
Weak Resilience of Networked Control Systems

Tomonori Sadamoto1,2, Henrik Sandberg3, Bart Besselink3, Takayuki Ishizaki1

Jun-ichi Imura1, and Karl Henrik Johansson3

Abstract— In this paper, we propose a method to establish
a networked control system that maintains its stability in the
presence of certain undesirable incidents on local controllers.
We call such networked control systems weakly resilient. We
first derive a necessary and sufficient condition for the weak
resilience of networked systems. Networked systems do not
generally satisfy this condition. Therefore, we provide a method
for designing a compensator which ensures the weak resilience
of the compensated system. Finally, we illustrate the efficiency
of the proposed method by a power system example based on
the IEEE 14-bus test system.

I. INTRODUCTION

Many infrastructure and industrial processes, e.g., power
networks [1], [2], transportation networks [3] and fabrication
plants [4], are integrations of computer-based cyber systems
and physical processes. By emerging advanced technologies,
the level of integration of the cyber and physical systems has
intensified. Along with this, several challenging problems in
control system design arise.

Resilient system design is one of the most challenging
problem for cyber-physical systems. The concept of resilient
system design, which means control system design in an
adversarial and uncertain cyber environment, has been intro-
duced in [5]. Furthermore, in [6], the authors have discussed
a conceptual property of resilient control systems. More-
over, in [7], the authors have proposed resilient controller
design for cyber-physical networked systems under Denial
of Service (DoS) attacks which lead to severe time-delays
and degradation of control performance. However, it is still
an open problem to design resilient systems maintaining an
acceptable level of operation or service in face of undesirable
incidents on cyber systems, e.g., adversarial attacks and
faults caused by human errors.

On the other hand, in [8], the authors have proposed a
method for constructing systems whose stability is main-
tained against any modification of local controllers, which
stabilize local subsystems disconnected in the networked
system. In this method, we design a supervisory compen-
sator such that the compensated networked system has the
property that the stability of the overall closed-loop system
is guaranteed against any modification of locally stabilizing

1Department of Mechanical and Environmental Informatics, Graduate
School of Information Science and Engineering, Tokyo Institute of Tech-
nology; 2-12-1, Meguro, Tokyo, Japan:
{sadamoto@cyb., ishizaki@, imura@}mei.titech.ac.jp

2Research Fellow of the Japan Society for the Promotion of Science
3School of Electrical Engineering, Automatic Control, Royal Institute of

Technology (KTH), SE-100 44 Stockholm, Sweden:
{bart.besselink, hsan, kallej}@ee.kth.se

controllers. However, no characterization of compensated
networked systems having this property has been shown.

This paper continues the research of [8] and establishes
its connection to resilient control design, for the first time.
First, we define weakly resilient networked systems such that
the overall closed-loop system maintains its stability in the
presence of any undesirable incidents on local controllers
that maintain local stability (to be defined in Section II).
To clarify the class of networked systems which are weakly
resilient against undesirable incidents on local controllers, we
provide a necessary and sufficient characterization of weakly
resilient networked systems. However, networked systems do
not generally satisfy the shown necessary condition. Thus,
we provide a design method to make a given networked
system weakly resilient. Finally, we show the efficiency of
the proposed system design through a power system example
based on the IEEE 14-bus test system [9].

This paper is organized as follows. In Section II, we intro-
duce and characterize weakly resilient networked systems.
In Section III, we consider compensator design such that
the networked system is weakly resilient. In Section IV, we
show the efficiency of the proposed system design through a
numerical example. Finally, concluding remarks are provided
in Section V.

Notation: Denote the set of real numbers by R, the
set of complex numbers by C. Denote the n-dimensional
identity matrix by In, where we omit the subscript n when
no confusion occurs. For N := {1, . . . , N}, denote the
block-diagonal matrix having matrices M1, . . . ,MN on its
diagonal by dg(Mi)i∈N. We omit the subscript i ∈ N

when no confusion occurs. Given signals x1(t) · · ·xN (t),
denote x(t) := [xT

1 (t), . . . , x
T
N (t)]T, where we omit the time

variable t when no confusion occurs. Denote by Σ : u(t) �→
y(t) a finite-dimensional linear time-invariant system. Given
κ : y1 �→ u1 and Σ : {u1, u2} �→ {y1, y2}, (Σ, κ) denotes the
(well-posed) interconnected system with the external input
u2 and external output y2. For example, given

κ :

{
ξ̇ = Kξ +Hy1
u1 = Mξ

and

Σ :

⎧⎨
⎩

ẋ = Ax+B1u1 +B2u2

y1 = C1x
y2 = C2x,

(Σ, κ) is the system described by

(Σ, κ) :

⎧⎨
⎩

[
ẋ

ξ̇

]
=

[
A B1M

HC1 K

] [
x
ξ

]
+

[
B2

0

]
u2

y2 = C2x.
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Fig. 1. Overall closed-loop system (Σ, {κi})

Denote the transfer matrix of the system Σ : u �→ y by
Σ(s). The L2-norm of a square integrable function v(t) :

R → R
n is defined by ‖v(t)‖L2

:=
(∫∞

0
vT(t)v(t)dt

) 1
2 .

The H∞-norm of a stable proper transfer matrix G is defined
by ‖G(s)‖H∞ := supω∈R ‖G(jω)‖, where ‖ · ‖ denotes the
induced 2-norm.

II. WEAKLY RESILIENT NETWORKED SYSTEMS

A. Definition of Weakly Resilient Networked Systems

In this paper, for simplicity, we deal with a cyber-physical
networked system composed of two subsystems, which rep-
resent dynamical processes in the physical world, and two
local controllers, which represent cyber systems. We first
give the dynamics of the cyber-physical networked system.
For i ∈ {1, 2}, the i-th subsystem dynamics are described
by

Σi :

⎧⎨
⎩

ẋi = Aixi + Jizj +Biui

zi = Sixi

yi = Cixi +Dizj ,
j �= i, (1)

where xi ∈ R
ni is the state, zi ∈ R

pi is the subsystem
interaction output, ui ∈ R

mi and yi ∈ R
qi are used for in-

terconnection to the i-th local controller explained below. We
suppose that zi and yi are measurable. The interconnection
of Σ1 and Σ2 is given by

Σ :

{
ẋ = Ax+Bu
y = Cx,

(2)

where

A=

[
A1 J1S2

J2S1 A2

]
, B=

[
B1 0
0 B2

]
, C=

[
C1 D1S2

D2S1 C2

]
.

(3)
For this networked system Σ, we consider designing local

controllers to guarantee the stability of the whole closed-
loop system. More specifically, for i ∈ {1, 2}, we consider
the i-th local controller generating ui from yi described by

κi : yi �→ ui, i ∈ {1, 2}. (4)

We denote the set of κ1 and κ2 by {κi}i∈{1,2}. We omit the
subscript i ∈ {1, 2} if no confusion occurs. The entire system
(Σ, {κi}) is shown in Fig. 1. In this paper, we suppose that
there exists {κi} stabilizing (Σ, {κi}).

The local controllers in a cyber environment are sometimes
vulnerable to adversaries and may be drastically modified.

For example, in power grids, a local controller stabilizing
the frequency of power grids may be modified by attackers
to cause power outages. In addition, the controllers may be
misconfigured by human errors, which result in malfunctions
of the system. In the face of such undesirable incidents,
the whole networked system is required to maintain an
acceptable level of operation, or at least preserve the stability
of the networked system.

As an example of undesirable incidents, let us suppose the
following adversarial attack on the local controllers. Local
controllers are modified by the attackers to achieve a desir-
able behavior of the system. However, since the modification
with explicit consideration of the overall system dynamics is
difficult, the attacker is supposed to focus on the dynamics
of the local closed-loop system (Σi, κi) as shown in Fig. 1,
i.e., neglecting the interconnection to Σj , j �= i. Furthermore,
to avoid the detection of attacks as much as possible, we
suppose that attackers do not destroy the stability of the local
closed-loop system. In view of this, we consider attacks that
preserve the stability of local closed-loop systems (Σi, κi).
In this setting, we define networked systems whose overall
stability is guaranteed against any adversarial attacks in the
above class as follows:

Definition 1: For each i ∈ {1, 2}, consider Σi in (1) and
κi in (4). Define Σ in (2) and the set of locally stabilizing
controllers as

Ki := {κi|(Σi, κi) is stable} (5)

for i ∈ {1, 2}. The system Σ is said to be weakly resilient
if (Σ, {κi}) is stable for any κi ∈ Ki, i ∈ {1, 2}.

The reason why we adopt the term weak resilience for this
condition is that there does not exist a locally stabilizing
controller that destabilizes the overall system Σ. Hence,
weak resilience, in this sense, appears to be a minimum
requirement for the resilience of networked systems.

In the next subsection, we will provide a characterization
of weakly resilient networked systems.

B. Characterization of Weakly Resilient Networked Systems

In this subsection, we show a necessary and sufficient
condition for the resilience of networked systems in the sense
of Definition 1. For simplicity, we assume that the input and
output signals of Σi in (1) are scalar, i.e.,

zi ∈ R, ui ∈ R, yi ∈ R, i ∈ {1, 2}.
In this setting, we give the following theorem:

Theorem 1: For each i ∈ {1, 2}, consider Σi in (1) and
κi in (4). Define Σ in (2). Suppose (Ai, Bi) is controllable
and (Ai, Ci) is observable for each i ∈ {1, 2}. The system
Σ is weakly resilient if, and only if, Σ is a cascade system,
i.e.,

JiSj = 0, DiSj = 0 (6)

for either i = 1 or i = 2 and with j �= i.

We emphasize that the cascade property of the system is
not only a sufficient condition, but also necessary. In other
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Fig. 2. Compensated system ΣΦ := (Σ,Φ)

words, if the system does not have any cascade realization,
the system is not weakly resilient. However, in general,
networked systems are not necessarily cascade. Thus, in the
next section, let us consider designing a compensator to make
networked systems weakly resilient.

III. COMPENSATOR DESIGN FOR WEAK RESILIENCE

In this section, instead of Σ in (2), we deal with networked
systems with additional input signals described as

Σ :

{
ẋ = Ax+Bu+Rv
y = Cx+ r,

(7)

where A, B, and C are defined as in (3), and v ∈ R
p and

r ∈ R
q are the additional input signals from the compensator

introduced next. We suppose that (A,R) is controllable.
For this system, we consider designing a compensator

described by

Φ :

⎧⎨
⎩

φ̇ = Λφ+ Γz
r = Ξφ
v = Θφ,

(8)

where φ ∈ R
η . Denote the compensated system by ΣΦ :=

(Σ,Φ). The network structure of this compensated system
is shown in Fig. 2. In this setting, the following corollary
follows from Theorem 1:

Corollary 1: Given Σ in (7), consider Φ in (8). Define the
interconnected system ΣΦ := (Σ,Φ). Then, ΣΦ is weakly
resilient if, and only if, ΣΦ(s) satisfies

ΣΦ(s) =

[
C1(sI −A1)

−1B1 σ(s)
0 C2(sI −A2)

−1B2

]
(9)

with a proper transfer function σ(s), or ΣΦ(s) has a similar
lower-triangular form.

Next, we consider designing a compensator such that
the transfer matrix ΣΦ(s) has the form (9). As a related
work, noninteracting control based on geometric control
theory has been proposed in the literature, e.g., [10], [11],
where several off-diagonal elements of the transfer matrix
are canceled. However, in general, the diagonal elements
of the transfer matrix cannot be arbitrarily designed by the
existing methods. Thus, existing methods do not enable us
to construct ΣΦ(s) having the form (9) because the i-th
diagonal element of ΣΦ(s) in (9) must be Ci(sI−Ai)

−1Bi.
To overcome this difficulty, in this paper, we consider

designing a compensator by taking another approach, which
was recently developed in [8]. For simplicity, we assume that

Di = 0 in (1). Note that the system Σ in (7) is not a cascade.
In this setting, we provide the following compensator on the
basis of the state-space expansion technique proposed in [8]:

Proposition 1: Given Σ in (7), consider Φ in (8) with

Λ =

[
A1 J1S2

0 A2

]
+RΘ, Γ =

[
0 0
J2 0

]
, Ξ = −dg(Ci),

(10)
where Θ is given such that it stabilizes A+RΘ. Then, ΣΦ :=
(Σ,Φ) is weakly resilient.

Proof: The compensated system ΣΦ is described by

ΣΦ :

⎧⎨
⎩

[
φ̇
ẋ

]
=

[
Λ Γdg(Si)
RΘ A

] [
φ
x

]
+

[
0
B

]
u

y =−dg(Ci)φ+ dg(Ci)x.
(11)

Taking the coordinate transformation χ = x− φ, we have⎧⎨
⎩

[
φ̇
χ̇

]
=

[
A+RΘ Γdg(Si)

0 A
] [

φ
χ

]
+

[
0
B

]
u

y =dg(Ci)χ
(12)

with

A :=

[
A1 J1S2

0 A2

]
.

Hence, the transfer matrix ΣΦ(s) has the form (9). Thus, ΣΦ

is weakly resilient.

We note that the compensator Φ in (8) and (10) relies on
the use of two control inputs, i.e., v and r. Existing methods
in noninteracting control generally only use the signal v.
However, the use of only v does generally not allow for
obtaining a compensated system of the specific form (9). To
this end, the additional control input r is exploited in the
controller Φ in (8) and (10).

Furthermore, in Proposition 1, it is shown that the whole
closed-loop system (ΣΦ, {κi}) preserves its internal stability
against any undesirable incidents on local controllers as long
as (Σi, κi) is stable.

Finally, we show a result on performance degradation
of the whole networked system under attacks on local
controllers as follows. For simplicity, we take φ(0) = 0
and the initial state of each local controller as zero. We
consider a closed-loop system (ΣΦ, {κi}) where ΣΦ is given
as (11), and define x as the state of Σ in this closed-loop
system. Furthermore, define χ as the state in the closed-loop
system of (12) with local controllers of {κi}. In this setting,
it follows that

‖x(t)‖L2
≤ (1 + γ)‖χ(t)‖L2

(13)

for all x(0) = χ(0) = x0 ∈ R
n where γ := ‖(sI −

(A + RΘ))−1Γ‖H∞ . Note that χ represents the state of
the cascade system without interconnection from Σ1 to Σ2.
Thus, we can see from (13) that the performance of the
overall closed-loop system is bounded by that of the local
closed-loop systems. In general, it is not clear to what
extent the performance of the whole closed-loop system is
deteriorated under attacks on local controllers. In contrast,
the compensated system ΣΦ has an advantage that the
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Fig. 3. IEEE 14-bus test system

performance deterioration of the overall closed-loop system
can be evaluated by that of the local closed-loop systems.

Remark 1: In [8], we have dealt with a similar compen-
sator Φ but it made the transfer matrix ΣΦ diagonal. In this
case, it has been shown that the rank of Γ in (8) coincides
with the sum of the rank of Ji for i ∈ {1, 2}. Compared
to this, Γ in (10) is a lower-rank matrix. Note that the
low-rankness of Γ has a direct relationship to the decay
rate of Hankel singular values of Φ. Thus, the compensator
provided in this paper has a potential to be approximated by
a lower-dimensional system as compared to the compensator
considered in [8].

Remark 2: Even if zi in (1) is not measureable, we can
construct a compensator such that the compensated system is
weakly resilient by using an observer as follows: We design
an observer using

w = Sx

as a measureable output signal of Σ in (7). Define

O :

{
˙̂x = (A−HS)x̂+ dg(Bi)u+Hw +Rv
ẑ = Γx̂,

(14)

where H is given such that A −HS is Hurwitz. Let Φ be
given by (10) using ẑ instead of z. Then, (Σ,Φ, O) is weakly
resilient.

IV. NUMERICAL SIMULATION

A. Power Network Model

In this section, we show the efficiency of the proposed
weakly resilient system design through a numerical example.
We deal with the IEEE 14-bus power test system provided by
[9], where the system involves five generators and 11 loads.
The power system is shown in Fig. 3. For k ∈ {1, . . . , 5},
the k-th generator dynamics is described by

G[k] :

{
ζ̇[k] = A[k]ζ[k] + b[k]u[k] + b[k]v[k] + bτ[k]τ[k]
δ[k] = cζ[k],

(15)
where the states of ζ[k] ∈ R

4 represent the phase angle
difference, angular velocity difference, mechanical input dif-
ference, and valve position difference. In addition, u[k] ∈ R

and v[k] ∈ R are the angular velocity difference command,
τ[k] ∈ R is the electric torque difference from the connected
generators, and δ[k] ∈ R is the phase angle difference.
Furthermore, the system matrices in (15) are given by

A[k] :=

⎡
⎢⎢⎣
0 1 0 0
0 −D[k]/M[k] −1/M[k] 0
0 0 −1/T[k] 1/T[k]

0 1/K[k] 0 −R[k]/K[k]

⎤
⎥⎥⎦

b[k] :=
1

K[k]
e44, bτ[k] :=

1
M[k]

e42, c := (e41)
T,

(16)
where eni ∈ R

n is the i-th column of In and M[k], D[k], T[k],
K[k] and R[k] are an inertia constant, damping coefficient,
turbine time constant, governor time constant, and droop
characteristic, respectively. These parameters are randomly
chosen from the intervals [0.01, 1], [0.4, 11], [0.01, 0.02],
[0.03, 0.7] and [0.01, 0.05], respectively. Note that the unit
of all physical variables is [p.u.] unless otherwise stated.
Furthermore, all loads are modeled as constant power loads,
see [9].

We give the interconnection structure among generators
by

τ = −Y δ, (17)

where τ := [τ[1], . . . , τ[5]]
T and δ := [δ[1], . . . , δ[5]]

T. In
(17), Y compatible with the interconnection structure among
generators is calculated by using MATPOWER [9].

Finally, the first to third generators are clustered as the
first subsystem, and the others are clustered as the second
subsystem. Interconnencting these two subsystems, we have
a system Σ in (7) where the state variable is defined as
x = [ζT[1], . . . , ζ

T
[5]]

T, and input signals are defined as u =

[u[1], . . . , u[5]]
T and v = [v[1], . . . , v[5]]

T. Furthermore, the
measurement signal is taken as the angle differences, i.e.,
y = [δ[1], . . . , δ[5]]

T. For the system matrices of Σ in (7), A
is given by

A = dg(A[k])− dg(bτ[k])Y (I5 ⊗ c)

where ⊗ denotes the Kronecker product. In addition, B, R
and C are given as the matrices compatible with u, v and y.

B. Demonstration of Compensator Design

In this section, we show the efficiency of the compensator
design for the power network given in the previous section.

First, we design the local controllers such that the power
flow of the whole closed-loop system tracks a reference sig-
nal when no adversarial attacks occur in the local controllers.
Since the power flow depends on the angle differences among
generators, we construct the local controllers such that the
angle difference y ∈ R

5 tracks a given reference angle signal,
denoted by yd ∈ R

5. More specifically, given Σ in (7), we
consider an augmented system whose states are ẋ and the
error between y and yd. For this augmented system, the
local controllers {κi} in (4) are designed by LQR design
techniques.

To calculate the transient responses of the closed-loop
system, we give an initial state of the system and that of the
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Fig. 4. Transient responses of all generators in (Σ, {κi}) without using
compensator Φ
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Fig. 5. Transient responses of all generators in (ΣΦ, {κi})

controllers as zero. Furthermore, we give the same reference
signal in each subsystem, and each reference signal is taken
as a random signal.

In Fig. 4, the blue solid (resp. red dotted) lines show
the transient responses (resp. reference signals) of the angle
differences of all generators when no attacks occur. We
can see from this figure that the transient responses track
the reference signals. Furthermore, suppose that the local
controllers are modified such that the tracking performance
of individual local closed-loop systems gets worse, even
though the local closed-loop systems are stable. In Fig. 4,
the yellow dash-dotted lines depict the transient responses in
this case. We can see from this figure that the instability of
the closed-loop system is induced by the attack on the local
controllers.

For the augmented networked system, we design Φ in
(8) and (10) by minimizing γ in (13), and construct a
compensated system (Σ,Φ). The transient responses of the
angle differences of all generators in the case of (ΣΦ, {κi})
are depicted in Fig. 5, where the legends are the same as

0 500 1000
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0

5
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g
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[r
ad

]

time[s]
200

Fig. 6. Demonstration of the power system operation under attacks on
local controllers

those in Fig. 4. Furthermore, the (attacked) local controllers
are the same as those shown above. From Fig. 5, even
though the performance of the closed-loop system becomes
worse when the local controllers are attacked, it should
be emphasized that the stability of the whole system is
preserved under attacks on local controllers by compensating
the networked system by Φ.

Finally, we numerically demonstrate the operation of the
compensated power system under attacks on local con-
trollers. To simulate this, we suppose a situation where local
controllers are attacked while operating the whole system.
We plot transient responses of the angle difference of all
generators by the blue solid lines in Fig. 6 during t ∈
[0, 200). Subsequently, we suppose that an attack occurs in
the two local controllers at t = 200 such that the tracking
performance of individual local closed-loop systems gets
worse. We can see from this figure around t ∈ [200, 1000)
that the stability of the whole system is preserved even
though the tracking performance gets worse. Finally, we
suppose that the controllers are recovered at t = 1000. As
a result, the tracking performance is recovered. As shown
in this numerical demonstration, the guarantee of the whole
system stability against attacks on local controllers enables
us to recover the controller while operating the whole power
system.

V. CONCLUSION

In this paper, we have proposed a method to establish a
networked control system that maintains its stability in the
presence of certain undesirable incidents on local controllers.
We call such networked control systems weakly resilient. To
clarify the class of weakly resilient networked systems, we
have provided a necessary and sufficient condition of weakly
resilient networked systems. However, networked systems do
not generally satisfy the necessary condition shown here in
general. Thus, we have provided a method for designing a
compensator such that the compensated networked system
is weakly resilient. Finally, we have shown the efficiency of
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the proposed method through a power system example of the
IEEE 14-bus test system.

In this paper, we have dealt with network systems com-
posed of two subsystems, and shown a necessary and suf-
ficient characterization of weakly resilient network systems.
The generalization of this characterization to networked sys-
tems composed of an arbitrary number of subsystems is un-
der investigation. Furthermore, we have shown a fundamental
result of weakly resilient system design under undesirable
incidents on local controllers preserving the stability of the
local closed-loop system. The extension of this result to
incidents destabilizing the system, e.g., the stuxnet attack
[12], is amongst the topics of future works.
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