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Abstract— We design optimal local controllers for intercon-
nected discrete-time linear systems with stochastically varying
parameters using exact local model information and statistical
beliefs about the model of the rest of the system. We study the
value of model information in control design using the closed-
loop performance degradation caused by the lack of full model
information in the control design procedure. This performance
degradation is captured using the ratio of the cost of the optimal
controller with limited model information over the cost of the
optimal controller with full model information. Both finite-
horizon and infinite-horizon cost functions are considered. A
numerical example illustrates the developed approach.

I. INTRODUCTION

Large-scale networked systems, such as automated high-
ways, power grid, and other shared infrastructure [1]–[3],
have attracted much attention recently. These systems are
typically composed of several locally controlled subsystems
connected to each other. In designing the local controllers,
it is often assumed that the complete model of the system
is available. However, this assumption is usually not easily
satisfied in practice. For instance, consider power grid control
problem with power generated in power generators and
distributed throughout the network via transmission lines. It
is common to assume that the loads’ power consumption
in such a network are modeled stochastically with a priori
known statistics (i.e., mean and variance) [4]–[6]. When the
load variations are “small enough”, local generators meet
these demand variations. These variations shift the generators
operating points, and consequently, change their model pa-
rameters. As power networks are typically implemented over
a vast geographical area, it is inefficient or even impossible
to gather all these model information variations or to identify
all the parameters globally at one place. This motivates
our interest in designing local controllers for these system
based on only local model information and statistical model
information of (i.e., our beliefs about) other components.
Similar reasoning can also be made for process control,
intelligent transportation, and water distribution systems [7].

The main contribution of this paper is to study limited
model information control design for discrete-time linear
systems with stochastically varying parameters. Recently,
there have been studies in optimal control design for discrete-
time linear time-invariant systems using limited model in-
formation [7]–[10]. However, in these studies, the model
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information of other subsystems are completely unknown
which typically results in conservative controllers. This
forces the designer to study the worst-case behavior of
the control design methods. In this paper, we take a new
approach by assuming that a statistical model is available for
other subsystems’ parameters. There have been many studies
in optimal control design for linear discrete-time systems
with stochastic parameters [11]–[15]. In these papers, the
optimal controller is typically calculated as a function of only
model parameter statistics. Contrary to those works, in this
paper, we assume each subcontroller design is done using its
own perfect model information and other subsystems model
statistics. Using the closed-loop performance of this optimal
controller, we study the effect of the lack of full model
information on the quality of the controllers that one could
design using only local model information accompanied with
statistical behavior of the other subsystems. Specifically, we
study the ratio of the cost of the optimal control design
strategy with limited model information over the cost of the
optimal control design strategy with full model information.
It worth mentioning that, in this paper, we focus on full
state-feedback controllers. This assumption can be justified
by high-bandwidth wireless communication, which might
enable us to transmit all sensor measurements across the
networked system. However, the global model information
might still be unavailable since identifying the parameters
globally in a systems is hard. As a future direction for
research, one might be able to generalize the results of this
paper for designing structured state-feedback controllers fol-
lowing the same reasoning as in [16]. Lastly, we demonstrate
the optimal controller with limited model information and
full model information on a numerical example, and compare
them with previous results of optimal control design with
statistical model information [11]. In this example, one can
easily see the dependencies of the different subcontrollers to
exact model parameters and their statistics.

The rest of the paper is organized as follows. We start by
introducing the system model in Section II. In Section III,
we design optimal controller for each subsystem using its
own model information and the statistical properties of other
subsystems. This is done, at first, considering finite-horizon
optimal control problem. Then, we generalize these results
to infinite-horizon cost functions. In Section IV, we study
the value of information in optimal control design using the
ratio of the cost of the optimal controller with limited model
information to the cost of the optimal controller strategy
with full model information. We illustrate the results of the
paper on a numerical example in Section V. Finally, the



conclusions and directions for future research are presented
in Section VI.

A. Notation

Matrices are denoted by capital roman letters such as A.
Aij denotes a submatrix of matrix A, the dimension and the
position of which will be defined in the text. The entry in
the ith row and the jth column of the matrix A is aij .

Let Sn++ (Sn+) be the set of symmetric positive definite
(positive semidefinite) matrices in Rn×n. A > (≥)0 means
A ∈ Sn++(Sn+) and A > (≥)B means A−B > (≥)0.

Let A ⊗ B ∈ Rnp×qm denote the Kronecker product
between matrices A ∈ Rn×m and B ∈ Rp×q; i.e.,

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .
For any positive integers n and m, we define the mapping

vec : Rn×m → Rnm as

vec(A) =
[
A>1 A>2 . . . A>m

]>
,

where Ai, for all 1 ≤ i ≤ m, are the columns of matrix
A ∈ Rn×m. The mapping vec−1 : Rnm → Rn×m means the
inverse of the operator vec(·).

For any given positive integers n and m, and compatible
matrices A ∈ Rn×n, P ∈ Rn×n, B ∈ Rn×m, and R ∈
Rm×m, we define the discrete Riccati operator

R(A,P,B,R) = A>(P − PB(R+B>PB)−1B>P )A.

II. STOCHASTIC PARAMETER SYSTEMS

Consider a discrete-time linear control system with
stochastically varying parameters composed of N subsys-
tems with each subsystem represented in state-space form as

xi(k + 1) =

N∑
j=1

Aij(k)xj(k) +Bii(k)ui(k),

where, for each 1 ≤ i ≤ N , xi(k) ∈ Rni and ui(k) ∈ Rmi

are subsystem i state vector and control input, respectively.
We assume that the submatrices Aij(k), for all 1 ≤ i, j ≤

N , are independent and identically distributed stochastic
processes in time. Therefore, Aij(k1) ⊥ Aij(k2) for all
1 ≤ i, j ≤ N and k1 6= k2, where the operator ⊥ repre-
sents the stochastic independence of two random variables.
Systems with stochastically varying parameters have been
studied in, for instance, the area of power systems [4],
[5] and process control [17]. System theoretic properties
and various control design methods have been developed
for such systems [11]–[14]. Furthermore, we assume that
the subsystems are stochastically independent of each other.
Consequently, Aij(k) ⊥ Ai′j′(k) for all 1 ≤ j, j′ ≤ N and
1 ≤ i 6= i′ ≤ N . We will use the notations

Āij(k) = E{Aij(k)}, Ãij(k) = Aij(k)− Āij(k).

Let us augment the state vectors of all the subsystem into

x(k) =

 x1(k)
...

xN (k)

 ∈ Rn, u(k) =

 u1(k)
...

uN (k)

 ∈ Rm,

with n =
∑N
i=1 ni and m =

∑N
i=1mi, and get the global

state-space description of the system as

x(k + 1) = A(k)x(k) +B(k)u(k). (1)

We use the notations

Ā(k) = E{A(k)}, Ã(k) = A(k)− Ā(k).

In order to simplify later calculations, for all 1 ≤ i ≤ N , we
further introduce the notations

Bi(k) =



0
...
0

Bii(k)
0
...
0


, Ãi(k) =



0 · · · 0
...

. . .
...

0 · · · 0

Ãi1(k) · · · ÃiN (k)
0 · · · 0
...

. . .
...

0 · · · 0


.

III. OPTIMAL CONTROL DESIGN WITH LIMITED MODEL
INFORMATION

In this section, we study the finite-horizon and infinite-
horizon optimal control design using exact local model infor-
mation and statistical beliefs about other subsystems. There-
fore, when designing subcontroller i, we can only observe the
first E{A(k)} and second order E{Ã(k) ⊗ Ã(k)} moments
of the global system model, together with the exact local
model information {Aij(k) | 1 ≤ j ≤ N}. We start with
minimizing the finite-horizon cost function in next subsec-
tion.

A. Finite-Horizon Cost Function

In the finite-horizon optimal control design problem, we
minimize the average performance criterion

JT (x0,{u(k)}T−1k=0 ) = E
{
x(T )>Q(T )x(T )

+

T−1∑
k=0

x(k)>Q(k)x(k) + u(k)>R(k)u(k)

}
,

(2)

subject to the system dynamics in (1) and the model in-
formation constraints described above. In (2), we assume
that Q(k) ≥ 0 for all 0 ≤ k ≤ T and R(k) > 0 for all
0 ≤ k ≤ T − 1. The next theorem presents the solution of
this finite-horizon optimal control problem.

THEOREM 3.1: The solution of the finite horizon optimal
control problem is given in (3), where the sequence of
matrices {P (k)}Tk=0 can be calculated using the backward
difference equation

P (k) =Q(k) +R(Ā(k), P (k + 1), B(k), R)

+

N∑
i=1

E
{
R(Ãi(k), P (k + 1), Bi(k), Rii)

}
,

(4)



u(k) =− (R(k) +B(k)>P (k + 1)B(k))−1B(k)>P (k + 1)Ā(k)x(k)

−

 (R11(k) +B1(k)>P (k + 1)B1(k))−1B1(k)>P (k + 1)Ã1(k)
...

(RNN (k) +BN (k)>P (k + 1)BN (k))−1BN (k)>P (k + 1)ÃN (k)

x(k),
(3)

with the boundary condition P (T ) = Q(T ).
Proof: We can solve the finite-horizon optimal control

problem using dynamic programming

Vk(x(k)) = inf
u(k)

E{x(k)>Q(k)x(k) + u(k)>R(k)u(k)

+ Vk+1(A(k)x(k) +B(k)u(k))},
(5)

where VT (x(T )) = x(T )>Q(T )x(T ). Let us assume, for all
k, that

Vk(x(k)) = x(k)>P (k)x(k)

where P (k) ∈ Sn+. This is without loss of generality since
VT (x(T )) = x(T )>Q(T )x(T ) is a quadratic function of the
state vector x(T ) and, using dynamic programming as it is
shown in the rest of the proof, Vk(x(k)) remains a quadratic
function of x(k) if Vk+1(x(k + 1)) is a quadratic function
of x(k+ 1). To minimize the running cost (5), in each time-
step k, we solve

∂

∂ui(k)
E{x(k)>Q(k)x(k) + u(k)>R(k)u(k)

+ (A(k)x(k) +B(k)u(k))>

× P (k + 1)(A(k)x(k) +B(k)u(k))} = 0,

(6)

for all 1 ≤ i ≤ N . For simplicity of calculations, we split the
control signal into two parts as ui(k) = ūi(k)+ ũi(k) where
ūi(k) is only a function of plant model parameter statistics
(i.e., mean and variance) and ũi(k) is a function of the exact
observation of subsystem i model parameters (which is only
available in subcontroller i). Thus, for the first part, we get

R(k)ū(k) +B(k)>P (k + 1)(Ā(k)x(k) +B(k)ū(k)) = 0,

where ū(k) = [ū1(k)T · · · ūN (k)T ]T . This results in

ū(k) = −(R(k) +B(k)>P (k + 1)B(k))−1

×B(k)>P (k + 1)Ā(k)x(k).
(7)

Now, by substituting ū(k) from (7) inside (6), and taking
expectation over model parameters of all subsystems j 6= i,
we get

E{2Rii(k)ũi(k)+2B>i P (k+1)(Ãi(k)x(k)+Biũi(k))} = 0,

and as a result

ũi(k) = −(Rii(k) +Bi(k)>P (k + 1)Bi(k))−1

×Bi(k)>P (k + 1)Ãi(k)x(k).
(8)

By substituting the optimal controller from (7)–(8) inside the
recursive cost equation in (5), we get the cost function update
equation in (9) where

K̄(k) = −(R(k) +B(k)>P (k + 1)B(k))−1

×B(k)>P (k + 1)Ā(k),

and

K̃i(k) = −(Rii(k) +Bi(k)>P (k + 1)Bi(k))−1

×Bi(k)>P (k + 1)Ãi(k).

One can simplify (9) into (10) by expanding and reordering
its terms. Now, since the equality in (10) is true irrespective
of the value of the state vector x(k), we get the recurrence
relation in (4). This concludes the proof.

Note that the optimal controller is composed of two parts:
the first part is only a function of the parameter statistics
while the second part is a function of exact local model
parameters.

It is interesting to note that the optimal controller does
not assume any special probability distribution on the model
parameters. The designer only need to know the first and
second moments of the parameters.

REMARK 3.1 ([11]): It might seem computationally diffi-
cult to calculate E{Ãi(k)>Z(k)Ãi(k)} for each time-step k
and any given matrix Z(k). However, it suffices to calculate
E{Ãi(k)>⊗ Ãi(k)} once, and then use the identity

E{Ãi(k)>Z(k)Ãi(k)}

= vec−1
(
E
{(

Ãi(k)⊗ Ãi(k)
)>

vec (Z(k))

})
= vec−1

(
E
{
Ãi(k)⊗ Ãi(k)

}>
vec (Z(k))

)
.

With this result in hand, we are ready for solving the
infinite-horizon optimal control problem.

B. Infinite-Horizon Cost Function

In this subsection, we use the results proved in the
previous subsection to minimize the infinite-horizon average
performance criterion

J∞(x0, {u(k)}∞k=0) = lim
T→∞

JT (x0, {u(k)}T−1k=0 ),

with Q(k) = Q > 0 and R(k) = R > 0 for all 0 ≤ k ≤
T − 1 and Q(T ) = 0.

ASSUMPTION 3.1: For all k, the model parameters of the
system in (1) satisfy
• Ā(k) = Ā ∈ Rn×n and E{A(k)⊗A(k)} = Σ ∈ Rn2×n2

;
• B(k) = B ∈ Rn×m.

We borrow the following technical definition and assump-
tion from [11] to prove the results of this subsection. We refer
interested readers to [11] for numerical methods of checking
this condition.

DEFINITION 3.1: A discrete-time linear with stochasti-
cally varying parameters of the form (1) is called mean
square stabilizable if there exists a matrix L ∈ Rm×n such
that the closed-loop system with controller u(k) = Lx(k) is
mean square stable; i.e., limk→+∞ E{x(k)>x(k)} = 0.



x(k)>P (k)x(k)

= x(k)>Q(k)x(k) + x(k)>
{
K̄(k)>R(k)K̄(k) + (Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))

}
x(k)

+

N∑
i=1

x(k)>E
{
K̃i(k)>Rii(k)K̃i(k) + (Ãi(k) +Bi(k)K̃i(k))>P (k + 1)(Ãi(k) +Bi(k)K̃i(k))

}
x(k),

(9)

x(k)>P (k)x(k)

= x(k)>Q(k)x(k) + x(k)>Ā(k)>(P (k + 1)− P (k + 1)B(k)(R+B(k)>P (k + 1)B(k))−1B(k)>P (k + 1))Ā(k)x(k)

+

N∑
i=1

x(k)>E{Ãi(k)>(P (k + 1)− P (k + 1)Bi(k)(Rii(k) +Bi(k)>P (k + 1)Bi(k))−1Bi(k)>P (k + 1))Ãi(k)}x(k)

= x(k)>Q(k)x(k) + x(k)>R(Ā(k), P (k + 1), B(k), R)x(k) +

N∑
i=1

x(k)>E
{
R(Ãi(k), P (k + 1), Bi(k), Rii)

}
x(k).

(10)

THEOREM 3.2: Assume that the discrete-time linear
stochastic system given in (1) satisfies Assumption 3.1 and is
mean square stabilizable. The solution of the infinite-horizon
optimal control problem is given by

u(k) =− (R+B>PB)−1B>PĀx(k)

−

 (R11 +B>1 PB1)−1B>1 PÃ1(k)
...

(RNN +B>NPBN )−1B>NPÃN (k)

x(k),

(11)

where P is the unique finite positive-definite solution of the
modified discrete algebraic Riccati equation

P =Q+R(Ā, P,B,R) +

N∑
i=1

E
{
R(Ãi(k), P,Bi, Rii)

}
.

(12)

Furthermore, this controller mean square stabilizes the sys-
tem and

inf
{u(k)}∞k=0

J∞(x0, {u(k)}∞k=0) = x>0 Px0.

Proof: First, let us define the mapping f : Sn+ → Sn+
such that, for any X ∈ Sn+, we get

f(X) =Q+ Ā>
(
X −XB(R+B>XB)−1B>X

)
Ā

+

N∑
i=1

E
{
Ã>i

(
X −XBi(Rii +B>i XBi)

−1B>i X
)
Ãi

}
.

Using part 2 of Subsection 3.5.2 in [18], we have the matrix
inversion identity

X−XW (Z+W>XW )−1W>X = (X−1+WZ−1W>)−1,

for any matrix W and positive-definite matrices X and Z.
Therefore, for any X > 0, we can rewrite f(X) as

f(X) =Q+ Ā>(X−1 +BR−1B>)−1Ā

+

N∑
i=1

E
{
Ã>i (X−1 +BiR

−1
ii B

>
i )−1Ãi

}
.

(13)

Note that, if X ≥ Y ≥ 0, then

(X−1 +WZ−1W>)−1 ≥ (Y −1 +WZ−1W>)−1

for any matrix W and positive-definite matrix Z. Therefore,
if X ≥ Y ≥ 0, we get

f(X) ≥ f(Y ) > 0.

For any given T ≥ 0, we define the sequence of matrices
{Xi}Ti=0 such that X0 = 0 and Xi+1 = f(Xi). We have

X1 = f(X0) = f(0) = Q > 0 = X0.

Similarly, if we repeat this argument one more time, we get

X2 = f(X1) ≥ f(X0) = X1 > 0. (14)

The left-most inequity in (14) is true because X1 ≥ X0.
We can repeat the same argument, and show that for all
1 ≤ i ≤ T −1 that Xi+1 ≥ Xi > 0. Using Theorem 3.1, we
know that

x>0 XTx0 = inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1k=0 ).

According to Theorem 5.1 in [11], since the system is mean
square stabilizable the sequence {Xi}∞i=0 is uniformly upper-
bounded; i.e., there exists W ∈ Rn×n such that Xi ≤W for
all i ≥ 0. Therefore, we get

lim
T→+∞

XT = X ∈ Rn×n (15)

since {Xi}∞i=0 is an increasing upper-bounded sequence. In
addition, we have X > 0 since Xi > 0 for all i ≥ 2. Now, we
need to prove that the limit X in (15) is the unique positive
definite solution of the modified discrete algebraic Riccati
equation (12). This is done by a contrapositive argument.
Assume that there exists Z ∈ Sn+ such that f(Z) = Z. For
this matrix Z, we have

Z = f(Z) ≥ f(0) = X1

since Z ≥ 0. Similarly, noting that Z ≥ X1, we get

Z = f(Z) ≥ f(X1) = X2.



inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1k=0 ) = x>0 XTx0 ≤ x>0 Zx0 = inf
{u(k)}T−1

k=0

E

{
x(T )>Zx(T ) +

T−1∑
k=0

x(k)>Qx(k) + u(k)>Ru(k)

}
(16)

Repeating the same argument, we get Z ≥ XT for all
T ≥ 0. Therefore, for each T ≥ 0, we have the inequality
in (16). Note that the right-most equality in (16) is a direct
consequence of Theorem 3.1 and the fact that Z = f(Z) =
fq(Z) for any positive integer q. Let us define

{u∗(k)}T−1k=0 = arg inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1k=0 ),

and x∗(k) as the state of the system when the control
sequence u∗(k) is applied to it. Now, we get the inequality
in (17) since, by definition, {u∗(k)}T−1k=0 is not the min-
imizer of this cost function. It is easy to see that, the
right hand-side of (17) is equal to JT (x0, {u∗(k)}T−1k=0 ) +
E
{
x∗(T )>Zx∗(T )

}
. Thus, using (16) and (17), we get

x>0 XTx0 ≤ x>0 Zx0
≤ JT (x0, {u∗(k)}T−1k=0 ) + E

{
x∗(T )>Zx∗(T )

}
= x>0 XTx0 + E

{
x∗(T )>Zx∗(T )

}
.

(18)

Finally, thanks to the facts that Q > 0 and

lim
T→+∞

E

{
T−1∑
k=0

x∗(k)>Qx∗(k) + u∗(k)>Ru∗(k)

}
= lim
T→+∞

x>0 XTx0 = x>0 Xx0 <∞,

we get that limT→∞ E
{
x∗(T )>x∗(T )

}
= 0. Therefore,

we have limT→∞ E
{
x∗(T )>Zx∗(T )

}
= 0. Taking limit

form both sides of (18), when T goes to infinity, results in
x>0 Xx0 = x>0 Zx0 for all x0 ∈ Rn. Thus, X = Z. This
concludes the proof.

REMARK 3.2: Note that we can use the procedure intro-
duced in the proof of Theorem 3.2 to numerically compute
the unique positive-definite solution of the modified discrete
algebraic Riccati equation in (12), that is, we can construct
the sequence of matrices {Xi}∞i=0, such that Xi+1 = f(Xi)
with X0 = 0 with f(·) as in (13). Because of (15), it is
evident that, for each δ > 0, there exists a positive integer
q(δ) such that Xq(δ) is in the δ-neighborhood of the unique
positive-definite solution of (12).

IV. PERFORMANCE DEGRADATION UNDER MODEL
INFORMATION LIMITATION

In this section, we study the value of model informa-
tion in control design using the closed-loop performance
degradation caused by the lack of full model information
in control design procedure. The performance degradation is
captured using the ratio of the cost of the optimal controller
with limited model information to the cost of the optimal
controller with global plant model information (introduced
in Appendix A).

Assume {uLMI(k)}∞k=0 and {uFMI(k)}∞k=0 denote the op-
timal controller with limited model information (introduced
in Theorem 3.2) and the optimal controller with full model
information (introduced in Proposition A.2), respectively. We
define performance degradation ratio caused by the lack of
full model information as

r = sup
x0∈Rn

J∞(x0, {uLMI(k)}∞k=0)

J∞(x0, {uFMI(k)}∞k=0)
.

In order to find a reasonable upper-bound for this ratio,
we make the following assumption:

ASSUMPTION 4.1: All subsystems are fully-actuated, that
is, Bii ∈ Rni×ni and σ(Bii) ≥ ε > 0 for all 1 ≤ i ≤ N ,
where σ(·) denotes the smallest singular value of a matrix.

To simplify the presentation, we also assume that Q =
R = I . The next theorem presents an upper-bound for the
performance degradation under Assumption 4.1.

THEOREM 4.1: Assume that the discrete-time linear
stochastic system given in (1) satisfies Assumptions 3.1
and 4.1, and is mean square stabilizable. The performance
degradation ratio is upper-bounded by r ≤ 1 + 1/ε2.

Proof: Using the modified discrete algebraic Ric-
cati equation (25) in Proposition A.2, the cost of
the optimal control design with full model information
J∞(x0, {uFMI(k)}∞k=0) = x>0 P

FMIx0 is equal to

x>0 P
FMIx0 = x>0 Qx0 + x>0 R(Ā, P FMI, B, I)x0

+

N∑
i=1

x>0 E
{
R(Ãi(k), P FMI, B, I)

}
x0.

(19)

In addition, we know P FMI ≥ Q = I , which (using the proof
of Theorem 3.2) results in

R(Ā, P FMI, B, I) ≥ R(Ā, I, B, I), (20)
R(Ãi(k), P FMI, B, I) ≥ R(Ãi(k), I, B, I). (21)

Substituting (20)–(21) inside (19), we get

x>0 P
FMIx0 ≥ x>0 (I + Ā>(I +BBT )−1Ā)x0

+

N∑
i=1

x>0 E
{
Ãi(k)>(I +BiB

T
i )−1Ãi(k)

}
x0.

On the other hand, for a given x0 ∈ Rn, the cost of
the optimal control design with limited model information
J∞(x0, {uLMI(k)}∞k=0) = x>0 P

LMIx0 is upper-bounded by

x>0 P
LMIx0 ≤ E

{
+∞∑
k=0

x(k)>x(k) + u(k)>u(k)

}
,

where u(k) = −B−1A(k)x(k) and x(k) is the state vector
of the system when this control sequence is applied to the
system. This is true since the deadbeat control design strategy



inf
{u(k)}T−1

k=0

E

{
x(T )>Zx(T ) +

T−1∑
k=0

x(k)>Qx(k) + u(k)>Ru(k)

}
≤ E

{
x∗(T )>Zx∗(T ) +

T−1∑
k=0

x∗(k)>Qx∗(k) + u∗(k)>Ru∗(k)

}
,

(17)

u(k) = −B−1A(k)x(k) uses only local model information
for designing each subcontroller [7]. Therefore, we get

x>0 P
LMIx0 ≤ E

{
x>0 (I +A(k)>B−>B−1A(k))x0

}
= x>0 (I + Ā>B−>B−1Ā)x0

+ x>0 E
{
Ã(k)>B−>B−1Ã(k)

}
x0

= x>0 (I + Ā>B−>B−1Ā)x0

+

N∑
i=1

x>0 E
{
Ãi(k)>B−>ii B−1ii Ãi(k)

}
x0.

The second equality is a direct result of the assumption that
the subsystems are stochastically independent of each other.
Let us define the set M =

{
β̄ | r ≤ β̄

}
. If a real number β

satisfy βP FMI − P LMI ≥ 0, then β ∈M. We have

βP FMI − P LMI ≥ (β − 1)I

+ Ā>
[
β(I +BB>)−1 −B−>B−1

]
Ā

+

N∑
i=1

E
{
Ãi(k)>

[
β(I +BiB

>
i )−1 −B−>ii B−1ii

]
Ãi(k)

}
.

Therefore, a sufficient condition for βP FMI − P LMI ≥ 0 is

(β − 1)I + Ā>
[
β(I +BB>)−1 −B−>B−1

]
Ā

+

N∑
i=1

E
{
Ãi(k)>

[
β(I +BiB

>
i )−1 −B−>ii B−1ii

]
Ãi(k)

}
≥ 0.

As a result, we get [1 + 1/ε2,+∞) ⊆ M since σ(B) ≥ ε.
This shows that

r = sup
x0∈Rn

x>0 P
LMIx0

x>0 P
FMIx0

≤ 1 +
1

ε2
.

This concludes the proof.
REMARK 4.1: Assuming that the system satisfies As-

sumption 4.1, when the variances of the plant model pa-
rameters tend to infinity, the optimal controller with limited
model information (introduced in Theorem 3.2) approaches
deadbeat. Therefore, when our belief about other subsystems
is inaccurate, we simply cannot risk using their statistical
information and as a result the deadbeat is the best controller
(since it discards this information). Therefore, in this case,
the upper-bound presented in Theorem 4.1 becomes tight.

V. NUMERICAL EXAMPLE

Consider a simple linear discrete-time dynamical system
composed of two scalar subsystems as[
x1(k + 1)
x2(k + 1)

]
=

[
a11(k) a12(k)
a21(k) a22(k)

][
x1(k)
x2(k)

]
+

[
1 0
0 1

][
u1(k)
u2(k)

]
where xi(k) ∈ R and ui(k) ∈ R are the state and the control
input of subsystem i, respectively. Let us assume that

E{a11} = 2.0 and E{(a11 − E{a11})2} = 0.4,

E{a12} = 1.0 and E{(a12 − E{a12})2} = 0.1,

E{(a11 − E{a11})(a12 − E{a12})} = 0.1,

and

E{a22} = 3.0 and E{(a22 − E{a22})2} = 0.2,

E{a12} = 1.0 and E{(a12 − E{a21})2} = 0.1,

E{(a21 − E{a21})(a22 − E{a22})} = 0.1.

The goal is to optimize the following performance criterion

J =

∞∑
k=1

[
x1(k)
x2(k)

]> [
x1(k)
x2(k)

]
+

[
u1(k)
u2(k)

]> [
u1(k)
u2(k)

]
.

1) Optimal Controller Using Statistical Model Information:
This optimal controller is derived in [11]. Using Theorem 5.2
from [11], we get

P SMI =

[
11.8923 7.5185
7.5185 14.4816

]
,

which results in the optimal controller

uSMI(k) =

[
−1.8361 −1.0494
−1.0150 −2.7822

] [
x1(k)
x2(k)

]
.

2) Optimal Controller Using Full Model Information: This
optimal controller is derived in Appendix A. Using Proposi-
tion A.2, we get

P FMI =

[
5.7805 5.0098
5.0098 10.4446

]
,

which results in the optimal controller

uFMI(k) = KFMI
[
x1(k)
x2(k)

]
,

where

KFMI =

[
−0.7820 −0.0954
−0.0954 −0.8709

] [
a11(k) a12(k)
a21(k) a22(k)

]
.

3) Optimal Controller Using Limited Model Information:
This optimal controller is derived in Section III. Using
Theorem 3.2, we have

P LMI =

[
5.8170 5.0212
5.0212 10.4612

]
,

which results in the optimal controller

uLMI(k) = KLMI
[
x1(k)
x2(k)

]
,

where

KLMI=

[
−0.8533a11(k)+0.0449 −0.8533a12(k)−0.2148
−0.9127a21(k)−0.1482 −0.9127a22(k)+0.0298

]
.



It is easy to see that P FMI ≤ P LMI ≤ P SMI. In addition, one
can check that

r = sup
x0∈Rn

x>0 P
LMIx0

x>0 P
FMIx0

= 1.0088 ≤ 1 + 1/ε2 = 2,

since, in this example, ε = 1. This shows that the optimal
controller with limited model information is at most only 1%
worse than the optimal controller with full model informa-
tion. It is interesting to note that, with only access to precise
local model information, in this numerical example, one can
expect a huge improvement in the closed-loop performance
in comparison to the optimal controller with only statistical
model information

sup
x0∈Rn

x>0 P
SMIx0

x>0 P
LMIx0

= 2.3607.

VI. CONCLUSION

We presented a statistical framework for the study of con-
trol design under limited model information. We found the
best performance achievable by a limited model information
control design method. We also studied the value of infor-
mation in control design using the performance degradation
ratio. Possible future work will focus on generalizing the
results to discrete-time Markovian jump linear systems and
to decentralized controllers.
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APPENDIX A
CONTROL DESIGN WITH FULL MODEL INFORMATION

In this appendix, we assume that, when designing subcon-
troller i, we have access to the full model information, that is,
we can observe the entire model parameters {Aij(k) | 1 ≤
i, j ≤ N} when designing each local controller. The fol-
lowing proposition gives the solution to the finite-horizon
optimal control problem.

PROPOSITION A.1: The solution of the finite horizon
optimal control problem is given by

u(k) = −(R+B(k)>P (k + 1)B(k))−1

×B(k)>P (k + 1)A(k)x(k),
(22)

where {P (k)}Tk=0 can be found using the backward differ-
ence equation

P (k) =Q(k) +R(Ā(k), P (k + 1), B(k), R)

+

N∑
i=1

E
{
R(Ãi(k), P (k + 1), B(k), R)

}
,

(23)

with the boundary condition P (T ) = Q(T ).
Proof: The proof is similar to the proof of Theorem 3.1.

This result can also be extended to infinite-horizon cost
function using the next proposition.

PROPOSITION A.2: Assume that the discrete-time linear
stochastic system given in (1) satisfies Assumption 3.1 and is
mean square stabilizable. The solution of the infinite-horizon
optimal control problem is given by

u(k) = −(R+B>PB)−1B>PA(k)x(k), (24)

where P is the unique finite positive-definite solution of the
modified discrete algebraic Riccati equation

P = Q+R(Ā, P,B,R) +

N∑
i=1

E
{
R(Ãi(k), P,B,R)

}
.

(25)

Furthermore, this controller mean square stabilizes the sys-
tem and

J∞(x0, {u(k)}∞k=0) = x>0 Px0.
Proof: The proof is similar to the proof of Theorem 3.2.


