling. The performance
margin increases as the sampling interval increases.
Fig. 9 shows that P1 when α = 0 samples every 1.8
time steps on average, whereas P2 only samples every 2.2
time steps. When α increases, both processes sample almost
every 2 time steps. The reason for this is that the cost of the
state for the down sampled systems in some cases is lower.

The worse performance of the self-triggered algorithm at
lower sampling intervals is more significant in Fig. 10, where
the performance of process P1 shows a similar performance as
in Fig. 6. The lowest average sampling interval for process P2
is 3.6 time steps when α = 0. The self-triggered algorithm,
though, significantly outperforms the periodic algorithm when
the average sampling interval increases.

Fig. 10. Performance for both processes for the self-triggered algorithm
compared with a simple periodic algorithm for different sampling intervals.
The maximum sampling interval p∗ = 15 done by varying α from 0 to 109

and calculating the average amount of samples for every value of α.

As α → ∞, the cost of sampling forces the self-triggered
algorithm to behave similarly to the periodic sampled
algorithm. Therefore, the performance gap between the
periodic and self-triggered algorithms narrows, as the average
sampling interval is close to p∗.

IX. CONCLUSION

We have studied the joint design of control and adaptive
scheduling of multiple loops, and have presented a method
that at every sampling instant computes the optimal control
signal to be applied as well as the optimal time to wait before
taking the next sample. It is shown that this control law may
be realized using MPC and computed explicitly. The controller
is also shown to be stabilizing under mild assumptions. The
simulation results show that the use of the presented control
law in most cases may help reducing the required amount
of communication without almost any loss of performance
compared with fast periodic sampling.

In the multiple-loop case, we have also presented an
algorithm for guaranteeing conflict free transmissions. It is
shown that under mild assumptions, there always exists
a feasible schedule for the network. The complexity of
the multiple-loop self-triggered MPC and the corresponding
scheduling algorithm scales linearly in the number of loops.

An interesting topic for future research is to further
investigate the complexity and possible performance increase
for such an extended formulation.

Intuitively, additional performance gains can be achieved
when the cost function considers process noise as well.
Exploiting this could be of interest in future research.

Another topic for future research would be to apply the
presented framework to constrained control problems.

APPENDIX

A. Proof of Lemma 2

Proof: Following Lemma 1, the problem is equivalent to

min
U(i)

∞∑

r=0

(
x(k + i + r · p)T Q(p)x(k + i + r · p)

+ u(k + i + r · p)T R(p)u(k + i + r · p)

+ 2x(k + i + r · p)T N (p)u(k + i + r · p)
)
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with

x(k + i + (r + 1) · p)

= A(p)x(k + i + r · p) + B(p)u(k + i + r · p).

This problem has the known optimal solution [37],
‖x(k+i)‖2

P(p) , where P(p) is given by the Riccati equation (6),
which has a solution provided that 0 < R(p), implied by
0 < R, and 0 < Q(p), implied by 0 < Q, and that the pair
(A(p), B(p)) is controllable. It is exactly what is stated in
the lemma. �

B. Proof of Theorem 1

Proof: From the Theorem, we have that 0 < Q and 0 < R,
and that the pair (A(p), B(p)) is controllable. Thus, we may
use Lemma 2 to express the cost (4) as

J (x(k), i,U(i)) = α

i
+ ‖x(k + i)‖2

P(p)

+
i−1∑

l=0

(
‖x(k + l)‖2

Q + ‖u(k)‖2
R

)
.

Now applying Lemma 1, we get

J (x(k), i,U(i)) = α

i
+ ‖x(k + i)‖2

P(p)

+ x(k)T Q(i)x(k) + u(k)T R(i)u(k)

+ 2x(k)T N (i)u(k)

with x(k + i) = A(i)x(k) + B(i)u(k). Minimizing
J (x(k), i,U(i)) now becomes a finite-horizon optimal control
problem with one prediction step into the future. This problem
has the well-defined solution (7) [37] given by iterating the
Riccati equation (8). �

C. Proof of Theorem 2

Proof: By assumption, (A, B) is controllable. Together
with the choice of p∗ this, via Lemma 3, implies that
(A(p∗), B(p∗)) is controllable. Further, let x̂(k ′|k) denote an
estimate of x(k ′), given all available measurements up until
time k. Defining

‖x̂(k|k)‖2
S(i) �

i−1∑

l=0

(‖x̂(k + l|k)‖2
Q + ‖û(k|k)‖2

R

)
(17)

we may, since by assumption 0 < Q and 0 < R, use Lemma 2
and Theorem 1 to express Vk , the optimal value of the cost (4)
at the current sampling instant k, as

Vk � min
i∈I0,û(k|k)

J (x(k), i, û(k|k))

= min
i∈I0

α

i
+ ‖x̂(k + i |k)‖2

P(p∗) + ‖x̂(k|k)‖2
S(i)

= min
i∈I0

α

i
+ ‖x̂(k|k)‖2

P(i) . (18)

We will use Vk as a Lyapunov-like function. Assume that
Vk+i is the optimal cost at the next sampling instant k + i .

Again using Theorem 1, we may express it as

Vk+i � min
j∈I0,û(k+i|k+i)

J (x(k + i), j, û(k + i |k + i))

≤ min
û(k+i|k+i)

J (x(k + i), j = p∗, û(k + i |k + i))

= α

p∗ + ‖x̂(k + i |k + i)‖2
P(p∗)

= α

p∗ + ‖x̂(k + i |k)‖2
P(p∗) (19)

where the inequality comes from the fact that choosing j = p∗
is suboptimal. Taking the difference, we get

Vk+i − Vk ≤ α

p∗ − α

i
− ‖x̂(k|k)‖2

S(i)

which in general is not decreasing. However, we may use the
following idea to bound this difference: assume that there
∃ ε ∈ (0, 1], and β ∈ R

+ such that we may write

Vk+i − Vk ≤ −εVk + β

for all k, k+i ∈ D (10), (18). Thus, at l sampling instances into
the future, which happens at, let us say, time k + l ′, we have
that

Vk+l′ ≤ (1 − ε)l · Vk + β ·
l−i∑

r=0

(1 − ε)l .

Since ε ∈ (0, 1], this is equivalent to

Vk+l′ ≤ (1 − ε)l · Vk + β · 1 − (1 − ε)l

1 − (1 − ε)

which as l → ∞ gives us an upper bound on the cost function,
Vk+l′ ≤ β/ε. Applying this idea on our setup, we should fulfill

α

p∗ − α

i
− ‖x̂(k|k)‖S(i)

≤ −ε
α

i
− ε‖x̂(k + i |k)‖2

P(p∗) − ε‖x̂(k|k)‖2
S(i) + β.

Choosing β � α/p∗ − (1 − ε)α/γ , we have fulfillment if

ε
(
‖x̂(k + i |k)‖2

P(p∗) + ‖x̂(k|k)‖2
S(i)

)
≤ ‖x̂(k|k)‖2

S(i) . (20)

Clearly there ∃ε ∈ (0, 1] such that the above relation is
fulfilled if 0 < ‖x̂(k|k)‖2

S(i) . For the case ‖x̂(k|k)‖2
S(i) = 0,

we must, following the definition (17) and the assumption
0 < Q, have that x̂(k|k) = 0 and x̂(k + i |k) = 0, and hence
the relation is fulfilled also in this case. Using the final step
in (18), we may express (20) in easily computable quantities
giving the condition

‖x̂(k + i |k)‖2
P(p∗) ≤ (1 − ε)‖x̂(k|k)‖2

P(i) .

As this should hold ∀x and ∀i ∈ I0, we must fulfill
(
A(i) − B(i)L(i))T

P(p∗)(A(i) − B(i)L(i)) ≤ (1 − ε)P(i)

which is stated in the theorem. Summing up, we have

Vk+l′ ≤ α

ε

(
1

p∗ − (1 − ε)
1

γ

)

which is minimized by maximizing ε. From the definition of
the cost (3), we may also conclude that α/γ ≤ Vk+l′ . With

Vk+l′ = min
i∈I0

(
α

i
+ ‖x̂(k + l ′|k + l ′)‖2

P(i)

)
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we may conclude that

α

γ
≤ lim

k→∞ min
i∈I0

(
α

i
+ ‖x̂(k|k)‖2

P(i)

)
≤ α

ε

(
1

p∗ − (1 − ε)
1

γ

)
.

�

D. Proof of Lemma 4

Proof: From (11), it is clear that p∗ = γ if �λ ∈ λ(A)
except λ = 1 such that λγ = 1. In polar coordinates,
we have that λ = |λ| exp( j · � λ) implying λγ = |λ|γ
exp( j · γ · � λ) = 1 may only be fulfilled if |λ| = 1 and
� λ = (2π/γ ) · n for some n ∈ N

+, which contradicts
Assumption 1. �

E. Proof of Corollary 1

Proof: From Theorem 2, we have that as k → ∞
α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2

P(i)

)
≤ α

ε

(
1

p∗ − (1 − ε)
1

γ

)

which as p∗ = γ , given by Lemma 4, simplifies to

α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2

P(i)

)
≤ α

γ

independent of ε. Implying that as k → ∞, we have that
i = γ and ‖x(k)‖2

P(i) = 0, since 0 < P(i), provided 0 < Q,
this implies that x(k) = 0 independent of α. In the case α = 0,
the bound from Theorem 2 simplifies to that as k → ∞

0 ≤ min
i∈I0

‖x(k)‖2
P(i) ≤ 0

and hence for the optimal i , we have ‖x(k)‖2
P(i) = 0 implying

x(k) = 0 as above. �

F. Proof of Lemma 5

Proof: When loop q was last sampled at time kq < k�,
it was optimized over Iq (kq) and found the optimal feasible
time until the next sample Iq(kq). The loop then reserved the
infinite sequence

Sq (kq) = {kq + Iq (kq), kq + Iq (k) + pq,

kq + Iq (kq) + 2 pq, kq + Iq (kq) + 3 pq, . . .}.
When loop � now should choose I�(k�), it must be able to
reserve (12). To ensure that this is true, it must choose I�(k�)
so that S�(k�) ∩ Sq(kq) = ∅, ∀ q ∈ L \ {�}. This holds if we
have that

k� + I�(k�) + m · p� �= kq + Iq(kq) + n · pq

∀ m, n ∈ N ∀ q ∈ L \ {�}.
Simplifying the above condition, we get conditions on the
feasible values of I�(k�)

I�(k�) �= (kq + Iq(kq)) − k� + n · pq − m · p�

∀ m, n ∈ N, ∀ q ∈ L \ {�}.
Noting that (kq + Iq(kq)) is the next transmission of loop q ,
we denote it by knext

q , giving the statement in the lemma. �

G. Proof of Theorem 4

Proof: Assuming p� = p and I0
� = I0 for all loops,

Lemma 5 gives I�(k�), as stated in the theorem. Since by
assumption L ⊆ I0, we know that

I�(k�) ⊇ {i ∈ L|i �= knext
q − k� + r · p, r ∈ Z, q ∈L\{�}}.

Further, since max L ≤ p, we know that the set
{
i ∈ L|i = knext

q − k� + r · p, r ∈ Z
}

contains at most one element for a given loop q . Thus

{i ∈ L|i �= knext
q − k� + r · p, r ∈ Z, q ∈ L\{�}}

contains at least one element as q ∈ L \ {�} ⊂ L.
Hence, I�(k�) always contains at least one element ∀ k�, and
thus there always exists a feasible time to wait. �

H. Proof of Theorem 5

Proof: Direct application of Theorem 2 on each loop is
done. The corresponding proof carries through as the choice
of I�(k) together with the remaining assumptions guarantees
that we may apply Theorem 3 on the feasible values of i in
every step, thus the expression for Vk in (18) always exists.
The critical step is that the upper bound on Vk+i in (19) must
exist, i.e., the choice j = p∗ must be feasible. This is also
guaranteed by the choice of I�(k) (Remark 10). �
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