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Abstract—In this paper, we investigate network topology recon-
figuration in wireless sensor networks for remote state estimation,
where sensor observations are transmitted, possibly via interme-
diate sensors, to a central gateway/estimator. The time-varying
wireless network environment is modelled by the notion of a
network state process, which is a randomly time-varying semi–
Markov chain and determines the packet reception probabilities of
links at different times. For each network state, different network
configurations can be used, which govern the network topology
and routing of packets. The problem addressed is to determine
the optimal network configuration to use in each network state, in
order to minimize an expected error covariance measure. Com-
putation of the expected error covariance cost function has a
complexity of O(2MΔmax), where M is the number of sensors
and Δmax is the maximum time between transitions of the semi–
Markov chain. A sub-optimal method which minimizes the upper
bound of the expected error covariance, that can be computed
with a reduced complexity of O(2M ), is proposed, which in many
cases gives identical results to the optimal method. Conditions
for estimator stability under both the optimal and suboptimal
reconfiguration methods are derived using stochastic Lyapunov
functions. Numerical results and comparisons with other low
complexity approaches demonstrate the performance benefits of
our approach.

Index Terms—Fading channels, Kalman filtering, network
topology reconfiguration, packet drops, sensor networks.

I. INTRODUCTION

W IRELESS sensor networks consist of a number of small
and inexpensive sensors which can communicate with

each other over wireless links. In conjunction with advances
in microelectronic technology in recent years, sensor networks
have found many applications, e.g., in environmental and in-
frastructure monitoring, healthcare, military surveillance, and
industrial monitoring and control. A major challenge in the
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deployment of wireless sensor networks is overcoming the
time-varying nature of the wireless environment, due to the
severe energy, computation and communication constraints on
the sensors.

The problem of estimation using wireless sensor networks
has been an active research area, due to the unreliable nature
of wireless links and the associated stability and performance
issues. Kalman filtering for a single sensor over a packet
dropping link was considered in [2], which showed the exis-
tence of a critical threshold on the packet arrival probability
needed for estimator stability. Extensions of this work include
further characterizations of the critical threshold [3], [4], mul-
tiple sensors [5]–[7], probabilistic notions of performance [8],
Markovian [9], [10] and semi-Markovian [11] packet drops, and
consideration of delays [12], to name a few.

Estimation in sensor networks using a variety of different
architectures has also been considered. The architecture in [13]
consists of one sensor making measurements, which is then
transmitted over a lossy network with arbitrary topology. The
article [14] looks at decentralized Kalman filtering with packet
drops and/or delays. The works in [15], [16] consider one-hop
transmission (or a star topology) over packet dropping links,
with [15] investigating various different fusion rules, and [16]
studying the effect of power control on stability. Sensor network
architectures with relays are studied in [17], [18], adopting
network coding [19] as a way to improve performance. Kalman
filtering over networks with tree structures include [20]–[22],
with [20] studying a stochastic sensor scheduling problem, and
[21] studying routing algorithms and topology reconfiguration
but no packet drops. In [22] the individual links in the tree
can be packet dropping, and the notion of a network state
process is introduced, which models random time variations in
the wireless environment, for example due to moving machines
and robots in a factory.

In [22] the network topology, i.e., which sensors communi-
cate to each other and how packets are routed through the net-
work, is assumed to be fixed even over different network states.
Our work differs from [22] in that we consider the problem
of determining the optimal network topology configuration to
use in each network state. In [21], reconfiguration from a given
topology to a topology with more direct sensor transmissions to
the fusion center is studied for networks with no packet drops.
In our work, the communication links in the network are packet
dropping, and we optimize between a number of pre-computed
topologies in our reconfiguration. We further assume that net-
work topology reconfigurations do not occur instantly, but may
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incur a cost, in that changing from one configuration to another,
unwanted links will need to be removed before new links can
be established [23] (see also [24], [25] for examples of different
cost functions). This leads to a transient time where some links
may not be available, and poor transitory performance. The
aim is to optimize an expected error covariance measure over
the possible network configurations, taking into account this
transient state when switching between different configurations.
Computation of the expected error covariance cost function
used in this paper has a complexity of O(2MΔmax), where M is
the number of sensors and Δmax is the maximum time between
transitions of the semi-Markov chain modelling the network
state process. We also consider a suboptimal approach which
optimizes an upper bound to the expected error covariance, with
a reduced complexity of O(2M ), which while still exponential
in the number of sensors, could be useful in industrial settings
where networks often have a hierarchical structure and are
divided into smaller sub-networks.

The paper is organized as follows. The system model is
described in Section II. The optimal network reconfiguration
problem is studied in Section III, with stochastic stability
analysis of the scheme given in Section III-D. A suboptimal
method for network reconfiguration is proposed in Section IV.
Some lower complexity schemes are described in Section V. An
illustrative example is given in Section VI. Numerical results
and comparisons with the lower complexity approaches of
Section V are presented in Section VII. Section VIII draws
conclusions.

Notation: We define col(X1, . . . , Xn) � [XT
1 . . . XT

n ]
T

to
be the matrix formed by stacking the matrices X1, . . . , Xn

on top of each other, and diag(X1, . . . , Xn) to be the block
diagonal matrix with X1, . . . , Xn being the diagonal blocks.

II. SYSTEM MODEL

The process is a discrete time linear system of the form

x(k + 1) = Ax(k) + w(k), k ∈ N0 � {0, 1, 2, . . .}

with A possibly unstable, where x(k) ∈ R
n, and w(k) is

Gaussian with zero mean and covariance matrix Q. The process
is observed by M sensors, with measurements

ym(k) = Cmx(k) + vm(k), m ∈ {1, . . . ,M}

where ym(k) ∈ R
lm and vm(k) is Gaussian with zero mean and

covariance matrix Rm. We assume that {w} and {vm},m =
1, . . . ,M are i.i.d. over time (i.e., are discrete time white
noise processes [26]) and mutually independent. We make the
assumption that (A,C) is detectable and (A,Q1/2) is stabi-
lizable, where C � col(C1, . . . , CM ). However, the individual
(A,Cm) pairs are not required to be detectable.

A. Sensor Network Model

We consider the situation where some sensors and a gate-
way/fusion center are connected to form a sensor network,
which in general is assumed to have a mesh structure. Sensor
measurements are to be transmitted, possibly via intermediate

Fig. 1. Sensor network with nine nodes. The set of active links represented by
arrows forms a tree, while the dotted lines represent inactive links.

nodes, to the gateway, which runs a Kalman filter. The paths
used by the sensors in transmitting to the gateway are usually
computed using routing algorithms. We assume that the links
which are utilized in the set of routes from the sensors to the
gateway, which we denote as the set of active links, has a tree
structure (i.e., has no cycles or parallel paths) with the gateway
as the root node. This reduces redundancy in transmissions and
energy usage, and avoids sensors having to listen to multiple
transmissions. For example, a tree structure will be obtained
when using shortest path [27] or minimum energy [21] type
routing algorithms.

The set of active links can be described using a directed
graph with nodes/vertices {S0, S1, . . . , SM}, where the root
node S0 denotes the gateway, and Sm,m = 1, . . . ,M denote
the sensors. See Fig. 1 for an example with nine nodes (eight
sensors and a gateway). Each sensor aggregates its own
measurement to the received packets from incoming nodes and
transmits the resulting packet to a single destination node. We
assume that transmissions can occur over a much faster time
scale than the process, thus delays experienced in travelling
through the network will be ignored.1 We call the node that
sensor Sm transmits to the parent of Sm, denoted by Par(Sm).
The outgoing link/edge from each of the nodes will be denoted
as Em = (Sm, Par(Sm)),m = 1, . . . ,M . For a given tree,
there is a unique path from each node Sm to the gateway
S0, denoted by Path(Sm), with Edges(Path(Sm)) being the
corresponding edges.

B. Wireless Channel Model

We model changes in the characteristics of the wireless envi-
ronment by the notion of a randomly time-varying network state
process Ξ(k) ∈ B � {1, 2, . . . , |B|}. As motivation, consider
Fig. 2, which plots some fading channel measurements acquired
at a rolling mill at Sandvik in Sweden [29]. We see infrequent
but substantial variations in the measured channel gains, due to
mobile machinery and cranes in the ceiling blocking the line
of sight between certain sensors, or changing the propagation
pattern. Different network states can be used to represent the
different positions (or similar groups of positions) that the

1For instance, in the industrial wireless sensor network standard Wire-
lessHART [28], transmissions between nodes typically take around 10 ms,
whereas in many estimation and control applications the process time constant
might be 1 sec or more.
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Fig. 2. Channel measurements taken at a rolling mill.

Fig. 3. Discrete time semi-Markov process.

machines are in.2 We will assume that the network state process
{Ξ} is a discrete time semi-Markov process [30], [31], to model
situations where network state transitions occur randomly, but
not necessarily at every discrete time instant k, see Fig. 3.
The transition instants between network states are denoted by
K � {kl}, with k0 = 0, and k0 < k1 < k2 · · · all integers. The
holding times, or the amounts of time spent in a network state
between transitions, are defined as Δl � kl+1 − kl. We will
also refer to the period between successive network state tran-
sitions as a holding period. We assume that the holding times
are bounded, thus Δl ≤ Δmax, ∀ l. Let D � {1, 2, . . . ,Δmax}.
We have

P{Ξ(kl+1)=j,Δl=δ|Ξ(k0), . . . ,Ξ(kl−1),Ξ(kl)= i, k0, . . . , kl}
= P{Ξ(kl+1)=j|Ξ(kl)= i}P{Δl=δ|Ξ(kl)= i}
= qijψi(δ), ∀ (kl, δ, i, j) ∈ K× D× B× B

where, in the second line, we have made use of the fact that
the Markov property holds at the transition instants (since the
process is semi-Markov [30], [31]), with

qij � P {Ξ(kl+1) = j|Ξ(kl) = i} (1)

being the transition probabilities of the embedded Markov
chain, and the fact that the conditional probabilities of the
holding time

ψi(δ) � P {Δl = δ|Ξ(kl) = i} (2)

2In practice, network states Ξ(k) can be estimated by either directly observ-
ing the positions of the machinery on the factory floor, or by using techniques
to estimate variations in the radio environment [29].

depends only on the current state of the embedded Markov
chain.

The network configuration π(k) at time k fixes the trans-
mission schedule that determines which nodes each sensor will
receive from and forward to. The set of all possible network
configurations is denoted by Π = {1, 2, . . . , |Π|}, and the set of
possible configurations when in network state j by Πj ⊆ Π. We
assume that the set of all possible network configurations has
been precomputed and is known at the gateway. For instance,
in each network state, one can compute a small number of
reasonable configurations, using a few routing algorithms that
optimize different objectives [32], which could also take into
account possible link failures during operation. The set of all
configurations in the different network states would then form
our precomputed set of possible network configurations.

Define the random variables γm(k),m = 1, . . . ,M by

γm(k) =

⎧⎪⎨
⎪⎩
1, if transmission via link Em at time k is

successful

0, otherwise

and the corresponding link success probabilities by

φm|(j,p) � P {γm(k) = 1|Ξ(k) = j, π(k) = p} , p ∈ Πj .

We will assume that, conditioned on a network state, the
dropouts {γm} are i.i.d. Bernoulli processes, with {γm} in-
dependent of {γn} for m �= n. Note that the packet reception
probabilities can differ in different network states. Situations
with i.i.d. and Markovian packet drops can also be regarded as
special cases of this model, see [22] for details.

C. Kalman Filter at Gateway

Define the random variables θm(k),m = 1, . . . ,M by

θm(k) =

⎧⎪⎨
⎪⎩
1, if transmission via Path(Sm) at time k is

successful

0, otherwise

which determines whether the measurement of sensor m at time
k is received by the gateway. Due to the fact that the set of active
links forms a tree, we have

θm(k) =
∏

Ei∈Edges(Path(Sm))

γi(k)

and, by independence,

P {θm(k)=1|Ξ(k)=j, π(k)=p}=
∏

Ei∈Edges(Path(Sm))

φi|(j,p).

Let θ(k)�col(θ1(k), . . . , θM (k)), y(k)�col(θ1(k)y1(k), . . . ,
θM (k)yM (k)), R�diag(R1, . . . , RM ), C(k)�col(θ1(k)C1,
. . . , θM (k)CM ). The information set available at the gateway
at time k is

I(k) = {θ(0), . . . , θ(k), y(0), . . . , y(k)} .
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The state estimates and estimation error covariances are
defined as

x̂(k|k − 1) � E {x(k)|I(k − 1)}

P (k|k − 1) � E

{
(x(k)− x̂(k|k − 1))

× (x(k)− x̂(k|k − 1))T
∣∣∣ I(k − 1)

}
.

The Kalman filtering equations can then be written as (see, e.g.,
[15], [22])

x̂(k + 1|k) = Ax̂(k|k − 1) +K(k) (y(k)− C(k)x̂(k|k − 1))

P (k + 1|k) = AP (k|k−1)AT +Q−K(k)C(k)P (k|k−1)AT

(3)

where K(k)�AP (k|k − 1)C(k)T (C(k)P (k|k − 1)C(k)T +
R)−1. In the sequel, we will also use the shorthand P (k) �
P (k|k − 1).

Remark II.1: An alternative form of the Kalman filter
equations, similar to, e.g., [5], can be given as follows. Let
C̃(k)�col({C1, . . . , CM |θm(k)=1}), ỹ(k)�col({y1(k), . . . ,
yM (k)|θm(k)=1}), R̃(k)�diag({R1, . . . , RM |θm(k)=1}).
Then we have

x̂(k+1|k)=Ax̂(k|k−1)+K̃(k)
(
ỹ(k)−C̃(k)x̂(k|k−1)

)
P (k+1|k)=AP (k|k−1)AT +Q−K̃(k)C̃(k)P (k|k−1)AT

K̃(k)=AP (k|k−1)C̃(k)T

×
(
C̃(k)P (k|k−1)C̃(k)T +R̃(k)

)−1

. (4)

III. OPTIMAL NETWORK RECONFIGURATION

As stated in Section II-A, network states model random
changes in the characteristics of the wireless environment.
Due to these changes, see, e.g., Fig. 2, the packet reception
probabilities of existing links can change, and there could even
be a complete loss of connectivity in some links. The purpose of
the present work is to illustrate how to compensate for changes
in the wireless environment through network reconfiguration.

A. Reconfiguration Issues

In what follows, we will use a similar cost of reconfigura-
tion as in [23], where in changing from one configuration to
another, unwanted links will need to be removed before the
establishment of new links. We will refer to this as a transient
state. Thus, there is a transient time or reconfiguration time
Tl ∈ N0 at the l-th state transition, where some links will not
be available, resulting in poor transitory performance of the
Kalman filter (see Section VI for a specific example). Therefore,
there is potentially a tradeoff between choosing a configuration
that gives good performance (after it is fully reconfigured) but
requires many link changes, versus a configuration that has
fewer link changes but poorer performance.

The reconfiguration time Tl is dependent on the underlying
communication technology. For instance, in IEEE 802.11 the
time needed to reroute a wireless network could be on the order
of seconds, or even tens of seconds [33]. On the other hand,
in WirelessHART which maintains multiple routes that can
be switched at different time instances [34], it might be more
appropriate to take Tl = 0. In this paper, Tl is taken to be ran-
dom,3 with a probability distribution that could depend on the
current network state Ξ(kl), the previous network configuration
π(kl−1), and the new network configuration chosen π(kl). We
will assume that the reconfiguration times are bounded, i.e.,
Tl ≤ Tmax, ∀ l.

B. Optimization Problem

At each transition instant kl ∈ K, we seek to find a network
configuration

π(kl) � π (P (kl),Ξ(kl), π(kl−1))

which is to be held until the next transition instant kl+1 ∈ K,
and which minimizes an expected estimation error covariance
performance measure over this holding period. The gateway
decides on the new configuration based on knowledge of the
current error covariance P (kl), the current network state Ξ(kl),
and the old network configuration π(kl−1), which is then
communicated back to the sensors. For ease of exposition, we
introduce the aggregated process

U(kl) � (P (kl),Ξ(kl), π(kl−1)) , kl ∈ K. (5)

In terms of U(kl), the new configuration π∗(kl) ∈ Πj when
Ξ(kl) = j is found via the optimization

π∗(kl) = argmin
π(kl)∈Πj

V (U(kl), π(kl)) (6)

where the cost function

V (U(kl), π(kl)) � E

{
Δl∑
d=1

trP (kl + d)

∣∣∣∣∣U(kl), π(kl)
}

(7)

with Δl being random. The quantity V(U(kl), π(kl)) amounts
to the sum of the trace of expected error covariances over the
random holding time Δl, when the configuration π(kl) is used.
Similar cost functions have been considered in, e.g., [35], [36]
in optimizing Kalman filter performance over a finite horizon.

3Suppose the new configuration is to be communicated from the gateway
back to the sensors (either using a broadcast or transmitted via intermediate
nodes). Then, due to random packet losses, information about this new config-
uration may not get through reliably to all nodes at the same time but will need
to be retransmitted, resulting in a random Tl.
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In computations, it is useful to further rewrite (7) as

V (U(kl), π(kl))

=

Δmax∑
δ=1

[
Tmax∑
t=0

E

{
δ∑

d=1

trP (kl + d)

∣∣∣∣∣U(kl), π(kl), Tl = t

}

×P {Tl = t|Ξ(kl) = j, π(kl−1), π(kl)}
]

× P {Δl = δ|Ξ(kl) = j} . (8)

In (8), the expectations in the terms

E {P (kl + d)|U(kl), π(kl), Tl = t} (9)

are taken over the packet loss processes [which affect the
Kalman filter recursions (3)], while the summations over δ and
t average over the random holding times and random reconfigu-
ration times respectively. Following the model of Section II-A,
the network state Ξ(kl) determines the distribution of the
holding times [see (2)], and thereby the upper limit of the
sum over d in (8); differences between the decision variable
π(kl) and the previous configuration π(kl−1) determine which
links would be moved to a transient state. In particular, (9) is
computed based on whether the network is still in the transient
mode (if d ≤ Tl) or has been fully reconfigured (if d > Tl),
with the expectation taken over the discrete random variables
{θ(kl), . . . , θ(kl + d− 1)}.

C. Computational Aspects

In principle, problem (6) can be solved by checking the val-
ues of V(U(kl), π(kl)) for each of the different configurations
π(kl) ∈ Πj . However, computation of the expectations in (9)
involves considering the values of P (kl + d) for all possible
combinations of {θ(kl), . . . , θ(kl + d− 1)}, with the number
of possibilities being O(2Md) in general. In particular, comput-
ingE{P (kl +Δmax) | U(kl), π(kl), Tl}will have a complexity
of O(2MΔmax). Thus, for large holding times, which occur
often in industrial settings, calculating the cost function (7) is
computationally intensive. Section IV proposes a suboptimal
method, which minimizes an alternative cost function that can
be computed with complexity O(2M ).

D. Stochastic Stability Analysis

In this subsection, we will present a criterion for estimator
stability with network configurations chosen by solving the
optimal reconfiguration problem (6), by extending the methods
developed in [22]. It is worth noting that establishing stability is
non-trivial, even for simple scheduling problems, see, e.g., [37].

Definition 1: The Kalman filter is said to be uniformly
bounded if there exists a finite constant B > 0 such that
E{trP (k)} ≤ B, ∀ k ∈ N.

First, we have the following:
Lemma III.1: The process {Z}K defined by

Z(kl) � (P (kl−1 + 1), . . . , P (kl),Ξ(kl), π(kl−1)) , kl ∈ K

is Markovian.

Proof: Note that {Ξ}K is Markovian and π(kl) depends
only on (P (kl), Ξ(kl), π(kl − 1)). We also have

P {C(kl)|P (kl), . . . , P (kl−1 + 1), P (kl−1), . . . ,

Ξ(kl),Ξ(kl−1), . . . , π(kl−1), π(kl−2), . . .}

= P {C(kl)|P (kl), . . . , P (kl−1 + 1),Ξ(kl), π(kl−1)} .

The result then follows from (3). �
Next, define the observability matrices O(k, k) = C(k),

O(k + n, k) =

⎡
⎢⎢⎢⎣

C(k)
C(k + 1)A

...
C(k + n)An

⎤
⎥⎥⎥⎦ , n ∈ N. (10)

Consider the processes {�d}K, d = 1, . . . ,Δl, given by

�d(kl) =

{
1, if O(kl + d− 1, kl) is full rank

0, otherwise.

Taking into account the network state, network configurations,
and reconfiguration times, define

μd(j, p, p
−)

� P
{
�d(kl)=0|Ξ(kl)=j, π(kl)=p, π(kl−1)=p−

}
=

Tmax∑
t=0

P
{
�d(kl)=0|Ξ(kl)=j, π(kl)=p, π(kl−1)=p−, Tl= t

}
× P

{
Tl= t|Ξ(kl)=j, π(kl)=p, π(kl−1)=p−

}
. (11)

Then we have:
Theorem III.2: Suppose there exists a policy π�(kl) �

π�(Ξ(kl), π
�(kl−1)), dependent only on the current network

state Ξ(kl) = j and existing configuration π�(kl−1) = p−,
such that

Δmax∑
δ=1

μδ

(
j, π�(j, p−), p−

)
‖A‖2δψj(δ)<1, ∀ j ∈ B, ∀ p−∈Π

(12)

where ‖A‖ denotes the spectral norm of A and ψj(δ) is as
defined in (2). Then, under the optimal network reconfiguration
method (6), the Kalman filter is uniformly bounded.

Proof: See Appendix A. �
Theorem III.2 establishes a sufficient condition on estimator

stability, see Section VI for an example of how this condition
can be verified numerically. Intuitively, condition (12) averages
out non-full rank observation outcomes over the random hold-
ing times Δl = δ.

Remark III.3: In the case of a single network state with
i.i.d. packet drops, we have δ = 1, and ψj(δ) = 1, ∀ j. Then
μδ(j, p, p

−) reduces to the probability that C(k) is not full rank,
and (12) becomes

P {C(k) is not full rank} ‖A‖2 < 1



LEONG et al.: ON NETWORK TOPOLOGY RECONFIGURATION FOR REMOTE STATE ESTIMATION 3847

which is similar to the stability condition of [16]. Further
reducing to a single sensor with C1 full rank, the probability of
C(k) not being full rank is the probability of dropping a packet,
so (12) becomes

P {γ1(k) = 0} ‖A‖2 < 1

which resembles the stability conditions of, for example,
[2], [38].

Remark III.4: Theorem III.2 differs from [22, Theorem 2]
in that the probabilities μd(j, p, p

−) also depends on the net-
work configurations π(kl−1) and π(kl), a concept which was
not considered in [22]. In addition, μd(j, p, p

−) is defined to be
a probability conditional on Ξ(kl) rather than Ξ(kl−1), which
is perhaps more natural since our chosen configurations depend
on Ξ(kl) rather than Ξ(kl−1).

E. Multiple Holding Periods

In Section III-B network reconfigurations are carried out by
considering the sum of expected error covariances over one
network state holding period (involving several time steps k).
By looking further ahead over multiple holding periods, one can
possibly achieve better performance. For the case of averaging
over N holding periods, the new configuration π(kl) ∈ Πj

when Ξ(kl) = j is found via the following optimization:

argmin
π(kl)∈Πj

⎡
⎣E

{
Δl∑

d0=1

trP (kl + d0)

∣∣∣∣∣U(kl), π(kl)
}

+ min
π(kl+1)

E

⎧⎨
⎩E

⎧⎨
⎩
Δl+1∑
d1=1

trP (kl+1 + d1)

∣∣∣∣∣∣U(kl+1),

π(kl+1)

⎫⎬
⎭
∣∣∣∣∣∣U(kl), π(kl)

⎫⎬
⎭+ · · ·

+ min
π(kl+N−1)

E

⎧⎨
⎩E

⎧⎨
⎩
Δl+N−1∑
dN−1=1

trP (kl+N−1+dN−1)

∣∣∣∣∣∣U(kl+N−1),

π(kl+N−1)

⎫⎬
⎭
∣∣∣∣∣∣U(kl), π(kl)

⎫⎬
⎭
⎤
⎦ .

(13)

We observe that in solving the multiple holding period optimal
reconfiguration problem (13), we actually also obtain reconfigu-
ration policies for π(kl+1), . . . , π(kl+N−1). However, here we
will adopt a moving horizon approach similar to [35], so that
the optimal π∗(kl+1) will be obtained by solving problem (13)
at the next transition instant kl+1 ∈ K, the optimal π∗(kl+2) is
obtained by solving problem (13) at the transition instant kl+2,
and so on. We note that optimization over N holding periods
will require the computation of cost functions with an increased
complexity of O(2MΔmaxN ).

IV. SUBOPTIMAL NETWORK RECONFIGURATION

To address the computational issues outlined in Section III-C,
in this section we study a suboptimal scheme which minimizes
upper bounds to the expected error covariances, where these up-
per bounds can be computed recursively with lower complexity
than the expected error covariance (7).

A. Optimization Problem

We adopt a suboptimal approach wherein, using U(kl)
defined as in (5), the new configuration π∗(kl) ∈ Πj is
obtained via

π∗(kl) = argmin
π(kl)∈Πj

W (U(kl), π(kl)) (14)

where

W(U(kl), π(kl))�
Δmax∑
δ=1

δ∑
d=1

tr Y(kl + d)P{Δl=δ|Ξ(kl)=j}.

(15)

The sequence {Y (kl + 1), Y (kl + 2), . . . , Y (kl +Δmax)} is
given by the following recursion:

Y (k + 1) = AY (k)AT +Q

− E

{
AY (k)C(k)T

(
C(k)Y (k)C(k)T +R

)−1

×C(k)Y (k)AT
∣∣∣U(kl), π(kl)}

= AY (k)AT +Q

−
Tmax∑
t=0

E

{
AY (k)C(k)T

(
C(k)Y (k)C(k)T +R

)−1

×C(k)Y (k)AT
∣∣∣U(kl), π(kl), Tl = t

}
× P {Tl = t|Ξ(kl) = j, π(kl), π(kl−1)} (16)

with initial condition Y (kl) = P (kl). The expectations

E

{
AY(k)C(k)T

(
C(k)Y (k)C(k)T+R

)−1
C(k)Y (k)AT

∣∣∣U(kl),
π(kl), Tl = t

}
, k ∈ {kl, . . . , kl +Δmax − 1}

in (16) are computed with respect to the random packet loss
processes, taking into account whether the network is still in
the transient mode (k − kl ≤ Tl) or has been fully reconfigured
(k − kl > Tl), similar to the computation of (9). We have the
following result:

Lemma IV.1: The sequence Y (k) is an upper bound to
E{P (k)|U(kl), π(kl)} for k ≥ kl.

Proof: Define

gk(X)=AXAT +Q− E

{
AXC(k)T

(
C(k)XC(k)T +R

)−1

× C(k)XAT
∣∣∣U(kl), π(kl)} .
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Lemma IV.1 is proved by using the fact that gk(.) is concave
in X , and induction. The concavity of gk(.) is shown by using
similar techniques as in [2], [5], [39]. The details are omitted for
brevity. �

Thus, when the suboptimal method minimizes (15), what is
minimized is not the expected error covariance performance
measure (7), but by Lemma IV.1, an upper bound to (7).

B. Computational Aspects

Upper bounding sequences of the form (16) are much easier
to compute than the expected error covariance when the hold-
ing times are large, since one now needs to consider O(2M )
combinations of packet drops at each stage in (16), rather than
O(2MΔmax) when computing the expected error covariance.4

Furthermore, the bounds often seem to be quite tight, see, e.g.,
[18].5 In Section VII we will see that in numerical simulations
the configurations obtained using the suboptimal method are in
many cases identical to the configurations obtained using the
optimal method.

C. Stochastic Stability Analysis

We now give a stability condition for the suboptimal network
reconfiguration method. First, we have

Lemma IV.2: The process {Z̄}K defined by

Z̄(kl) � (Y (kl−1 + 1), . . . , Y (kl),Ξ(kl), π(kl−1)) , kl ∈ K

is Markovian.
Proof: The proof follows from the fact that 1) {Y }N is

Markovian since Y (k + 1) depends only on Y (k), 2) {Ξ}K is
Markovian, and 3) π(kl) depends only on (Y (kl),Ξ(kl),
π(kl − 1)). �

Now consider a process {s(k)} defined by

s(k) =

{
1, if C(k) is full rank

0, otherwise.

For d = 1, . . . ,Δl, let

νd(j, p, p
−)

� P
{
s(kl+d−1)=0

∣∣Ξ(kl)=j, π(kl)=p, π(kl−1)=p−
}

=

Tmax∑
t=0

P
{
s(kl+d−1)=0|Ξ(kl)=j, π(kl)=p, π(kl−1)=p−,

Tl= t}P
{
Tl= t|Ξ(kl)=j, π(kl)=p, π(kl−1)=p−

}
.

We have:
Theorem IV.3: Suppose there exists a policy π�(kl) �

π�(Ξ(kl), π
�(kl−1)), dependent only on Ξ(kl) = j and

π�(kl−1) = p−, such that

Δmax∑
δ=1

νδ
(
j, π�(j, p−), p−

)
‖A‖2δψj(δ)<1, ∀ j ∈ B, ∀ p−∈Π.

(17)

4While still exponential in the number of sensors, for industrial settings with
small subnetworks this is quite feasible.

5Some tighter but more complicated bounds based on techniques in [40] can
also be used.

Then, under the suboptimal reconfiguration method (14), the
Kalman filter is uniformly bounded.

Proof: See Appendix B. �
Remark IV.4: Comparing Theorems III.2 and IV.3, we see

that the condition (17) in Theorem IV.3 involves probabilities
of the matrices C(k) not being full rank, which in general is
larger than the probability of the observability matrices in (10)
not being full rank. Thus, condition (17) in Theorem IV.3 is
more stringent than condition (12) of Theorem III.2.

D. Multiple Holding Periods

Similar to Section III-E, for the case of averaging over
N holding periods, the new configuration π∗(kl) ∈ Πj when
Ξ(kl) = j is found via the following optimization:

argmin
π(kl)∈Πj

E

⎧⎨
⎩

Δl∑
d0=1

trY0(kl+d0)+ min
π(kl+1)

Δl+1∑
d1=1

tr Y1(kl+1 + d1)

+ · · ·+ min
π(kl+N−1)

Δl+N−1∑
dN−1=1

tr YN−1(kl+N−1 + dN−1)

⎫⎬
⎭ .

(18)

The N sequences {Y0(kl + 1), . . . , Y0(kl +Δmax)}, . . . ,
{YN−1(kl+N−1 + 1), . . . , YN−1(kl+N−1 +Δmax)} in (18) are
defined, for n = 0, . . . , N − 1, as follows:

Yn(k+1)=AYn(k)A
T +Q

−
Tmax∑
tn=0

E

{
AYn(k)C(k)T

(
C(k)Yn(k)C(k)T+R

)−1

×C(k)Yn(k)A
T
∣∣∣Ū(kl+n), π(kl+n), Tl+n= tn

}
× P{Tl+n= tn|Ξ(kl+n), π(kl+n), π(kl+n−1)}

(19)

for k ∈ {kl+n, . . . , kl+n +Δmax − 1}, with initial condition
Yn(kl+n) = Yn−1(kl+n−1 +Δl+n−1) = Yn−1(kl+n). In (19),
we have Ū(kl) � (P (kl),Ξ(kl), π(kl−1)), and Ū(kl+n) �
(Yn(kl+n),Ξ(kl+n), π(kl+n−1)) for n > 0. Note that in the
suboptimal reconfiguration problem (18), the minimization over
π(kl+n) for n > 0 is computed based on Ū(kl+n), rather than
U(kl+n) = (P (kl+n),Ξ(kl+n), π(kl+n−1)) as in the optimal
method (13).

When looking over N holding periods, computation of the
cost functions has a complexity of O(2MN ), which could be
very intensive for large values of N . However, from numerical
simulations, it appears that in many situations even the case
N = 1 already provides most of the gains achieved by solving
the N -period problem, see Section VII.

V. OTHER LOW COMPLEXITY

RECONFIGURATION SCHEMES

The suboptimal scheme of Section IV requires minimizing
a cost function that has complexity O(2M ) to compute. In
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this section we briefly describe some schemes with even lower
complexity (though poorer performance), which will be used
as a performance comparison in Section VII. A more thorough
analysis on the scalability of these schemes, and whether they
can be modified to give better performance, will be the subject
of future work.

A. Network Reconfiguration by Maximizing Packet Reception
Probabilities

This network reconfiguration method maximizes a measure
of the probability of receiving all the sensor measurements,
for a given network state.6 This maximization will depend on
the packet reception probabilities, but doesn’t use information
about the error covariance, observation matrices, measurement
noise or dynamics of the system.

In this scheme, the new configuration π∗(kl) ∈ Πj is ob-
tained by solving the problem

argmax
π(kl)∈Πj

Δmax∑
δ=1

Tmax∑
t=0

δ∑
d=1

E

{
M∏

m=1

θm(kl + d− 1)

∣∣∣∣∣Ξ(kl) = j,

π(kl−1) = p−, π(kl) = p, Tl = t

}

× P
{
Tl = t|Ξ(kl) = j, π(kl−1) = p−, π(kl) = p

}
× P {Δl = δ0|Ξ(kl) = j} . (20)

Note that E{θ1(k)× · · · × θM (k)} gives the probability of
receiving all M sensor measurements at time k. Thus problem
(20) maximizes an average of the probability of receiving all
sensor measurements over a single holding period (of random
length Δl). Since the active links have a tree structure, all M
sensor measurements at time k will be received if transmission
along all M links Em,m = 1, . . . ,M , are successful at time k.
For the case of reconfiguration time Tl = 0, we then have

E

{
M∏

m=1

θm(kl + d− 1)

∣∣∣∣∣ j, p−, p, t
}

=
M∏

m=1

φm|(j,p)

and in the case of Tl > 0, we have

E

{
M∏

m=1

θm(kl + d− 1)

∣∣∣∣∣ j, p−, p, t
}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if d ≤ Tl and at least one link

needs to be changed
M∏

m=1
φm|(j,p), otherwise.

(21)

6Receiving all the sensor measurements has similarities with the converge-
cast operation in networking, where data from multiple sources is delivered to
a single destination, see, e.g., [41], [42].

In the optimization problems considered in Sections III and IV,
the main computational effort is in calculating the expected er-
ror covariances (or upper bounds) which form the cost function.
However, when maximizing the probability of receiving all
sensor measurements, we have the closed form expression (21),
which means that problem (20) can be solved very efficiently.

B. Network Reconfiguration by Optimizing Steady State
Values of Upper Bounds

This scheme is a “steady state” version of the suboptimal
method which minimizes the steady state value of the upper
bounds {Y (k)}, where the steady value Ys for given U(kl) and
π(kl) satisfies

Ys = AYsA
T +Q− E

{
AYsC(k)T

(
C(k)YsC(k)T+R

)−1

×C(k)YsA
T
∣∣∣U(kl), π(kl)}

and be computed by, e.g., iterating the recursion (16) until
convergence. One can pre-compute and store these steady state
values for different combinations of network state and network
configuration, so that in operation one can simply use a lookup
table to compare the cost functions for different configurations.

Since this method assumes a steady state, information about
the reconfiguration time and current error covariance P (kl)
ends up being not utilized, however from simulations it per-
forms quite well if the holding times are long, see Section VII.

C. Network Reconfiguration Using Monte Carlo Simulation of
Cost Functions

In this scheme, at each transition time instant, rather than
computing the cost function

E

{
Δl∑
d=1

trP (kl + d)

∣∣∣∣∣U(kl), π(kl)
}

for different configurations analytically which has high com-
plexity, the cost functions instead are approximated by simulat-
ing many different realizations of the packet drops

γ1(kl), . . . , γ1(kl+Δl−1), . . . , γM (kl), . . . , γM (kl+Δl−1),

random holding times Δl, and random reconfiguration times Tl.
For each realization, we compute

Δl∑
d=1

trP (kl + d)

and then take the average over these realizations.
This scheme may be attractive for larger networks in that it is

not exponential in the number of sensors M when compared
to the suboptimal method, since for additional sensors one
merely simulates additional packet drop realizations for these
new links.
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Fig. 4. Sensor network for example of Section VI.

Fig. 5. Network configurations for example of Section VI.

VI. AN ILLUSTRATIVE EXAMPLE

Here, we give an example to illustrate some of the concepts
introduced in the paper, in particular how to verify the stability
condition (12) of Theorem III.2. We will consider an example
with four sensor nodes, see Fig. 4 for a diagram of the physical
layout. The system has parameters

A =

[
1.1 0.2
0.2 0.8

]
, Q =

[
0.2 0
0 0.2

]

C1 = C2 = C3 = C4 = [1 1], R1 = R2 = 20, R3 = R4 = 0.2.
The differences in the sensor measurement noise variances
correspond to situations where either the process is located
much closer to sensors 3 and 4 than to sensors 1 and 2, or if
sensors 1 and 2 are located in a more hostile radio environment
than sensors 3 and 4 [29]. However, sensors 1 and 2 have better
connectivity to the gateway.

The set of all network configurations is shown in Fig. 5.
There are two network states, with network configurations 1
and 2 possible in network state 1 (so that Π1 = {1, 2}), and
network configurations 1 and 3 possible when in network state 2
(so that Π2 = {1, 3}). The packet reception probabilities for the
links in each of the network configurations are

φ1|(1,1) = 0.5, φ2|(1,1) = 0.5, φ3|(1,1) = 0.1, φ4|(1,1) = 0.5

φ1|(1,2) = 0.5, φ2|(1,2) = 0.5, φ3|(1,2) = 0.8, φ4|(1,2) = 0.5

φ1|(2,1) = 0.5, φ2|(2,1) = 0.5, φ3|(2,1) = 0.5, φ4|(2,1) = 0.1

φ1|(2,3) = 0.5, φ2|(2,3) = 0.5, φ3|(2,3) = 0.5, φ4|(2,3) = 0.8.
(22)

Network state 1 corresponds to the case where there is a robot
blocking the line of sight between sensor nodes 1 and 3, giving
a packet reception probability of 0.1 for the direct link from
sensor 3 to sensor 1 in network configuration 1, while in net-
work configuration 2 sensor 3 will instead transmit to sensor 2
with a higher packet reception probability of 0.8. Similarly
network state 2 will correspond to the case where the robot is
now blocking the line of sight between sensors 2 and 4.

Fig. 6. Transient states when reconfiguring between two network
configurations.

The transition probabilities for the embedded Markov chain
{Ξ(kl)}, kl ∈ K are

P {Ξ(kl+1) = 1|Ξ(kl) = 1} = q11 = 0.5, q12 = 0.5

P {Ξ(kl+1) = 1|Ξ(kl) = 2} = q21 = 0.5, q22 = 0.5.

The reconfiguration times have the distribution

P {Tl = 1|Ξ(kl), π(kl), π(kl−1)} = 0.8

P {Tl = 2|Ξ(kl), π(kl), π(kl−1)} = 0.2 (23)

∀ (Ξ(kl), π(kl), π(kl−1)). The transient states in reconfiguring
between different network configurations are shown in Fig. 6.
For instance, in reconfiguring from network configuration 2
to configuration 3, the active links from sensor 3 to sensor 2,
and from sensor 4 to sensor 2, will first need to be removed,
leading to the transient state where sensors 3 and 4 do not
have connectivity to the rest of the network for some time Tl.
Similarly, reconfiguring from configuration 3 to configuration 2
will also lead to the same transient state.

We now illustrate how to verify the stability condition (12).
We need to compute the terms μd(j, p, p

−), which, using (11),
requires us to compute the probabilities

P
{
�d(kl) = 0|Ξ(kl) = j, π(kl) = p, π(kl−1) = p−, Tl = t

}
.

(24)

The observability matrices O(kl + d− 1, kl) are as in (10),
where each C(k)=col(θ1(k)C1, . . . , θM (k)CM ), k=kl, kl +
1, . . . , kl+ d−1. One can easily verify that if θm1

(k1) = 1 and
θm2

(k2) = 1 for any m1, m2 ∈ {1, . . . ,M}, and any k1, k2 ∈
{kl, kl + 1, . . . , kl + d− 1} with k1 �= k2, then O(kl+d−
1, kl) has full rank. Thus, O(kl + d− 1, kl) is not full rank
when either:

1) θm(k)=0, ∀m ∈ {1, . . . ,M} and ∀ k ∈ {kl, kl+1, . . . ,
kl + d− 1}, or

2) there exists a k∗ ∈ {kl, kl + 1, . . . , kl + d− 1} such that∑M
m=1 θm(k∗) ≥ 1 and θm(k) = 0, ∀m ∈ {1, . . . ,M}

and k �= k∗.

First, consider the instance d = 4, Ξ(kl) = 2, π(kl−1) = 2,
π(kl) = 3, Tl = 1. With these parameters, the network will
be in the transient state (2 → 3) of Fig. 6 at time kl, and
be in network configuration 3 at times kl + 1, kl + 2, kl + 3.
Note that θm(k) = 0, ∀m when γ1(k) = 0 and γ2(k) = 0,
both in the transient state and in network configuration 3. For
case 1) above, note that for fixed k, the situation that
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θm(k)=0, ∀m occurs with probability (1− φ1|(2,3))(1−
φ2|(2,3)). Thus case 1) occurs with probability[(

1− φ1|(2,3)
) (

1− φ2|(2,3)
)]4

.

For case 2) above, consider individually the four situations
when k∗ = kl, kl + 1, kl + 2, kl + 3. One can easily verify that
each of these four situations occurs with probability[
1−

(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)][(
1−φ1|(2,3)

) (
1−φ2|(2,3)

)]3
and so case 2) occurs with probability

4
[
1−

(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)][(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)]3
.

Hence

P {�4(kl)=0|Ξ(kl)=2, π(kl)=3, π(kl−1)=2, Tl=1}

=
[(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)]4
+4

[
1−

(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)]

×
[(
1−φ1|(2,3)

)(
1−φ2|(2,3)

)]3
.

Following the same arguments, it is not difficult to show
that for other values of d, Ξ(kl) = j, π(kl−1) = p−, π(kl) = p,
Tl = t, case 1) occurs with probability[(

1− φ1|(j,p)
)(
1− φ2|(j,p)

)]d
,

case 2) occurs with probability

d
[
1−

(
1−φ1|(j,p)

)(
1−φ2|(j,p)

)][(
1−φ1|(j,p)

)(
1−φ2|(j,p)

)]d−1
,

and hence

μd(j, p, p
−)=

[(
1−φ1|(j,p)

) (
1−φ2|(j,p)

)]d
+d

[
1−

(
1−φ1|(j,p)

)(
1−φ2|(j,p)

)][(
1−φ1|(j,p)

)(
1−φ2|(j,p)

)]d−1
.

(25)

Let the network state holding times have the following
distribution:

P {Δl = 1|Ξ(kl)} = 0.1, P {Δl = 2|Ξ(kl)} = 0.1

P {Δl = 3|Ξ(kl)} = 0.1,P {Δl = 4|Ξ(kl)} = 0.7, ∀Ξ(kl).
(26)

Suppose we try the policy π� which uses network configuration
1 at all times. Then using (25) and (26), we find that for
j ∈ {1, 2}

Δmax∑
δ=1

μδ

(
j, π�(j, p−), p−

)
‖A‖2δψj(δ)

=

Δmax∑
δ=1

μδ(j, 1, 1)‖A‖2δψj(δ) = 0.4342 < 1.

Since we can find at least one policy satisfying condition (12)
of Theorem III.2, the Kalman filter will be uniformly bounded.

TABLE I
COMPARISON BETWEEN OPTIMAL AND SUBOPTIMAL

RECONFIGURATION SCHEMES

VII. NUMERICAL STUDIES

A. Comparison Between Optimal and Suboptimal
Reconfiguration Schemes

We will use the same example as Section VI, with the holding
time distribution (26). The maximum holding time Δmax = 4
here is chosen to be small in order to allow for a comparison
between the optimal and suboptimal reconfiguration methods
of Sections III and IV.

We first simulated a single realization of time length 10 000.
The trace of the time averaged error covariance, E[trP (k)],
when performing network reconfiguration is 1.65, whereas
E[trP (k)] with no reconfiguration is 2.14, which amounts to
a performance gain of about 30%. The network configurations
obtained using both optimal and suboptimal methods behaved
identically: Whenever the network state was equal to 1, the
network changed to network configuration 2, while if the
network state was equal to 2, the network changed to network
configuration 3. However, different behaviour can be observed
by modifying the packet reception probabilities. For instance,
if in (22), both φ3|(1,1) and φ4|(2,1) are increased (so that the
probability of packet reception in these two links for network
configuration 1 is increased), then the network becomes less
likely to reconfigure. From simulations, we found that for
values of φ3|(1,1) and φ4|(2,1) greater than around 0.4, the
network is always in network configuration 1, i.e., the network
never reconfigures.

In Table I, we give the values of E[trP (k)] under the optimal
and suboptimal methods, for different values of φ3|(1,1) and
φ4|(2,1), with φ3|(1,1) = φ4|(2,1). Each E[trP (k)] entry is com-
puted by taking the time average of Monte Carlo realizations
of length 10 000. We also list the number of times when
the optimal and suboptimal methods gave different network
configurations. Only when φ3|(1,1) and φ4|(2,1) are around
0.3 did we observe significant differences (27 times in a
realization of length 10 000) in the configurations obtained
using the optimal and suboptimal methods, with the resulting
performance being very similar. In terms of computational
complexity, here M = 4, Δmax = 4, and Tmax = 2. To com-
pute the cost function for the optimal method requires con-
sideration of approximately (2M + 22M + · · ·+ 2ΔmaxM )×
Tmax = (24 + 28 + 212 + 216)× 2 = 139 808 different terms.
On the other hand, computing the cost function for the
suboptimal method requires consideration of approximately
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Fig. 7. E[trP (k)] for suboptimal network reconfiguration over one and two
holding periods and low complexity schemes.

2M × Tmax ×Δmax = 24 × 2× 4 = 128 different terms, sub-
stantially less than for the optimal method.

B. Comparison With Low Complexity Schemes and
Optimization Over N = 2 Holding Periods

We now consider the case where the network state holding
times have the following distribution:

P {Δl=11|Ξ(kl)} = P {Δl=12|Ξ(kl)}=P {Δl=13|Ξ(kl)}

= P {Δl=14|Ξ(kl)}=
1

4
, ∀Ξ(kl)

so that the minimum duration of a holding period is at least 11.
Longer holding times are typically encountered in industrial
environments, see, e.g., Fig. 2. Due to the substantial increase
in the computational complexity of solving the optimal recon-
figuration problem for long holding times and/or the case of
two holding periods, here we will only present results for the
suboptimal methods of Section IV, and the low complexity
schemes of Section V.

In Fig. 7, we plot E[trP (k)] for solving the suboptimal
network reconfiguration problem overN = 1 or N = 2 holding
periods, together with the case of no reconfiguration and the
low complexity schemes of Section V, for different values of
φ3|(1,1) and φ4|(2,1), with φ3|(1,1) = φ4|(2,1), where E[trP (k)]
for each point on the graphs is obtained by taking the time
average of Monte Carlo realizations of length 10 000. For
small values of φ3|(1,1) and φ4|(2,1), the performance gains
from reconfiguration are larger than in Section VII-A, due
to the longer periods of time in which one can use a good
network configuration before needing to reconfigure. For in-
stance, when φ3|(1,1) = φ4|(2,1) = 0.1, E[trP (k)] is 1.46 with
reconfigurations and 2.14 without reconfigurations, resulting in
a performance gain of 47%, compared to 30% for the case
examined in Section VII-A. We also see that the results are very
similar when optimizing over both one or two holding periods.
In fact, in our simulation results, only for values of φ3|(1,1) and

Fig. 8. E[trP (k)] for different holding times.

φ4|(2,1) around 0.4–0.5 did we observe differences in the net-
work configurations obtained, with the resulting performance
differences being very small.

The scheme of Section V-A that maximizes the probability of
receiving all packets has good performance for small or large
values of φ3|(1,1) and φ4|(2,1), but performs poorly otherwise.
There is a threshold behavior, due to the network configurations
being determined based only on the packet reception proba-
bilities, and not the error covariances or system parameters:
For values of φ3|(1,1) and φ4|(2,1) below a certain threshold,
the scheme always changes configuration when the network
state changes, while above this threshold the network never
reconfigures. The scheme of Section V-B that minimizes the
steady state value also exhibits threshold behavior, but has good
performance over most of the range, due to the relatively long
holding times (minimum of 11) in this example. For the scheme
of Section V-C that approximates the cost functions by sim-
ulation, the performance trend follows that of the suboptimal
schemes, though with a noticeable gap in performance, which
can be reduced by increasing the number of samples used.
For this example, using 50 samples to approximate each cost
function gave a similar running time to the suboptimal method
with N = 1.

C. Performance Gains With Different Holding Times

We now consider the case where the network state holding
times have the following distribution:

P {Δl = δ|Ξ(kl) = 1} = P {Δl = δ|Ξ(kl) = 2} = 1 (27)

for different values of δ. Fig. 8 depicts E[trP (k)] in solving the
suboptimal network reconfiguration problem over one holding
period, for holding times of duration δ = 2, 3, 5, 10, 20, and 30,
together with the case of no reconfiguration, and the low
complexity schemes of Section V-A and B. We see that for
larger δ, there is a greater performance gain by performing
network reconfiguration. Additionally, there is a wider range
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Fig. 9. E[trP (k)] with network state detection delays for different holding
times.

of values of φ3|(1,1) and φ4|(2,1), where reconfiguration gives
performance benefits. However, the relative performance gains
diminish as δ increases, with little difference between the cases
δ = 20 and δ = 30.

The steady state method of Section V-B switches behavior
from always changing configuration to no reconfiguration when
φ3|(1,1) and φ4|(2,1) are greater than around 0.544, irrespective
of the holding time distribution. In this case, the method maxi-
mizing the packet reception probability outperforms the method
of minimizing the steady state upper bounds when the holding
times are short, while the steady state method again performs
well for long holding times.

D. Delays in Detection of Network State Transitions

An interesting issue arises when changes in the network
state Ξ(kl) are not perfectly detected, but could be delayed or
erroneous. Here we present some numerical results on the per-
formance of our methods with respect to delays in the detection
of network state transitions. A more thorough investigation of
ways to compensate for imperfect knowledge of network states
is left for future work.

To model the effect of delays, we will assume that if the
detection of the network state transition is delayed, the network
will continue to use the links in the current configuration if
supported by the new network state. For instance, if we are
currently in network configuration 2 and the new network state
is 2, then during the time of detection delay the link from
sensor 3 to sensor 2 will not be available, since this link is
not supported in network configurations 1 or 3 (which are
the possible configurations when in network state 2). Once
the network state transition has been detected, the network
reconfigures as before (with a delay).

We will use the same holding time distributions as in (27).
Changes in the network state Ξ(kl) are detected at time kl with
probability 0.5, and detected at time kl + 1 (i.e., with delay 1)
with probability 0.5. Fig. 9 depicts E[trP (k)] in solving the
suboptimal network reconfiguration problem over one holding

period, for holding times of duration δ = 3, 5, 10, 20, both with
and without network state detection delay, together with the
case of no reconfiguration. For short holding times, there is a
significant performance loss, but as the holding times become
larger, the performance with network state detection delay
becomes closer to the case with no detection delay.

VIII. CONCLUSION

This paper has presented network topology reconfiguration
methods for state estimation in sensor networks over time-
varying wireless channels. The optimization of an expected
error performance measure which takes into account the cost
of reconfiguration, has been studied. A less computationally
intensive suboptimal method has been proposed, which in many
cases gives identical results to the optimal method. In situations
with long holding times, which are likely to be encountered in
an industrial setting, numerical results suggest that significant
performance gains can be achieved by network reconfiguration.

There are several possible directions to extend the current
work. Further analysis of sub-optimal reconfiguration methods
which scale well with the number of sensors will be important
for larger networks. Another direction is the consideration of
imperfect knowledge of the network states, e.g., delays or errors
in the estimation of the network state, and ways to compensate
for this. In addition, in industrial settings one might also try
to anticipate changes in the network state by considering the
future movements of machinery, which may possibly reduce the
reconfiguration time. Such topics will form the basis of future
investigation.

APPENDIX

A. Proof of Theorem III.2

Consider a policy π�. Define the candidate stochastic
Lyapunov function:

Vl � trP (kl) (28)

where kl ∈ K are the random switching times of the semi-
Markov chain {Ξ}. We have

E
{
Vl+1|Z(kl), π

�(j, p−)
}

=

Δmax∑
δ=1

E
{
Vl+1|Z(kl), π

�(j, p−),Δl = δ
}
ψj(δ). (29)

Noting that kl+1 = kl +Δl, we can write:

E
{
Vl+1|Z(kl), π

�(j, p−),Δl = δ
}

= E
{
trP (kl + δ)|Z(kl), π

�(j, p−)
}

= E
{
trP (kl + δ)|Z(kl), π

�(j, p−), �δ(kl) = 1
}

× P
{
�δ(kl) = 1|Z(kl), π

�(j, p−)
}

+ E
{
trP (kl + δ)|Z(kl), π

�(j, p−), �δ(kl) = 0
}

× P
{
�δ(kl) = 0|Z(kl), π

�(j, p−)
}
.
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For the first term above, we can show by similar arguments to
[22] that

E
{
trP (kl + δ)|Z(kl), π

�(j, p−), �δ(kl) = 1
}

× P
{
�δ(kl) = 1|Z(kl), π

�(j, p−)
}
≤ W δ

1

for some finite constant W δ
1 . For the case when �δ(kl) = 0,

the error covariance matrix P (kl + δ) is bounded by the
worst case, where γm(k)=0,∀ (m, k)∈{1, . . . ,M}×{kl, . . . ,
kl + δ − 1}. Therefore,

E
{
trP (kl + δ)|Z(kl), π

�(j, p−), �δ(kl) = 0
}

× P
{
�δ(kl) = 0|Z(kl), π

�(j, p−)
}

≤ tr
(
AδP (kl)(A

δ)T +Aδ−1Q(Aδ−1)T + · · ·+Q
)

× μδ

(
j, π�(j, p−), p−

)
≤ trP (kl)‖A‖2δμδ

(
j, π�(j, p−), p−

)
+W δ

2

= Vl‖A‖2δμδ

(
j, π�(j, p−), p−

)
+W δ

2 (30)

for some finite constant W δ
2 . Then

E
{
Vl+1|Z(kl),π�(j,p−)

}
≤

Δmax∑
δ=1

μδ
(
j,π�(j,p−), p−

)
‖A‖2δψj(δ)Vl

+

Δmax∑
δ=1

(
W δ

1 +W δ
2

)
ψj(δ).

The second summation above is bounded. Thus, if

Δmax∑
δ=1

μδ

(
j, π�(j, p−), p−

)
‖A‖2δψj(δ) < 1

then, since {Z}K is Markovian by Lemma III.1, we can use
[43, Proposition 3.2] to show that, under the policy π�,

E
{
P (kl)|Z(0), π�

}
≤ α1ρ

kl + β1, ∀ kl ∈ K (31)

for some ρ ∈ [0, 1) and finite constantsα1 and β1. For the times
in between transition instants, note that similar to (30), we can
find finite constants α2 and W3 such that

trP (kl + d) ≤ ‖A‖2d trP (kl) +W3 ≤ α2ρ
d trP (kl) +W3

holds for all d ∈ {1, . . . ,Δl}. Then, using (31)

E
{
trP (kl + d)|π�

}
≤ α2α1ρ

kl+d + α2β1ρ
d +W3

≤ αρkl+d + β, ∀ d∈{1, . . . ,Δmax}

for some finite constants α and β. Since ρ < 1, this implies that

E
[
trP (k)|π�

]
≤ α+ β � B.

This establishes uniform boundedness at all times k ∈ N under
policy π� when condition (12) is satisfied.

Now, under the optimal reconfiguration policy π∗, we have

E {trP (kl + 1) + · · ·+ trP (kl +Δl)|Z(kl), π
∗}

≤ E
{
trP (kl + 1) + · · ·+ trP (kl +Δl)|Z(kl), π

�
}

for all Z(kl), so that

E {trP (kl + 1) + · · ·+ trP (kl +Δl)|π∗}

≤ E
{
trP (kl + 1) + · · ·+ trP (kl +Δl)|π�

}
≤ ΔlB ≤ ΔmaxB.

Since error covariance matrices have non-negative trace, we
have for all d ∈ {1, . . . ,Δl},

E {trP (kl + d)|π∗} ≤ ΔmaxB � B̃.

This thus establishes uniform boundedness of the Kalman filter
under the optimal policy π∗.

B. Proof of Theorem IV.3

Firstly, for k ∈ {kl, . . . , kl +Δmax − 1}, the recursion (16)
can be written as

Y (k + 1)

= E

{
AY(k)AT +Q−AY(k)C(k)T

(
C(k)Y (k)C(k)T+R

)−1

×C(k)Y (k)AT
∣∣∣U(kl), π(kl), s(k) = 1

}
× P {s(k) = 1| U(kl), π(kl)}

+ E

{
AY(k)AT+Q−AY(k)C(k)T

(
C(k)Y(k)C(k)T+R

)−1

×C(k)Y (k)AT
∣∣∣U(kl), π(kl), s(k) = 0

}
× P {s(k) = 0| U(kl), π(kl)}

from which one can derive the bounds

tr Y (kl + 1) ≤ W1,1 + tr
(
AY (kl)A

T +Q
)

× P {s(kl) = 0| U(kl), π(kl)}

= W1,1 +
(
tr Y (kl)‖A‖2 +W1,2

)
× ν1 (Ξ(kl), π(kl), π(kl−1))

tr Y (kl + 2) ≤ W1,2 + tr
(
AY (kl + 1)AT +Q

)
× P {s(kl + 1) = 0| U(kl), π(kl)}

≤ W1,2 +
(
tr Y (kl)‖A‖4 +W2,2

)
× ν2 (Ξ(kl), π(kl), π(kl−1))

...

tr Y (kl + d) ≤ W1,d +
(
trY (kl)‖A‖2d +W2,d

)
× νd (Ξ(kl), π(kl), π(kl−1)) (32)

for some finite constants W1,d and W2,d.
Consider a policy π�. Define

V̄l � tr Y �(kl−1 +Δl−1)
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where Y � denotes the recursion (16) under policy π�. We have

E
{
V̄l+1|Z̄(kl), π�(j, p−)

}
=

Δmax∑
δ=1

E
{
V̄l+1|Z̄(kl), π

�(j, p−),Δl = δ
}
ψj(δ)

and

E
{
V̄l+1|Z̄(kl), π

�(j, p−),Δl = δ
}

= E
{
tr Y �(kl + δ)|Z̄(kl), π

�(j, p−), s(kl + δ − 1) = 1
}

× P
{
s(kl + δ − 1) = 1|Z̄(kl), π�(j, p−)

}
+ E

{
tr Y �(kl + δ)|Z̄(kl), π

�(j, p−), s(kl + δ − 1) = 0
}

× P
{
s(kl + δ − 1) = 0|Z̄(kl), π�(j, p−)

}
≤ W1,δ +

(
trY �(kl)‖A‖2δ +W2,δ

)
νδ

(
j, π�(j, p−), p−

)
for some finite constants W1,δ and W2,δ , where the inequality
comes from making use of the bounds (32). Using Lemma IV.2
and similar arguments as in the proof of Theorem III.2, we can
show that if

Δmax∑
δ=1

νδ
(
j, π�(j, p−), p−

)
‖A‖2δψj(δ) < 1

holds, then there exists finite constants B, B̃, such that

trY �(k) ≤ B, ∀ k

under policy π�, and

tr Y (k) ≤ B̃, ∀ k

under policy π∗. Since Y (k) upper bounds E{P (k)} by
Lemma IV.1, this then implies

E{trP (k)} ≤ B̃, ∀ k

and, hence, the uniform boundedness of the Kalman filter under
policy π∗.
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