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Optimal Control Design Under Limited Model
Information for Discrete-Time Linear Systems

With Stochastically-Varying Parameters
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Abstract—The value of plant model information available in
the control design process is discussed. We design optimal state-
feedback controllers for interconnected discrete-time linear sys-
tems with stochastically-varying parameters. The parameters are
assumed to be independently and identically distributed random
variables in time. The design of each controller relies only on
(i) exact local plant model information and (ii) statistical beliefs
about the model of the rest of the system. We consider both
finite-horizon and infinite-horizon quadratic cost functions. The
optimal state-feedback controller is derived in both cases. The
optimal controller is shown to be linear in the state and to depend
on the model parameters and their statistics in a particular way.
Furthermore, we study the value of model information in optimal
control design using the performance degradation ratio which
is defined as the supremum (over all possible initial conditions)
of the ratio of the cost of the optimal controller with limited
model information scaled by the cost of the optimal controller
with full model information. An upper bound for the performance
degradation ratio is presented for the case of fully-actuated sub-
systems. Comparisons are made between designs based on limited,
statistical, and full model information. Throughout the paper, we
use a power network example to illustrate concepts and results.

Index Terms—Limited model information, linear systems,
optimal control, stochastic systems, stochastically-varying
parameters.

I. INTRODUCTION

A. Motivation

LARGE-SCALE systems such as automated highways [2],
[3], aircraft and satellite formations [4], [5], supply chains

[6], [7], power grids and other shared infrastructures [8], [9]
are typically composed of several locally controlled subsystems
that are connected to each other either through the physical
dynamics, the communication infrastructure, or the closed-loop
performance criterion. The problem of designing these local
controllers, widely known as distributed or decentralized con-
trol design, is an old and well-studied problem in the literature
[10]–[16]. Although the controller itself is highly structured
for these large-scale systems, it is commonly assumed that
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the complete model of the system is available and the design
is done in a centralized fashion using the global plant model
information. However, this assumption is usually not easily
satisfied in practice. For instance, this might be because the
design of each local controller is done by a separate designer
with no access to the global plant model because the full plant
model information is not available at the time of design or it
might change later. Recently, this concern has become more
important as engineers implement large-scale systems using
off-the-shelf components which are designed in advance with
limited prior knowledge of their future operating condition.
Another reason to consider control design based on only local
information is to simplify the tuning and the maintenance of the
system. For instance, dependencies between cyber components
in a large system can cause complex interactions influencing
the physical plant, not present without the controller. Privacy
concerns could also be a motivation for designing control
actions using only local information. For further motivations
behind optimal control design using local model information,
see [17].

As an illustrative physical example, let us consider a power
network control problem with power being generated in gener-
ators and distributed throughout the network via transmission
lines (e.g., [18], [19]). It is fairly common to assume that
the power consumption of the loads in such a network can
be modeled stochastically with a priori known statistics, such
as, mean and variance extracted from long term observations
[20]–[22]. When the load variations are “small enough”, local
generators meet these demand variations. These variations shift
the generators operating points, and consequently, change their
model parameters. If the loads are modeled as impedances,
they change the system model by changing the transmission
line impedances. As power networks are typically implemented
over a vast geographical area, it is inefficient or even impossible
to gather all these model information variations or to identify
all the parameters globally. Even if we could gather all the
information and identify the whole system based on them, it
might take very long and by then the information might be
outdated (noting that the model parameters vary stochastically
over time). This motivates the interest in designing local con-
trollers for these systems based on only local model information
and statistical model information of the rest of the system.
We revisit this power network problem in detail for a small
example in the paper. A recurring example is used to explain the
underlying definitions as well as the mathematical results. It is
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not difficult to see that similar examples can also be derived for
process control, intelligent transportation, irrigation systems,
and other shared infrastructures.

B. Related Studies

Optimal control design under limited model information has
recently attracted attention. The authors in [23] introduced
control design strategies as mappings from the set of plants
of interest to the set of eligible controllers. They studied the
quality of these control design strategies using a performance
metric called the competitive ratio; i.e., the worst case ratio of
the closed-loop performance of a given control design strategy
to the closed-loop performance of the optimal control design
with full model information. Clearly, the smaller the compet-
itive ratio is, the more desirable the control design strategy
becomes since it can closely replicate the performance of the
optimal control design strategy with full model information
while only relying on local plant model information. They
showed that for discrete-time systems composed of scalar sub-
systems, the deadbeat control design strategy is a minimizer
of the competitive ratio. Additionally, the deadbeat control
design strategy is undominated; i.e., there is no other control
design strategy that performs always better while having the
same competitive ratio. This work was later generalized to
limited model information control design methods for inter-
connected linear time-invariant systems of arbitrary order in
[24]. In that study, the authors investigated the best closed-
loop performance that is achievable by structured static state-
feedback controllers based on limited model information. It was
shown that the result depends on the subsystems interconnec-
tion pattern and availability of state measurements. Whenever
there is no subsystem that cannot affect any other subsystem
and each controller has access to at least the state measurements
of its neighbors, the deadbeat strategy is the best limited model
information control design method. However, the deadbeat
control design strategy is dominated (i.e., there exists another
control design strategy that outperforms it while having the
same competitive ratio) when there is a subsystem that cannot
affect any other subsystem. These results were generalized to
structured dynamic controllers when the closed-loop perfor-
mance criterion is set to be the H2-norm of the closed-loop
transfer function [25]. In this case, the optimal control design
strategy with limited model information is static even though
the optimal structured state-feedback controller with full model
information is dynamic [26], [27]. Later in [28], the design
of dynamic controllers for optimal disturbance accommodation
was discussed. It was shown that in some cases an observer-
based-controller is the optimal architecture also under limited
model information. Finally, in [29], it was shown that using
an adaptive control design strategy, the designer can achieve a
competitive ratio equal to one when the considered plant model
belongs to a compact set of linear time-invariant systems and
the closed-loop performance measure is the ergodic mean of
a quadratic function of the state and control input (which is
a natural extension of the H2-norm of the closed-loop system
considering that the closed-loop system in this case is nonlinear
due to the adaptive controller).

In all these studies, the model information of other subsys-
tems are assumed to be completely unknown which typically
results in conservative controllers because it forces the designer
to study the worst-case behavior of the control design methods.
In this paper, we take a new approach by assuming that a
statistical model is available for the parameters of the other
subsystems. There have been many studies of optimal control
design for linear discrete-time systems with stochastically-
varying parameters [30]–[34]. In these papers, the optimal con-
troller is typically calculated as a function of model parameter
statistics. Considering a different problem formulation, in this
paper, we assume each controller design is done using the exact
model information of its corresponding subsystem and the other
subsystems’ model statistics.

Note that studying the worst-case behavior of the system
using the competitive ratio is not the only approach for optimal
control design under limited model information. For instance,
the authors in [35]–[37] developed methods for designing
near-optimal controllers using only local model information
whenever the coupling between the subsystems is negligible.
However, not even the closed-loop stability can be guaranteed
when the coupling grows. As a different approach, in a recent
study [38], the authors used an iterative numerical optimization
algorithm to solve a finite-horizon linear quadratic problem
in a distributed way using only local model information and
communication with neighbors. However, this approach (and
similarly [39], [40]) require many rounds of communication
between the subsystems to converge to a reasonable neighbor-
hood of the optimal controller. To the best of our knowledge,
there is also no stopping criteria (for terminating the numerical
optimization algorithm) that uses only local information. There
have been some studies in developing stopping criteria but
these studies require global knowledge of the system [41],
[42]. Recently, there has been an attempt for designing opti-
mal controllers using only local model information for linear
systems with stochastically-varying parameters [43]. However,
that setup is completely different from the problem that is
considered in this paper. First, the authors of [43] considered
the case where the B-matrix was parameterized with stochastic
variables but in our setup the A-matrix is assumed to be
stochastic. Additionally, in [43], the infinite-horizon problem
was only considered for the case of two subsystems, while here
we present all the results for arbitrary number of subsystems.
In this paper, we introduce the concept of performance degrada-
tion ratio as a measure to study the value information in optimal
control design. Furthermore, the proof techniques are different
since the authors of [43] use a team-theoretic approach to solve
the problem opposed to the approach presented in this paper.

C. Main Contribution

The main contribution of this paper is to study the value of
plant model information available in the control design process.
To do so, we consider limited model information control design
for discrete-time linear systems with stochastically-varying pa-
rameters. First, in Theorem 1, we design the optimal finite-
horizon controller based on exact local model information and
global model parameter statistics. We generalize these results
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to infinite-horizon cost functions in Theorem 2 assuming that
the underlying system is mean square stabilizable; i.e., there
exists a constant matrix that can mean square stabilizes the
system [30]. However, in Corollary 3, we partially relax the
assumptions of Theorem 2 to calculate the infinite-horizon opti-
mal controller whenever the underlying system is mean square
stabilizable under limited model information. This new concept
is defined through borrowing the idea of control design strate-
gies from [23], [24]. We define a special class of control design
strategies to construct time-varying control gains for each sub-
system. We say that a system is mean square stabilizable under
limited model information if the intersection of this special
class of control design strategies (that use only local model
information) and the set of mean square stabilizing control
design strategies is nonempty; i.e., there exists a control design
strategy that uses only local model information and it can mean
square stabilizes the system (see Definition 3 for more details).

Using the closed-loop performance of the optimal controller
with limited model information, we study the effect of lack
of full model information on the closed-loop performance.
Specifically, we study the ratio of the cost of the optimal control
design strategy with limited model information scaled by the
cost of the optimal control design strategy with full model
information (which is introduced in Theorems 4 and 5 for
finite-horizon and infinite-horizon cost functions, respectively).
We call the supremum of this ratio over the set of all initial
conditions, the performance degradation ratio. In Theorem 6,
we find an upper bound for the performance degradation ratio
assuming the underlying systems are fully-actuated (i.e., they
have the same number of inputs as the state dimension). As a
future direction for research, one might be able to generalize
these results to designing structured state-feedback controllers
following the same line of reasoning as in [44].

An early and brief version of the paper was presented as
[1]. The current paper is a considerable extension of [1] as the
results have been generalized, a new literature survey has been
included, and a power network example has been introduced to
illustrate concepts and results throughout the paper.

D. Paper Outline

The rest of the paper is organized as follows. We start with
introducing the system model in Section II. In Section III, we
design optimal controller for each subsystem based on limited
model information (i.e., using its own model information and
the statistical belief about the other subsystems). We start by the
finite-horizon optimal control problem and then generalize the
results to infinite-horizon cost functions. In Section IV, we
introduce the optimal controller for both finite-horizon and
infinite-horizon cost functions when using the full model in-
formation. In Section V, we study the value of plant model
information in optimal control design using the performance
degradation ratio. Finally, the conclusions and directions for
future research are presented in Section VI.

E. Notation

The sets of integers and reals are denoted by Z and R,
respectively. We denote all other sets with calligraphic letters

Fig. 1. Schematic diagram of the power network in Example 1.

such as A and X . Specifically, we define Sn
++ (Sn

+) as the
set of all symmetric matrices in R

n×n that are positive definite
(positive semidefinite). Matrices are denoted by capital roman
letters such as A. We use the notation Aij to denote a submatrix
of matrix A (its dimension and position will be defined in the
text). The entry in the ith row and the jth column of the matrix
A is denoted aij . We define A > (≥)0 as A ∈ Sn

++(Sn
+) and

A > (≥)B as A−B > (≥)0. Let A⊗B ∈ R
np×qm denote

the Kronecker product between matrices A ∈ R
n×m and B ∈

R
p×q; i.e.

A⊗B =

⎡
⎣ a11B · · · a1mB

...
. . .

...
an1B · · · anmB

⎤
⎦ .

For any positive integers n and m, we define the mapping vec :

R
n×m → R

nm as vec(A) = [A�
1 A�

2 · · · A�
m]

�
where Ai, 1 ≤

i ≤ m, denotes the ith column of A. The mapping vec−1 :
R

nm → R
n×m is the inverse of vec(·), where the dimension

of the matrix will be clear from the context. It is useful to
note that both vec and vec−1 are linear operators. Finally,
for any given positive integers n and m, we define the dis-
crete Riccati operator R : Rn×n × Sn

+ × R
n×m × Sm

++ → Sn
+

as R(A,P,B,R) = A�(P − PB(R+B�PB)
−1
B�P )A for

any A ∈ R
n×n, P ∈ Sn

+, B ∈ R
n×m, and R ∈ Sm

++.

II. CONTROL SYSTEMS WITH

STOCHASTICALLY-VARYING PARAMETERS

Consider a discrete-time linear system with stochastically-
varying parameters composed of N subsystems with each
subsystem represented in state-space form as

xi(k + 1) =

N∑
j=1

Aij(k)xj(k) +Bii(k)ui(k) (1)

where xi(k) ∈ R
ni and ui(k) ∈ R

mi denote subsystem i, 1 ≤
i ≤ N , state vector and control input, respectively.

Remark 1: Linear systems with stochastically-varying pa-
rameters have been studied in many applications including
power networks [20], [21], process control [45], finance [46],
and networked control [34], [47]. Various system theoretic
properties and control design methods have been developed for
these systems [30]–[33].

We make the following two standing assumptions:
Assumption 1: The submatrices Aij(k), 1 ≤ i, j ≤ N , are

independently distributed random variables in time; i.e.,
P{Aij(k1) ∈ X |Aij(k2)} = P{Aij(k1) ∈ X} for any X ⊆
R

ni×nj whenever k1 	= k2.
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TABLE I
NOMINAL VALUES OF POWER SYSTEM PARAMETERS IN EXAMPLE 1

Assumption 2: The subsystems are statistically independent
of each other; i.e., P{Aij(k) ∈ X |Ai′j′(k)} = P{Aij(k) ∈ X}
for any X ⊆ R

ni×nj and 1 ≤ j, j′ ≤ N whenever i 	= i′.
We illustrate these properties on a small power network

example. We will frequently revisit this example to demonstrate
the developed results as well as their implications.

Example 1: Let us consider the power network composed of
two generators shown in Fig. 1 from [48, pp. 64–65], see also
[18]. We can model this power network as

δ̇1(t) =ω1(t)

ω̇1(t) =
1

M1

[
P1(t)− c−1

12 sin (δ1(t)− δ2(t))

− c−1
1 sin (δ1(t))−D1ω1(t)

]
δ̇2(t) =ω2(t)

ω̇2(t) =
1

M2

[
P2(t)− c−1

12 sin (δ2(t)− δ1(t))

− c−1
2 sin (δ2(t))−D2ω2(t)

]
where δi(t), ωi(t), and Pi(t) are, respectively, the phase angle
of the terminal voltage of generator i, its rotation frequency,
and its input mechanical power. We assume that P1(t) = 1.6 +
v1(t) and P2(t) = 1.2 + v2(t), where v1(t) and v2(t) are the
continuous-time control inputs of this system. The power net-
work parameters can be found in Table I (see [18], [48] and ref-
erences therein for a discussion on these parameters). Now,
we can find the equilibrium point (δ∗1, δ

∗
2) of this system

and linearize it around this equilibrium. Let us discretize the
linearized system by applying Euler’s constant step scheme

with sampling time ΔT = 300 ms, which results in (2), as
shown at the bottom of the page, with ξ1 = −ΔT (c−1

12 cos(δ∗1 −
δ∗2) + c−1

1 cos(δ∗1))/M1 and ξ2 = −ΔT (c−1
12 cos(δ∗2 − δ∗1) +

c−1
2 cos(δ∗2))/M2. In (2),Δδ1(k),Δδ2(k),Δω1(k), andΔω2(k)

denote the deviation of δ1(t), δ2(t), ω1(t), and ω2(t) from their
equilibrium points at time instances t = kΔT . Additionally, let
the actuators be equipped with a zero order hold unit which
corresponds to vi(t) = ui(k) for all kΔT ≤ t < (k + 1)ΔT .
Let us assume that we have connected impedance loads to
each generator locally, such that the parameters c1 and c2
vary stochastically over time according to the load profiles.
Furthermore, assume that each generator changes its input
mechanical power according to these local load variations (to
meet their demand and avoid power shortage). Doing so, we
would not change the equilibrium point (δ∗1, δ

∗
2). For this setup,

we can model the system as a discrete-time linear system with
stochastically-varying parameters

x(k + 1) = A(k)x(k) +Bu(k)

where

x(k) =

⎡
⎢⎣
Δδ1(k)
Δω1(k)
Δδ2(k)
Δω2(k)

⎤
⎥⎦ , u(k) =

[
u1(k)
u2(k)

]
, B =

⎡
⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎦

and A(k) is given in (3), as shown at the bottom of the page, in
which αi(k), i = 1, 2, denotes the deviation of the admittance
c−1
i from its nominal value in Table I. Let us assume that
α1(k) and α2(k) are independently and identically distributed
random variables in time with α1(k) ∼ N (0, 0.1) and α2(k) ∼
N (0, 0.3). Note that in this example, αi(k) is a stochastically-
varying parameter of subsystem i describing the dynamics of
the local power consumption. It only appears in the model of
subsystem i; i.e., in {Aij(k)|1 ≤ j ≤ N}. In the rest of the pa-
per when discussing this example and for designing controller
i, we assume that we only have access to the exact realization of
αi(k) in addition to the statistics of the other subsystem. This is
motivated by the fact that the controller of the other generator
might not have access to this model information. �

We define the concatenated system from (1) as

x(k + 1) = A(k)x(k) +B(k)u(k) (4)

⎡
⎢⎣
Δδ1(k + 1)
Δω1(k + 1)
Δδ2(k + 1)
Δω2(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣

1 ΔT 0 0
ξ1 1− ΔTD1

M1

ΔT cos(δ∗1−δ∗2 )
c12M1

0
0 0 1 ΔT

ΔT cos(δ∗2−δ∗1 )
c12M2

0 ξ2 1− ΔTD2

M2

⎤
⎥⎦
⎡
⎢⎣
Δδ1(k)
Δω1(k)
Δδ2(k)
Δω2(k)

⎤
⎥⎦+

⎡
⎢⎣

0
u1(k)
0

u2(k)

⎤
⎥⎦ (2)

A(k) =

⎡
⎢⎣

1.0000 0.3000 0 0
−45.6923− 6.9297α1(k) 0.9250 29.3953 0

0 0 1.0000 0.3000
23.5163 0 −37.3757− 8.1485α2(k) 0.9400

⎤
⎥⎦ (3)
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where x(k)=[x1(k)
� · · · xN (k)�]

�∈R
n and u(k)=[u1(k)

�

· · ·uN (k)�]
� ∈ R

m, with n =
∑N

i=1 ni and m =
∑N

i=1 mi.
Let x0 = x(0). We also use the notations Āij(k) =
E{Aij(k)}, Ãij(k) = Aij(k)− Āij(k), Ā(k) = E{A(k)},

and Ã(k) = A(k)− Ā(k). Furthermore, for all 1 ≤ i ≤ N , we
introduce the notations

Ãi(k) =

⎡
⎢⎣

0
(
∑i−1

j=1
nj)×n1

· · · 0
(
∑i−1

j=1
nj)×nN

Ãi1(k) · · · ÃiN (k)
0
(
∑N

j=i+1
nj)×n1

· · · 0
(
∑N

j=i+1
nj)×nN

⎤
⎥⎦

Bi(k) =

⎡
⎢⎣

0(∑i−1

j=1
nj

)
×mi

Bii(k)
0(∑N

j=i+1
nj

)
×mi

⎤
⎥⎦ .

Now, we are ready to calculate the optimal controller under
model information constraints.

III. OPTIMAL CONTROL DESIGN WITH LIMITED

MODEL INFORMATION

In this section, we study the finite-horizon and infinite-
horizon optimal control design using exact local model in-
formation and statistical beliefs about other subsystems. We
consider state-feedback control laws ui(k) = Fi(x(0), . . . ,
x(k)) where in the design of Fi only limited model information
is available about the overall system (4). We formalize the
notion of what model information is available in the design of
controller i, 1 ≤ i ≤ N , through the following definition.

Definition 1: The design of controller i, 1 ≤ i ≤ N , has
limited model information if (a) the exact local realizations
{Aij(k) | 1 ≤ j ≤ N, ∀ k} are available together with (b) the
first- and the second-order moments of the system parameters
(i.e., E{A(k)} and E{Ã(k)⊗ Ã(k)} for all k).

Remark 2: Note that the assumption that the exact real-
izations {Aij(k) | 1 ≤ j ≤ N} are available to designer of
controller i (and not the rest of the submatrices) is reasonable
in the context of interconnected systems where the coupling
strengths are known (stochastically-varying or not) and the
uncertainties are arising in each subsystem independently. For
instance, such systems occur naturally when studying power
network control since the power grid, which determines the
coupling strengths between the generators and the consumers,
is typically accurately modeled, however, the loads and the
generators are stochastically varying and uncertain. A direction
for future research could be to consider the case where also the
coupling strengths are uncertain.

A. Finite-Horizon Cost Function

In the finite-horizon optimal control design problem, for a
fixed T > 0, we minimize the cost function

JT (x0, {u(k)}T−1
k=0 ) = E

⎧⎨
⎩x(T )�Q(T )x(T )

+

T−1∑
k=0

⎛
⎝x(k)�Q(k)x(k)+

N∑
j=1

uj(k)
�Rjj(k)uj(k)

⎞
⎠
⎫⎬
⎭ (5)

subject to the system dynamics in (4) and the model information
constraints in Definition 1. In (5), we assume that Q(k) ∈ Sn

+

for all 0 ≤ k ≤ T and R(k) = diag(R11(k), . . . , RNN (k)) ∈
Sm
++ for all 0 ≤ k ≤ T − 1. The following theorem presents

the solution of the finite-horizon optimal control problem.
Theorem 1: The solution of the finite-horizon optimal con-

trol design problem with limited model information is given by
(6), as shown at the bottom of the page, where the sequence
of matrices {P (k)}Tk=0 can be calculated using the backward
difference equation

P (k) = Q(k) +R
(
Ā(k), P (k + 1), B(k), R

)
+

N∑
i=1

E

{
R
(
Ãi(k), P (k + 1), Bi(k), Rii

)}
(7)

with the boundary condition P (T ) = Q(T ). Furthermore,
inf{u(k)}T−1

k=0
JT (x0, {u(k)}T−1

k=0 ) = x�
0 P (0)x0.

Proof: See Appendix A. �
Remark 3: Theorem 1 shows that the optimal controller (6)

is a linear state-feedback controller and that it is composed of
two parts. The first part is a function of only the parameter
statistics (i.e., E{A(k)} and E{Ã(k)⊗ Ã(k)}) while the sec-
ond part is a function of exact local model parameters (i.e.,
{Aij(k) | 1 ≤ j ≤ N} for controller i). Note that the optimal
controller does not assume any specific probability distribution
for the model parameters. It is worth mentioning whenever n �
1, for computing the optimal controller, we need to perform
arithmetic operations on very large matrices (since E{A(k)} ∈
R

n×n and E{Ã(k)⊗ Ã(k)} ∈ R
n2×n2

) which might be numer-
ically difficult (except for special cases where the statistics of
the underlying system follows a specific structure or sparsity
pattern).

Remark 4: Note that the optimal controller in Theorem 1 is
not structured in terms of the state measurement availability,
i.e., controller i accesses the full state measurement x(k). This
situation can be motivated for many applications by the rise
of fast communication networks that can guarantee the avail-
ability of full state measurements in moderately large systems.

u(k) = −
(
R(k) +B(k)�P (k + 1)B(k)

)−1
B(k)�P (k + 1)Ā(k)x(k)

−

⎡
⎢⎣

(
R11(k) +B1(k)

�P (k + 1)B1(k)
)−1

B1(k)
�P (k + 1)Ã1(k)

...(
RNN (k) +BN (k)�P (k + 1)BN (k)

)−1
BN (k)�P (k + 1)ÃN (k)

⎤
⎥⎦x(k) (6)
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However, in many scenarios, the model information is simply
not available due the fact that each module is being designed
separately for commercial purposes without any specific in-
formation about its future setup (except the average behavior
of other components). A viable direction for future research
is to optimize the cost function over the set of structured
control laws.

Remark 5: It might seem computationally difficult to calcu-
late E{Ãi(k)

�ZÃi(k)} for each time-step k and any given ma-
trix Z. However, as pointed out in [30], it suffices to calculate
E{Ãi(k)⊗ Ãi(k)} once, and then use the identity

E

{
Ãi(k)

�Z(k)Ãi(k)
}

= vec−1

(
E

{(
Ãi(k)⊗ Ãi(k)

)�
vec (Z(k))

})

= vec−1

(
E

{
Ãi(k)⊗ Ãi(k)

}�
vec (Z(k))

)
.

B. Infinite-Horizon Cost Function

In this subsection, we use Theorem 1 to minimize the
infinite-horizon performance criterion

J∞ (x0, {u(k)}∞k=0) = lim
T→∞

JT

(
x0, {u(k)}T−1

k=0

)

where Q(k) = Q ∈ Sn
++ and R(k) = R ∈ Sm

++ for all 0 ≤
k ≤ T − 1 and Q(T ) = 0. For this case, we make the fol-
lowing standing assumption concerning the system parameters
statistics:

Assumption 3: For all time steps k, the stochastic processes
generating the model parameters of the system in (4) satisfy

• Ā(k) = Ā ∈ R
n×n and E{A(k)⊗A(k)} = Σ ∈

R
n2×n2

;
• B(k) = B ∈ R

n×m.

These assumptions are in place to make sure that we are
dealing with stationary parameter processes, as otherwise the
infinite-horizon optimal control problem could lack physical
meaning. We borrow the following technical definition and
assumption from [30]. We refer interested readers to [30] for
numerical methods for checking this condition.

Definition 2: System (4) is called mean square stabilizable
if there exists a matrix L ∈ R

m×n such that the closed-loop
system with controller u(k) = Lx(k) is mean square stable;
i.e., limk→+∞ E{x(k)�x(k)} = 0.

With this definition in hand, we are ready to present the
solution of the infinite-horizon optimal control design problem
with limited model information.

Theorem 2: Suppose (4) satisfies Assumption 3 and is mean
square stabilizable. The solution of the infinite-horizon optimal
control design problem with limited model information is then
given by

u(k) = −(R+B�PB)−1B�PĀx(k)

−

⎡
⎢⎣

(R11 +B�
1 PB1)

−1B�
1 PÃ1(k)

...
(RNN +B�

NPBN )−1B�
NPÃN (k)

⎤
⎥⎦x(k) (8)

where P is the unique positive-definite solution of the modified
discrete algebraic Riccati equation

P =Q+R(Ā, P,B,R)+

N∑
i=1

E

{
R
(
Ãi(k), P,Bi, Rii

)}
.

(9)

Furthermore, the closed-loop system (4) and (8) is mean square
stable and inf{u(k)}∞

k=0
J∞(x0, {u(k)}∞k=0) = x�

0 Px0.
Proof: See Appendix B. �

Remark 6: Note that we can use the procedure introduced
in the proof of Theorem 2 to numerically compute the unique
positive-definite solution of the modified discrete algebraic
Riccati equation in (9); i.e., we can construct a sequence of
matrices {Xi}∞i=0, such that Xi+1 = f(Xi) with X0 = 0 where
f(·) is defined as in (29). Because of (31), it is evident that, for
each δ > 0, there exists a positive integer q(δ) such that Xq(δ)

is in the δ-neighborhood of the unique positive-definite solution
of the modified discrete algebraic Riccati equation (9). Hence,
the procedure generates a solution with any desired precision.

Note that Definition 2 requires the existence of a fixed feed-
back gain L that ensures the closed-loop mean square stability.
This might result in conservative results. In what follows, we
relax this assumption to time-varying matrices.

Definition 3: System (4) is called mean square stabilizable
under limited model information if there exist mappings Γi :
R

ni×n1 × · · · × R
ni×nN → R

mi×n, 1 ≤ i ≤ N , such that the
closed-loop system with controller

u(k) =

⎡
⎢⎣

Γ1 (A11(k) . . . , A1N (k))
...

ΓN (AN1(k) . . . , ANN (k))

⎤
⎥⎦x(k)

is mean square stable.
Clearly, if a discrete-time linear system with stochastically-

varying parameters is mean square stabilizable, it is also mean
square stabilizable under limited model information.

Remark 7: All fully-actuated systems (i.e., systems where
mi = ni for all 1 ≤ i ≤ N ) are mean square stabilizable
under limited model information because, for each 1 ≤
i ≤ N , the deadbeat controller Γi(Ai1(k), . . . , AiN (k)) =
−B−1

ii [Ai1(k) · · · AiN (k)], is based on limited model infor-
mation and mean square stabilizes the system.

As a price of relaxing this assumption to time-varying matri-
ces, we need to strengthen Assumption 3.

Assumption 4: The stochastic processes generating the
model parameters of system (4) satisfy that

• The probability distribution of the matrices {A(k)}∞k=0 is
constant in time;

• B(k) = B ∈ R
n×m for all k ≥ 0.

Note that in Assumption 3 we only needed the first and
the second moments of the system parameters to be constant.
However, in Assumption 4 all the moments are constant.

Corollary 3: Suppose (4) satisfies Assumption 4 and is
mean square stabilizable under limited model information. The
solution of the infinite-horizon optimal control design problem
with limited model information is then given by (8) where P
is the unique finite positive-definite solution of the modified
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discrete algebraic Riccati equation in (9). Furthermore, the
closed-loop system (4) and (8) is mean square stable and
inf{u(k)}∞

k=0
J∞(x0, {u(k)}∞k=0) = x�

0 Px0.

Proof: See Appendix C. �
Example 1 (Cont’d): Let us introduce the quadratic cost

function

J∞(x0, {u(k)}∞k=0) = E

{ ∞∑
k=0

x(k)�x(k) + u(k)�u(k)

}
.

Following Theorem 2, we can easily calculate the optimal con-
troller with limited model information as (10), as shown at the
bottom of the page. Clearly, the control gain Li ∈ R

1×4 of con-
troller ui(k) = Li(k)x(k), i = 1, 2, is a function of only its cor-
responding subsystem’s model parameter αi(k). �

An interesting question is what is the value of model infor-
mation when designing an optimal controller; i.e., having only
access to local model information how much the closed-loop
performance degrades in comparison to having access to global
model information. To answer this question for the setting
considered in this paper, we need to introduce the optimal
control design with full model information.

IV. CONTROL DESIGN WITH FULL MODEL INFORMATION

In this section, we consider the case where we have access to
the full model information when designing each subcontroller.
Hence, we make the following definition:

Definition 4: The design of controller i, 1 ≤ i ≤ N , has
full model information if (a) the entire model parameters
{Aij(k) | 1 ≤ i, j ≤ N, ∀ k} are available together with (b) the
first- and the second-order moments of the system parameters
(i.e., E{A(k)} and E{Ã(k)⊗ Ã(k)} for all k).

We have the following result for the finite-horizon case.
Theorem 4: The solution of the finite-horizon optimal con-

trol design problem with full model information is given by

u(k) = −(R+B(k)�P (k + 1)B(k))−1B(k)�

× P (k + 1)A(k)x(k) (11)

where {P (k)}Tk=0 can be found using the backward difference
equation

P (k) = Q(k) +R
(
Ā(k), P (k + 1), B(k), R

)
+

N∑
i=1

E

{
R
(
Ãi(k), P (k + 1), B(k), R

)}
(12)

with the boundary condition P (T ) = Q(T ). Furthermore,
inf{u(k)}T−1

k=0
JT (x0, {u(k)}T−1

k=0 ) = x�
0 P (0)x0.

Proof: The proof is similar to the proof of Theorem 1 and
is therefore omitted. See [49] for the detailed proof. �

This result can be extended to the infinite-horizon cost func-
tion. However, we first need to present the following definition.

Definition 5: System (4) is called mean square stabilizable
under full model information if there exists a mapping Γ :
R

n×n → R
m×n such that the closed-loop system with con-

troller u(k) = Γ(A(k))x(k) is mean square stable.
Theorem 5: Suppose (4) satisfies Assumption 3 and is mean

square stabilizable under full model information. The solution
of the infinite-horizon optimal control design problem with full
model information is then given by

u(k) = −(R+B�PB)−1B�PA(k)x(k) (13)

where P is the unique finite positive-definite solution of the
modified discrete algebraic Riccati equation

P = Q+R(Ā, P,B,R) +

N∑
i=1

E

{
R
(
Ãi(k), P,B,R

)}
.

(14)
Furthermore, this controller mean square stabilizes the system
and inf{u(k)}∞

k=0
J∞(x0, {u(k)}∞k=0) = x�

0 Px0.
Proof: The proof is similar to the proofs of Theorem 2 and

Corollary 3. �
Example 1 (Cont’d): Following Theorem 5, the optimal

control design with full model information is given in (15), as
shown at the bottom of the page. Note that the gain of controller
i depends on the global model parameters. �

V. PERFORMANCE DEGRADATION UNDER MODEL

INFORMATION LIMITATION

In this section, we study the value of the plant model
information using the closed-loop performance degradation
caused by lack of full model information in the control design
procedure. The performance degradation is captured using the
ratio of the closed-loop performance of the optimal controller
with limited model information to the closed-loop performance
of the optimal controller with global plant model information.
Let {uLMI(k)}∞k=0 and {uFMI(k)}∞k=0 denote the optimal con-
troller with limited model information (Theorem 2) and the
optimal controller with full model information (Theorem 5),
respectively. We define the performance degradation ratio as

r = sup
x0∈Rn

J∞
(
x0,
{
uLMI(k)

}∞
k=0

)
J∞(x0, {uFMI(k)}∞k=0)

.

uLMI(k) =

[
42.7701 + 8.0694α1(k) −1.6741 −29.1868 0.1041

−23.2274 0.1757 34.4246 + 6.8698α2(k) −1.7331

]
x(k) (10)

uFMI(k) =

[
42.7701 + 7.9708α1(k) −1.6741 −29.1868− 0.1035α2(k) 0.1041
−23.2274− 0.1215α1(k) 0.1757 34.4246 + 6.7725α2(k) −1.7330

]
x(k) (15)
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Note that r ≥ 1 since the optimal controller with full model
information always outperforms the optimal controller with
limited model information.

Example 1 (Cont’d): In this example, we compare the
closed-loop performance of the optimal controllers under dif-
ferent information regimes. We have already calculated the
optimal controller with limited model information as well as
the optimal controller with full model information for this nu-
merical example. Now, let us find the optimal controller using
statistical model information based on [30]. Using Theorem 5.2
from [30], we get

uSMI(k)=

[
+41.9043 −1.7873 −29.3969 −0.0121
−23.3180 +0.0435 +32.7901 −1.8779

]
x(k).

Note how these three control laws depend on the plant model
parameters. The control uSMI(k) has a static gain depending
on the statistical information of the A-matrix, while uFMI(k)
and uLMI(k) depend on the actual realizations of the stochastic
parameters. Now, we can explicitly compute the performance
degradation ratio

r = sup
x0∈Rn

x�
0 P

LMIx0

x�
0 P

FMIx0
= 1 + 2.266× 10−4.

This shows that the performance of the optimal controller with
limited model information is practically the same as the perfor-
mance of the optimal controller with full model information. It
is interesting to note that with access to (precise) local model
information, one can expect a huge improvement in the closed-
loop performance in comparison to the optimal controller with
only statistical model information because

sup
x0∈Rn

x�
0 P

SMIx0

x�
0 P

LMIx0
= 5.8790.

Next we derive an upper bound for the performance degrada-
tion ratio r. We do that for fully-actuated systems.

Assumption 5: All subsystems (1) are fully-actuated; i.e.,
Bii ∈ R

ni×ni and σ(Bii) ≥ ε > 0 for all 1 ≤ i ≤ N , where
σ(·) denotes the smallest singular value of a matrix.

To simplify the presentation, we also assume that Q = R =
I . This is without loss of generality since the change of vari-
ables (x′, u′) = (Q1/2x,R1/2u) transforms the cost function
and state space representation into

J∞(x0, {u′(k)}∞k=0)

= lim
T→∞

E

{
T−1∑
k=0

x′(k)�x′(k) + u′(k)�u′(k)

}

and

x′(k + 1) =Q1/2A(k)Q−1/2x′(k) +Q1/2BR−1/2u′(k)

=A′(k)x′(k) +B′u′(k).

The next theorem presents an upper bound for the perfor-
mance degradation.

Theorem 6: Suppose (4) satisfies Assumptions 3 and 5 and
is mean square stabilizable under limited model information.
The performance degradation ratio is then upper bounded as
r ≤ 1 + 1/ε2 where ε > 0 is defined in Assumption 5.

Proof: See Appendix D. �
As the power network in Example 1 is not fully-actuated, we

consider another power network example to the illustrate the
previous result.

Example 2: Consider DC power generators, such as solar
farms and batteries. Suppose these sources are connected to AC
transmission lines through DC/AC converters that are equipped
with a droop-controller [50], [51]. Let us assume that both
power generators in Fig. 1 are such DC power generators
equipped with droop-controlled converters. We can then model
this power network as

δ̇1(t) =
1

D1

[
P1(t)− c−1

12 sin (δ1(t)− δ2(t))

− c−1
1 sin (δ1(t))−D1ω1(t)

]
δ̇2(t) =

1

D2

[
P2(t)− c−1

12 sin (δ2(t)− δ1(t))

− c−1
2 sin (δ2(t))−D2ω2(t)

]
where δi(t), 1/Di > 0, and Pi(t) are respectively the phase
angle of the terminal voltage of converter i, its converter droop-
slope, and its input power. The power network parameters in
this example are the same as the ones in Example 1, except
D1 = D2 = 1.0. Now, similarly to Example 1, we find the
equilibrium point of this nonlinear system, linearize it around
this equilibrium, and then, discretize the system with sampling
time ΔT = 300 ms to get[
Δδ1(k + 1)
Δδ2(k + 1)

]

=

[
ζ1

ΔT cos(δ∗1−δ∗2 )
c12D1

ΔT cos(δ∗2−δ∗1 )
c12D2

ζ2

][
Δδ1(k)
Δδ2(k)

]
+

[
u1(k)
u2(k)

]
(16)

where ζ1 = 1−ΔT (c−1
12 cos(δ∗1 − δ∗2) + c−1

1 cos(δ∗1))/D1 and
ζ2 = 1−ΔT (c−1

12 cos(δ∗2 + δ∗1)− c−1
2 cos(δ∗2))/D2.

Consider the same variation of the local loads as in Example 1.
We get the discrete-time linear with stochastically-varying pa-
rameters

x(k + 1) = A(k)x(k) +Bu(k)

where x(k) = [Δδ1(k) Δδ2(k)]
�, u(k) = [u1(k) u2(k)]

�, and

A(k)=

[
−0.1635− 0.2075α1(k) 0.7486

0.7486 −0.1897−0.0877α2(k)

]

B =

[
1 0
0 1

]

with α1(k) ∼ N (0, 0.1) and α2(k) ∼ N (0, 0.3). The goal is to
optimize the performance criterion

J = E

{ ∞∑
k=0

x(k)�x(k) + u(k)�u(k)

}
.
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Following Theorem 5, we can calculate the optimal controller
with full model information as

uFMI(k)

=

[
0.1166 + 0.1185α1(k) −0.4334− 0.0027α2(k)
−0.4334− 0.0064α1(k) 0.1317 + 0.0502α2(k)

]
x(k).

(17)

Furthermore, using Theorem 2, we can calculate the optimal
controller with limited model information as

uLMI(k)

=

[
0.1166 + 0.1190α1(k) −0.4334

−0.4334 0.1317 + 0.0504α2(k)

]
x(k).

(18)

It is easy to see that

r = sup
x0∈Rn

x�
0 P

LMIx0

x�
0 P

FMIx0
= 1 + 1.2660× 10−6 ≤ 1 + 1/ε2 = 2

since ε = 1. In this example, the upper bound computed in
Theorem 6 is not tight. �

Remark 8: Under Assumption 5, when the variances of the
plant model parameters tend to infinity, the optimal controller
with limited model information (introduced in Theorem 2)
approaches the deadbeat control law. The intuition behind this
result is that when the model information of the other subsys-
tems is inaccurate, the deadbeat control law (which decouples
our subsystem from the rest of the plant) is the best controller
to use. The presented approach balances in a natural way the
use of statistical information about the plant parameters with
precise knowledge of their realizations.

Example 2 (Cont’d): Let us consider the case where vari-
ances of the plant model parameters are very large. Hence,
we assume α1(k) ∼ N (0, 1000) and α2(k) ∼ N (0, 3000).
Now, the optimal controller with limited model information is
given by

uLMI(k)

=

[
0.1635 + 0.2075α1(k) −0.7485

−0.7485 0.1897 + 0.0877α2(k)

]
x(k)

which is practically equal to the deadbeat control law in
Remark 7. �

VI. CONCLUSION

We presented a statistical framework for the study of control
design under limited model information. We found the best
performance achievable by a limited model information control
design method. We also studied the value of information in con-
trol design using the performance degradation ratio. Possible
future work will focus on generalizing the results to discrete-
time Markovian jump linear systems and to decentralized
controllers.

APPENDIX A
PROOF OF THEOREM 1

We solve the finite-horizon optimal control problem using
dynamic programming

Vk(x(k)) = inf
u(k)

E
{
x(k)�Q(k)x(k) + u(k)�R(k)u(k)

+ Vk+1 (A(k)x(k) +B(k)u(k)) |x(k)} (19)

where VT (x(T )) = x(T )�Q(T )x(T ). The proof strategy is to
(a) show Vk(x(k)) = x(k)�P (k)x(k) for all k using backward
induction, (b) find a lower bound for E{x(k)�Q(k)x(k) +
u(k)�R(k)u(k)+ Vk+1(A(k)x(k) +B(k)u(k))|x(k)} which
is attained by u(k) in (6), and (c) use the optimal controller
to calculate a recursive equation for P (k), 0 ≤ k ≤ T , starting
from P (T ) = Q(T ). Note that because of Definition 1, in each
step of the dynamic programming, the infimum is taken over
the set of all control signals u(k) of the form⎡
⎢⎣
u1(k)

...
uN (k)

⎤
⎥⎦ =

⎡
⎢⎣

ψ1(A11(k) . . . , A1N (k);x(0), · · · , x(k))
...

ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k))

⎤
⎥⎦

(20)

where ψi : R
ni×n1 × · · · × R

ni×nN × R
n × · · · × R

n →
R

mi , 1 ≤ i ≤ N , can be any mapping (i.e., it is not necessarily
a linear mapping, a smooth one, etc). Notice that Vk(x(k)) =
x(k)�P (k)x(k) where P (k) ∈ Sn

+ for all k. This can be
easily proved using mathematical induction as VT (x(T )) =
x(T )�Q(T )x(T ) is a quadratic function of the state vector
x(T ) and using dynamic programming, Vk(x(k)) remains a
quadratic function of x(k) if Vk+1(x(k + 1)) is a quadratic
function of x(k + 1) and u(k) is a linear function of x(k).
Now, it only remains to show that the optimal control law is
linear in x(k), which we investigate in what follows. For the
control input of the form in (20), we define

Ḡ(k) = −K̄(k)x(k)

+

⎡
⎢⎣

E {ψ1 (A11(k), . . . , A1N (k);x(0), · · · , x(k)) |x(k)}
...

E {ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k)) |x(k)}

⎤
⎥⎦

and

g̃i(k) =ψi (Ai1(k), . . . , AiN (k);x(0), · · · , x(k))
−E {ψi (Ai1(k), . . . , AiN (k);x(0), · · · , x(k)) |x(k)}

− K̃i(k)x(k)

where K̄(k)=−(R(k)+B(k)�P(k+1)B(k))−1B(k)�P (k +
1)Ā(k) and K̃i(k) = −(Rii(k) +Bi(k)

�P (k + 1)Bi(k))
−1

Bi(k)
� P (k + 1)Ãi(k) are the gains in (6). By definition,

we have E{g̃i(k)|x(k)} = 0. Furthermore, let us define the
notation

Ci =

⎡
⎢⎣

0
(
∑i−1

j=1
mj)×mi

I
0(∑N

j=i+1
mj

)
×mi

⎤
⎥⎦
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for all 1 ≤ i ≤ N . Evidently, we have

⎡
⎢⎣

ψ1 (A11(k), . . . , A1N (k);x(0), · · · , x(k))
...

ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k))

⎤
⎥⎦

= Ḡ(k) +

⎡
⎢⎣
g̃1(k)

...
g̃N (k)

⎤
⎥⎦+ K̄(k)x(k) +

⎡
⎢⎣
K̃1(k)x(k)

...
K̃N (k)x(k)

⎤
⎥⎦

= Ḡ(k) + K̄(k)x(k) +
N∑
i=1

Cig̃i(k) +
N∑
i=1

CiK̃i(k)x(k).

(21)

By rearranging the terms, we can easily show (22), as shown at
the bottom of the page, where the second equality holds due
to that E{g̃i(k) + K̃i(k)x(k)|x(k)} = 0 and C�

i RCj = Rij

(while recalling that Rij = 0 if i 	= j). Following the same line
of reasoning, we show (23), as shown at the bottom of the page,
where the equality follows from

A(k)x(k) +B(k)u(k)

= Ā(k)x(k) +B(k)
(
K̄(k)x(k) + Ḡ(k)

)

+

N∑
i=1

Ãi(k)x(k) +Bi(k)
(
g̃i(k) + K̃i(k)x(k)

)
.

Therefore, we get (24), as shown at the bottom of the
next page, because Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))

and Ãj(k)x(k) +Bj(k)(g̃j(k) + K̃j(k)x(k)) are independent
random variables for i 	= j (see Assumption 1 and Definition 1)
and E{Ãi(k)x(k) + Bi(k)(g̃i (k) + K̃i(k)x(k))|x(k)} = 0

E
{
u(k)�R(k)u(k)|x(k)

}

= E

⎧⎨
⎩(K̄(k)x(k) + Ḡ(k)

)�
R(k)

(
N∑
i=1

Ci

(
g̃i(k) + K̃i(k)x(k)

))
+

(
N∑
i=1

Ci

(
g̃i(k) + K̃i(k)x(k)

))�

×R(k)
(
K̄(k)x(k) + Ḡ(k)

)
+
(
K̄(k)x(k) + Ḡ(k)

)�
R(k)

(
K̄(k)x(k) + Ḡ(k)

)

+

N∑
i=1

N∑
j=1

(
g̃i(k) + K̃i(k)x(k)

)�
C�

i R(k)Cj

(
g̃j(k) + K̃j(k)x(k)

)
|x(k)

⎫⎬
⎭

=
(
K̄(k)x(k) + Ḡ(k)

)�
R(k)

(
K̄(k)x(k)+Ḡ(k)

)
+

N∑
i=1

E

{(
g̃i(k) + K̃i(k)x(k)

)�
Rii(k)

(
g̃i(k)+K̃i(k)x(k)

)
|x(k)

}

(22)

E

{
(A(k)x(k) +B(k)u(k))� P (k + 1) (A(k)x(k) +B(k)u(k)) |x(k)

}

= E

{(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))�
P (k + 1)

(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))

+
(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))�
P (k + 1)

(
N∑
i=1

Ãi(k)x(k) +Bi(k)
(
g̃i(k) + K̃i(k)x(k)

))

+

(
N∑
i=1

Ãi(k)x(k) +Bi(k)
(
g̃i(k) + K̃i(k)x(k)

))�

P (k + 1)
(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))

+

N∑
i=1

N∑
j=1

(
Ãi(k)x(k) +Bi(k)

(
g̃i(k) + K̃i(k)x(k)

))�
P (k + 1)

(
Ãj(k)x(k) +Bj(k)

(
g̃j(k)+K̃j(k)x(k)

))
|x(k)

}

(23)
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for all 1 ≤ i ≤ N . Now, note that (25), as shown at the
bottom of the page, where the second equality follows from that
B(k)�P (k + 1)(Ā(k) +B(k)K̄(k)) +R(k)K̄(k) = 0 using
the definition of K̄(k) and the inequality holds due to
that Ḡ(k)�(R(k) +B(k)�P (k + 1)B(k))Ḡ(k) ≥ 0 for any
Ḡ(k) ∈ R

m since R(k) +B(k)�P (k + 1)B(k) is a positive-

definite matrix.Similarly, for each 1 ≤ i ≤ N , we conclude that
(26), as shown at the bottom of the page, holds. Combining
identities (22)–(24) with inequalities (25), (26) results in (27),
as shown at the bottom of the next page, where u∗(k) =

K̄(k)x(k) +
∑N

i=1 CiK̃i(k)x(k).This inequality proves that
u∗(k) is the solution of (19) since any other controller results in

E

{
(A(k)x(k) +B(k)u(k))� P (k + 1) (A(k)x(k) +B(k)u(k)) |x(k)

}
=
(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))�
P (k + 1)

(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))
+

N∑
i=1

E

{(
Ãi(k)x(k) +Bi(k)

(
g̃i(k) + K̃i(k)x(k)

))�
P (k + 1)

(
Ãi(k)x(k) +Bi(k)

(
g̃i(k) + K̃i(k)x(k)

))
|x(k)

}

(24)

(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))�
P (k + 1)

(
Ā(k)x(k) +B(k)

(
K̄(k)x(k) + Ḡ(k)

))
+
(
K̄(k)x(k) + Ḡ(k)

)�
R(k)

(
K̄(k)x(k) + Ḡ(k)

)
= x(k)�K̄(k)�R(k)K̄(k)x(k) + x(k)�

(
Ā(k) +B(k)K̄(k)

)�
P (k + 1)

(
Ā(k) +B(k)K̄(k)

)
x(k)

+ Ḡ(k)�
(
B(k)�P (k + 1)

(
Ā(k) +B(k)K̄(k)

)
+R(k)K̄(k)

)
x(k)

+ x(k)�
(
B(k)�P (k + 1)

(
Ā(k) +B(k)K̄(k)

)
+R(k)K̄(k)

)�
Ḡ(k)

+ Ḡ(k)�R(k)Ḡ(k) + Ḡ(k)�B(k)�P (k + 1)B(k)Ḡ(k)

= x(k)�K̄(k)�R(k)K̄(k)x(k) + x(k)�
(
Ā(k) +B(k)K̄(k)

)�
P (k + 1)

(
Ā(k) +B(k)K̄(k)

)
x(k)

+ Ḡ(k)�R(k)Ḡ(k) + Ḡ(k)�B(k)�P (k + 1)B(k)Ḡ(k)

≥ x(k)�K̄(k)�R(k)K̄(k)x(k) + x(k)�
(
Ā(k) +B(k)K̄(k)

)�
P (k + 1)

(
Ā(k) +B(k)K̄(k)

)
x(k) (25)

E

{(
g̃i(k) + K̃i(k)x(k)

)�
Rii(k)

(
g̃i(k) + K̃i(k)x(k)

)

+
(
Ãi(k)x(k) +Bi(k)

(
g̃i(k) + K̃i(k)x(k)

))�
P (k + 1)

(
Ãi(k)x(k) +Bi(k)

(
g̃i(k) + K̃i(k)x(k)

))
|x(k)

}

= E

{
g̃i(k)

�Rii(k)g̃i(k) + x(k)�K̃i(k)
�Rii(k)K̃i(k)x(k) + g̃i(k)

�Bi(k)
�P (k + 1)Bi(k)g̃i(k)

+ g̃i(k)
�
(
Bi(k)

�P (k + 1)
(
Ãi(k) +Bi(k)K̃i(k)

)
+Rii(k)K̃i(k)

)
x(k)

+ x(k)�
(
Bi(k)

�P (k + 1)
(
Ãi(k) +Bi(k)K̃i(k)

)
+Rii(k)K̃i(k)

)�
g̃i(k)

+x(k)�
(
Ãi(k) +Bi(k)K̃i(k)

)�
P (k + 1)

(
Ãi(k) +Bi(k)K̃i(k)

)
x(k)|x(k)

}

≥ E

{
x(k)�K̃i(k)

�Rii(k)K̃i(k)x(k) + x(k)�
(
Ãi(k) +Bi(k)K̃i(k)

)�
P (k + 1)

(
Ãi(k) +Bi(k)K̃i(k)

)
x(k)|x(k)

}
(26)
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a larger or equal cost. By substituting this optimal controller
inside the recursion (19), we get the cost function update
equation

x(k)�P (k)x(k) = x(k)�Q(k)x(k)

+ x(k)�
{
K̄(k)�R(k)K̄(k) +

(
Ā(k) +B(k)K̄(k)

)�
× P (k + 1)

(
Ā(k) +B(k)K̄(k)

)}
x(k)

+
N∑
i=1

x(k)�E
{
K̃i(k)

�Rii(k)K̃i(k)

+
(
Ãi(k) +Bi(k)K̃i(k)

)�
× P (k + 1)

(
Ãi(k) + (k)K̃i(k)

)}
x(k).

By expanding and reordering the terms, we can simplify this
equation as

x(k)�P (k)x(k) = x(k)�Q(k)x(k)

+ x(k)�R
(
Ā(k), P (k + 1), B(k), R

)
x(k)

+
N∑
i=1

x(k)�E
{
R
(
Ãi(k), P (k + 1), Bi(k), Rii

)}
x(k).

(28)

Now, since the equality in (28) is true irrespective of the value
of the state vector x(k), we get the recurrence relation in (7).
This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

Note that the proof of this theorem follows the same line of
reasoning as in [30]. We extend the result of [30] to hold for
the Riccati-like backward difference equation presented in (7).
First, let us define the mapping f : Sn

+ → Sn
+ such that, for any

X ∈ Sn
+

f(X) = Q+ Ā� (X −XB(R+B�XB)−1B�X
)
Ā

+
N∑
i=1

E

{
Ã�

i

(
X −XBi(Rii +B�

i XBi)
−1B�

i X
)
Ãi

}
.

Using part 2 of Subsection 3.5.2 in [52], we have the matrix
inversion identity X −XW (Z +W�XW )

−1
W�X=(X−1+

WZ−1W�)
−1

for any matrix W and positive-definite matrices
X and Z. Therefore, for any X ∈ Sn

++, we have

f(X) = Q+ Ā�(X−1 +BR−1B�)−1Ā

+

N∑
i=1

E

{
Ã�

i (X
−1 +BiR

−1
ii B�

i )
−1Ãi

}
. (29)

Note that, if X ≥ Y ≥ 0, then (X−1 +WZ−1W�)
−1 ≥

(Y −1 +WZ−1W�)
−1

for any matrix W and positive-definite
matrix Z. Therefore, if X ≥ Y ≥ 0, we get

f(X) ≥ f(Y ) > 0.

For any given T ≥ 0, we define the sequence of matrices
{Xi}Ti=0 such that X0 = 0 and Xi+1 = f(Xi). We have

X1 = f(X0) = f(0) = Q > 0 = X0 (30).

Similarly

X2 = f(X1) ≥ f(X0) = X1 > 0.

The left-most inequality in (30) is true because X1 ≥ X0. We
can repeat the same argument, and show that for all 1 ≤ i ≤
T − 1, Xi+1 ≥ Xi > 0. Using Theorem 1, we know that

x�
0XTx0 = inf

{u(k)}T−1
k=0

JT

(
x0, {u(k)}T−1

k=0

)
.

According to Theorem 5.1 in [30] (using the assumption that
the underlying system is mean square stabilizable), the se-
quence {Xi}∞i=0 is uniformly upper-bounded; i.e., there exists
W ∈ R

n×n such that Xi ≤ W for all i ≥ 0. Therefore, we get

lim
T→+∞

XT = X ∈ R
n×n (31)

since {Xi}∞i=0 is an increasing and bounded sequence. In
addition, we have X ∈ Sn

++ since Xi ∈ Sn
++ for all i ≥ 2 and

{Xi}∞i=0 is an increasing sequence. Now, we need to prove that
the limit X in (31) is the unique positive definite solution of the
modified discrete algebraic Riccati equation (9). This is done
by a contrapositive argument. Assume that there exists Z ∈ Sn

+

such that f(Z) = Z. For this matrix Z, we have

Z = f(Z) ≥ f(0) = X1

E

{
x(k)�Q(k)x(k) + u(k)�R(k)u(k) + (A(k)x(k) +B(k)u(k))� P (k + 1) (A(k)x(k) +B(k)u(k)) |x(k)

}
≥ x(k)�Q(k)x(k) + x(k)�

(
K̄(k)�R(k)K̄(k) +

(
Ā(k) +B(k)K̄(k)

)�
P (k + 1)

(
Ā(k) +B(k)K̄(k)

))
x(k)

+
N∑
i=1

E

{
x(k)�

(
K̃i(k)

�Rii(k)K̃i(k)+
(
Ãi(k)+Bi(k)K̃i(k)

)�
Bi(k)

�P (k+1)
(
Ãi(k)+Bi(k)K̃i(k)

))
x(k)|x(k)

}

= E

{
x(k)�Q(k)x(k) + u∗(k)�R(k)u∗(k) + (A(k)x(k) +B(k)u∗(k))� P (k + 1) (A(k)x(k) +B(k)u∗(k)) |x(k)

}
(27)
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since Z ≥ 0. Similarly, noting that Z ≥ X1, we get

Z = f(Z) ≥ f(X1) = X2.

Repeating the same argument, we get Z ≥ Xi for all i ≥ 0.
Therefore, for each T > 0, we have the inequality in

inf
{u(k)}T−1

k=0

JT

(
x0, {u(k)}T−1

k=0

)
= x�

0XTx0

≤ x�
0Zx0

= inf
{u(k)}T−1

k=0

E

{
x(T )�Zx(T )

+

T−1∑
k=0

x(k)�Qx(k) + u(k)�Ru(k)

}
.

(32)

Note that the last equality in (32) is a direct consequence
of Theorem 1 and the fact that Z = fq(Z) for any pos-
itive q ∈ Z. Let us define {u∗(k)}T−1

k=0 = arg inf{u(k)}T−1
k=0

JT (x0, {u(k)}T−1
k=0 ), and x∗(k) as the state of the system when

the control sequence u∗(k) is applied. Now, we get the inequal-
ity in (33)

inf
{u(k)}T−1

k=0

E

{
x(T )�Zx(T )

+

T−1∑
k=0

x(k)�Qx(k) + u(k)�Ru(k)

}

≤ E

{
x∗(T )�Zx∗(T )

+

T−1∑
k=0

x∗(k)�Qx∗(k) + u∗(k)�Ru∗(k)

}
(33)

since, by definition, {u∗(k)}T−1
k=0 is not the minimizer of this

cost function. It is easy to see that the right-hand side of (33)
is equal to JT (x0, {u∗(k)}T−1

k=0 ) + E{x∗(T )�Zx∗(T )}. Thus,
using (32) and (33), we get

x�
0XTx0 ≤x�

0Zx0

≤ JT

(
x0, {u∗(k)}T−1

k=0

)
+ E

{
x∗(T )�Zx∗(T )

}
=x�

0XTx0 + E
{
x∗(T )�Zx∗(T )

}
. (34)

Finally, thanks to the facts that Q > 0 and

lim
T→+∞

E

{
T−1∑
k=0

x∗(k)�Qx∗(k) + u∗(k)�Ru∗(k)

}

= lim
T→+∞

x�
0XTx0 = x�

0Xx0 < ∞

we get that limT→∞ E{x∗(T )�x∗(T )} = 0. Therefore, we have
limT→∞ E{x∗(T )�Zx∗(T )} = 0. Letting T go to infinity in
(34), results in x�

0Xx0 = x�
0Zx0 for all x0 ∈ R

n. Thus, X =
Z. This concludes the proof.

APPENDIX C
PROOF OF COROLLARY 3

The only place in the proof of Theorem 2 where we used the
assumption that the underlying system is mean square stabiliz-
able, was to show that the sequence {Xi}∞i=0 is upper bounded;
i.e., there exists W ∈ Sn

+ such that Xi ≤ W for all i ≥ 0. We
just need to prove this fact considering the assumption that
the system is mean square stabilizable under limited model
information. Note that for any T > 0, we have

inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1
k=0 )

= x�
0XTx0

≤ E

{
T−1∑
k=0

x(k)�Qx(k) + ū(k)�Rū(k)

}
(35)

where x(k) is the system state when it is initialized at x(0) =
x0 and the control law ū(k) = Γ(k)x(k) is in effect with

Γ(k) =

⎡
⎢⎣

Γ1 (A11(k), . . . , A1N (k))
...

ΓN (AN1(k), . . . , ANN (k))

⎤
⎥⎦

that satisfies the condition of Definition 3. Note that, at each
time stepk,Γ(k) is independent ofx(k)because of Assumption 1.
Therefore, we have

E

{
T−1∑
k=0

x(k)�Qx(k) + ū(k)�Rū(k)

}

= E

{
T−1∑
k=0

x(k)�
(
Q+ Γ(k)�RΓ(k)

)
x(k)

}

= E

{
T−1∑
k=0

x(k)�
(
Q+ E{Γ(k)�RΓ(k)}

)
x(k)

}
.

Furthermore, we can see that E{Γ(k)�RΓ(k)} = R̄ ∈ Sn
+

due to Assumption 4. Now, let us define the sequence
{Wi}∞i=0 such that W0 = Q+ R̄ and Wi+1 = E{(A(i) +
BΓ(i))�Wi(A(i) +BΓ(i))} which results in

E

{
T−1∑
k=0

x(k)�Qx(k) + ū(k)�Rū(k)

}

= E

{
T−1∑
k=0

x�
0Wkx0

}
= x�

0E

{
T−1∑
k=0

Wk

}
x0.

Notice that by construction, Wi ≥ 0 for all i. In what fol-
lows, we prove that limT→∞

∑T−1
k=0 Wk = W < ∞. Notice that

using Assumption 4, we have E{(A(i) +BΓ(i))� ⊗ (A(i) +
BΓ(i))�} = Ū for a fixed matrix Ū ∈ R

n2×n2
.

Claim 1: maxj |λj(Ū)| < 1 where λj(·) denotes the eigen-
values of a matrix.

To prove this claim, construct a sequence {W̄i}∞i=0 such
that W̄i+1 = E{(A(i) +BΓ(i))�W̄i(A(i) +BΓ(i))} and W̄0

can be an arbitrary matrix (note that the difference between
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{Wi}∞i=0 and {W̄i}∞i=0 is the initial condition). Now, using an
inductive argument, we prove that W̄k = vec−1(Ūkvec(W̄0)).
First, we get (36)

W̄1 =E

{
(A(1) +BΓ(1))� W̄0 (A(1) +BΓ(1))

}

=E

{
vec−1

(
(A(1) +BΓ(1))�

⊗ (A(1) +BΓ(1))� vec(W̄0)
)}

=vec−1
(
E

{
(A(1) +BΓ(1))�

⊗ (A(1) +BΓ(1))�
}
vec(W̄0)

)
=vec−1

(
Ūvec(W̄0)

)
. (36)

where the second equality follows from the fact that for
any three compatible matrices A,B,C, we have ABC =
vec−1((C� ⊗A)vec(B)) and the third equality holds be-
cause vec−1 is a linear operator. Now, let us show that
W̄k+1 = vec−1(Ūk+1vec(W̄0)) if W̄k = vec−1(Ūkvec(W̄0)).
To do so, notice that (37), as shown at the bottom of
the page, holds. This conclude the induction. Now, no-
tice that limk→∞ x�

0 W̄kx0 = limk→∞ E{x(k)�W̄0x(k)} = 0
for any x0 ∈ R

n because Γ(k) satisfies the condition of
Definition 3. As a result, limk→∞ W̄k = 0. Therefore, we
get limk→∞ Ūkvec(W̄0) = 0 irrespective of the choice of W̄0

which, in turn, implies that limk→∞ Ūk = 0. Using Theorem 4
in [53, p. 14], we get maxj |λj(Ū)| < 1.

Now that we have proved Claim 1, we are ready to show
that limT→∞

∑T−1
k=0 Wk = W < ∞. Recalling the proof of

Claim 1 while setting W̄0 = W0 = Q+ R̄, we get that Wk =
vec−1(Ūkvec(Q+ R̄)) and as a result

lim
T→∞

T−1∑
k=0

Wk = lim
T→∞

T−1∑
k=0

vec−1
(
Ūkvec(Q+ R̄)

)

=vec−1

([
lim
T→∞

T−1∑
k=0

Ūk

]
vec(Q+ R̄)

)
.

Now, notice that using Claim 1, limT→∞
∑T−1

k=0 Ū
k=(I−Ū)−1.

Let Ū∞ = (I − Ū)−1 ∈ R
n2×n2

. Hence, we get limT→∞

∑T−1
k=0 Wk = vec−1(Ū∞vec(Q+ R̄)) < ∞. Let us define

W = vec−1(Ū∞vec(Q+ R̄)). Using (35), we get

x�
0XTx0 ≤E

{
T−1∑
k=0

x(k)�Qx(k) + ū(k)�Rū(k)

}

=
T−1∑
k=0

x�
0Wkx0 ≤

∞∑
k=0

x�
0Wkx0 = x�

0Wx0.

This inequality is indeed true irrespective of the initial condition
x0 and the time horizon T . Therefore, Xi ≤ W for all i ≥ 0.
The rest of the proof is similar to that of Theorem 2.

APPENDIX D
PROOF OF THEOREM 6

Using the modified discrete algebraic Riccati equation (14)
in Theorem 5, the cost of the optimal control design with
full model information J∞(x0, {uFMI(k)}∞k=0) = x�

0 P
FMIx0

is equal to

x�
0 P

FMIx0 = x�
0Qx0 + x�

0R(Ā, PFMI, B, I)x0

+
N∑
i=1

x�
0E

{
R
(
Ãi(k), P

FMI, B, I
)}

x0. (38)

In addition, we know that PFMI ≥ Q = I , which (using the
proof of Theorem 2) results in

R(Ā, PFMI, B, I) ≥R(Ā, I, B, I) (39)

R(Ãi(k), P
FMI, B, I) ≥R(Ãi(k), I, B, I). (40)

Substituting (39), (40) inside (38) gives

x�
0 P

FMIx0 ≥x�
0 (I + Ā�(I +BB�)−1Ā)x0

+

N∑
i=1

x�
0E

{
Ãi(k)

�(I+BB�)−1Ãi(k)
}
x0

=x�
0 x0 + x�

0E
{
A(k)�(I +BB�)−1A(k)

}
x0

where the equality follows from the fact that Ãi(k) and
Ãj(k) for i 	= j are independent random variables with zero
mean. On the other hand, for a given x0 ∈ R

n, the cost of

W̄k+1 =E

{
(A(k + 1) +BΓ(k + 1))� W̄k (A(k + 1) +BΓ(k + 1))

}
=E

{
vec−1

(
(A(k + 1) +BΓ(k + 1))� ⊗ (A(k + 1) +BΓ(k + 1))� vec(W̄k)

)}
=vec−1

(
E

{
(A(k + 1) +BΓ(k + 1))� ⊗ (A(k + 1) +BΓ(k + 1))�

}
Ūkvec(W̄0)

)
=vec−1

(
Ūk+1vec(W̄0)

)
(37)
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the optimal control design with limited model information
J∞(x0, {uLMI(k)}∞k=0) = x�

0 P
LMIx0 is upper-bounded by

x�
0 P

LMIx0 ≤ E

{
+∞∑
k=0

x(k)�x(k) + u(k)�u(k)

}

where u(k) = −B−1A(k)x(k) and x(k) is the state vector
of the system when this control sequence is applied to the
system. This is true since the deadbeat control design strategy
u(k) = −B−1A(k)x(k) uses only local model information for
designing each controller [17]. Therefore

x�
0 P

LMIx0 ≤ E
{
x�
0

(
I +A(k)�B−�B−1A(k)

)
x0

}
.

Let us define the set Mr = {β̄ ∈ R | r ≤ β̄} where r is the per-
formance degradation ratio. If β ∈ R satisfy βPFMI − PLMI ≥
0, then β ∈ Mr. We have

βPFMI − PLMI ≥ (β − 1)I

+ E

{
A(k)�

[
β(I +BB�)−1 −B

−
B−1

]
A(k)

}
. (41)

Note that if β ≥ 1 + 1/ε2, we get β(I +BiiB
�
ii)

−1 −
B−�

ii B−1
ii ≥ 0 and therefore, β(I +BB�)

−1 −B−�B−1 ≥ 0.
As a result, if β ≥ 1 + 1/ε2, the right hand side of (41) is
a positive-semidefinite matrix and, subsequently, βPFMI −
PLMI ≥ 0. Hence, [1 + 1/ε2,+∞) ⊆ Mr. This shows that

r = sup
x0∈Rn

x�
0 P

LMIx0

x�
0 P

FMIx0
≤ 1 +

1

ε2
.
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