Cooper ative Dynamic MPC for NCSs

Isabel Jurado, Daniel E. Quevedo, Karl H. Johansson andraiddén

Abstract This work studies cooperative MPC for Networked Controlt8gss with
multiple wireless nodes. Communication between nodesfectafd by random
packet dropouts. An algorithm is presented to decide at &a@h instant which
nodes will calculate the control input and which will onlylag data. The nodes
chosen to calculate the control values solve a cooperati?€ My communicat-
ing with their neighbors. This algorithm makes the contmchétecture flexible by
adapting it to the possible changes in the network condition

1 Introduction

Networked Control Systems (NCSs) are systems in which iggd@ommunication
links are used to exchange system information and congjobss between various
components of the system that may be physically distributegjor advantages of
NCSs include low cost, reduced weight and power requirespetple installa-
tion and maintenance, and high reliability. Nonethelekssicg a control loop on
a shared communication network introduces additional ayes and constraints
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in the control problem. In addition to being bit-rate lindtgl3, 6], practical com-

munitacion channels are commonly affected by packet drspand time delays,

mainly due to transmission errors and waiting times to ectfes medium; see, e.g.,
[3]-[16] and the many references therein.

This chapter studies NCS in which the transmissions aretaffeby random
packet dropouts. The network is composed of a certain nuwibeodes forming
a matrix strucure. These nodes follow an algorithm, thatdéscwhich node will
calculate the control input. This node will solve a coopgeallPC communicating
with its neighbors. Each node knows a part of the whole systeatel and it shares
its information with a group of neighbor nodes, so they coagein order to ex-
change their information about the system. At each samilimg, we have a differ-
ent group of nodes chosen to calculate the control sign&@.grbup of nodes will be
chosen depending on the particular network outcomes forstrapling time. The
present work extends our recent conference contributipmo[&ncompass NCSs
with parallel links and the use of cooperative MPC. The ideaotivated by the
fact that the link transmission outcomes may change at eatiplsng instant, so
one particular node is not always the best suited to perfobetontrol calculation.

In the network under consideration in this work, the only edicat receives the
state of the plant without any dropouts is the sensor nodéhnik located next
to the plant. The actuator node is directly connected to thetpnput, therefore
this data is received without problems. The actuator nodasis the only node
that provides transmission acknowledgments. We assumesthshat there is an
array of nodes between the sensor and the actuator nodémvas & Fig. 1. Each
node in a column sends the information to the three closet#sim the following
column. We will assume that the nodes, except the sensorhanactuator nodes,
can communicate with some of its neighbors in the same cqglamhmay thereby
cooperate and exchange information. The sensor and achates can’t calculate
control values; they can only transmit information. The ocmmmication between
nodes is limited to a maximum number of iterations, and sligedropouts.

We are supposing that the model of the plant is divided intertagh number of
incomplete subsystems. Each node will know only a part ofrtbdel of the system,
that is why it has to collaborate with its neighbors, whiclowrthe other parts of
the system. Therefore, each node will estimate just a padhteostate.

The control policy to be used will be a cooperative MPC. Witthis context,
we present a flexible NCS architecture where the role playezbbperative nodes
depends upon transmission outcomes and their acknowledgn&ith the algo-
rithm proposed, transmission outcomes and their ackn@mbedits will determine,
at each time instant, whether the control input will be cktad at the actuator node,
or closer to the sensor node.

Therefore, the distinguishing feature of this approachéstynamic architecture
of the controlled system, plus the fact that we are using a@ixnatnodes which do
not know the whole information of the plant model. The altfori seeks to find the
best group of nodes to calculate the control, depending®néktwork transmission
outcomes.
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The remainder of this chapter is organized as follows. 8e@i describes the
NCS topology of interest. In Section 3.1 we present the obtémw. Section 3.2
provides the state estimation. Section 3.3 presents tlwgithign that chooses the
best node to calculate the control action. In Section 4 amela llustrating the
control algorithm is presented and in Section 5 conclusavasgdrawn.

Notation: We writeNo for {0,1,2,...}; R are the real numbers, whereasg =
[0,00). The trace of a matriA is denoted byr (A). If a matrixQ is positive definite,
then we writeQ > 0. We adopt the conventiop?zlaj =0, for allag,a; € R. The
expectation of a random variahleis denoted byE{u}. A real random variablg,
which is zero-mean Gaussian with covariances denoted byt ~ .47(0,1).

Fig. 1 Control over a graph with dropouts and unreliable acknogreents of actuator values.

2 Considerations about the System Setup Control Objectivesand
the Network Constraints

We consider MIMO LTI plant models of the form
x(k+1) = Ax(k) + Bu(k) +d(k) (1)

wherex(0) ~ .47 (0,Po), Po > 0. In (1),u(k) € R™ is the plant inputx(k) € R™ is
the state, and(k) ~ .#°(0,D), D > 0 is driving noise.
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The model described in (1) represents the whole plant. Bufpeeshadowed
in the introduction, individual nodes do not have knowlegdi¢his whole model.
Thus, nodes have to interact with their neighbors to gehaliiformation about the
plant. We are considering that, between a certain numbevdés) they have all the
information about the plant model. Fig. 1 shows a particsitaration in which the
whole information is shared by two nodes.

2.1 The composite model

For each node, theomposite model (CM)2], is the combination of the decentral-
ized model and all the interaction models. In order to makegtioblem formulation
simpler, we will consider the particular case shown in Fignivich the cooperation
is done between two nodes in the same column, i.e., we havtmnation model.

The decentralized state vector in nddg ), X j), is augmented with the state from
the neighbor nodé*, j).
Therefore, the augmented staig;) = i, J)(LD,XE j)(i*.j)}T represents the CM

states for the nod§, j), (i*, j) being the neighbor node interacting, pairwise, with
(i,]), which is in the same column ante {i —1,i 4+ 1}. In this augmented state,
X )i+ j) IS the influence of the nod@*, j) on the nodg(i, j), andx jyi,j) is the
part of the state that take into account just the part of thdehthat the node{n i)
knows, so it is a decentralized state. In this case, the Ch®onodg(i, j) is written

as

X(i,j) (K+1) = A jyXi,j) (K) + B j Ui, j) (K) Wi jy ey Ugie, ) (K)

where
AI i _ B| ij _ 0
Ay = | A JJ’ Bm)—{ "5 ”}» W<u><l*1>—[s<,m JJ
Since
Api-1i) = Adpaay)  ad Bjyi-1j) = Bjyiri):
Ai.j) Bi,j) andW g j)i+,j) do not depend on the valueiof Therefore, two neighbor

cooperating nodes have available the entire informatiautithe system model.
Therefore, the nodg, j) has one part of the model, and the neighbor ndileq, )
and(i +1, j) have the other part of the model.
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2.2 Control problem

The augmented control signal to calculate is denoted as

ui () = [ug. (0T, uge  (RT]T, ke N, )
and will be calculated with MPC techniques employing paisevcooperation
among the neighboring nodes. Thus, the control problemedofor this kind of
systems is

UE:;;)(k) = Cooperative MPC (X(”)(k),X(,*)J)(k)) , keNp, 3)

wherex; j) (k) andx;- j)(k) represent the CM states for the nodeg) and(i*, j),
respectively.

2.3 Network issues

Sensor and actuator nodes are connected via a wirelessrketlaracterised via a
graph havingl x M + 2 nodes, see Fig. 1. Control values cannot be calculated by
the sensor nor the actuator nodes, they are just used to redhsiplant state and
apply the control signal, respectively. Therefore, acoaytb Fig. 1, the network has
M x M nodes that could act as the controller. Transmissions are ithca sequential
manner as shown in Fig. 2. More precisely, the paskét(k) is transmitted from
node(i, j) to its closest neighbotsat timeskT + jT, whereT is the sampling period
of (1) andt < T/(M + 1) refers to the times between transmissions of packets. The
plant inputu(k) is applied at tim&T + (M + 1) 1. We, thus assume that in-network
processing is much faster than the plant dynamics (1) anith, &sg., [4], neglect
delays introduced by the network.

A distinguishing characteristic of the situation at handhiat (due to channel
fading) the network introduces packet dropouts. To studysttuation, we adopt an
analog erasure channel model and introduce the binary ssicaedom processes

ij—1 . .
y/((i"'jj> J(k) € {0,1}, keNo,i€{0,1,2,....M+1},j€{0,1,2,....M+1}
where y/éii*jjfl)(k) = 1 indicates that transmission of the packeti— (k) from
node (i, j — 1) to node(i, j) at timekT + (j +1)7, is successful, i.e., error-free;
y((i'jj’;l) (k) = 0 refers to a packet-dropout. Throughout this work we asghatehe

sensor nod€0,0) has direct access to plant output measurements. For nahtio
convenience, we writgt®% (k) = 1, for allk € No.

1 Theseardi+1,j+1), (i,j+1) and(i—1,j+1).
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Fig. 2 Transmission ScheduleE R> is actual time.

To save energy, in our formulation the wireless nodep), where
i?j 6 {071727"'7M}7

do not provide acknowledgments of receipt of the packetsvever, the actuator
node,(M + 1,M + 1), will in general have less stringent energy constraintsatso
time kT + (M + 1)1 the control signal is received, & + (M + 2)1 this control
value is applied and at timel + (M + 3)1, the actuator broadcasts the control value
applied, namely(k) = [uﬁ‘j)(k)T,uﬁ*7j)(k)T}T, back to the wireless nodds j),
see Fig. 1. This acknowledgment-like signal is unreliaiie affected by dropouts
with associated success processes

50:D(k) € {0,1}, keNo,i,je{0,1,2,...,M}.

More precisely, ifu(k) is successfully received at nogiej), then we seb 1) (k) =
1; see also [11] and [18] for studies on the importance of ask@dgments in closed
loop control. We assume that the actuator node has perfeetl&dge of plant in-
puts, and thus, writM+1M+1) (k) = 1, vk € N.

Due to packet dropouts, plant state measurements are nayslavailable at
the actuator node. On the other hand, the sensor node willemeral, not have
perfect information of previous plant inputs. This makes ithplementation of (3)
via estimated state feedback a challenging task. The majpope of the present
work is to decide which nodes of the network (with the excaptbf the sensor
and actuator nodes) should use their local state estinmiegpptement the control
law (3), that is, which node will play the role of the contsslland which ones
only relay the received information. We foresee that ourreagh will lead to a
dynamic assignment of the role played by the individual mekmodes. Which tasks
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are carried out by each node at each time instant, will dejpgod transmission
outcomes, i. e., 0|yr((i"j‘)_1)(k) and3() (k).

2.4 Dynamic controller placement

The packets transmitted by each ndide) have three fields, namely, state measure-
ments, tentative plant inputs (if available) and the valtithe objective function
under consideration:

(k) = (x(K),uG £ (K),9(K).a € {1,....i}a" € {a—La+1}.Be{Ll....j}. (4

The plant states(k) includes the two components corresponding to the cooperati
nodes, that is(k) = [ ) (K) T, X ) (K)T], with i* € {i — 1,i +1}.

The control signaU(k)ngb’;) in (4) with the structure shown in (2), is the plant

input which is applied at the plant provided the packkb (k) is delivered at the
actuator node. 1§11 (k) is lost, then following Algorithm 2, which will be described
in Section 3.3, the plant input will be provided by one of tlegles in subsequent
columns, see Fig. 1, which thereby takes on the controllerattimek. For further
reference, we will refer to the node which calculates thetdlgput at timek as

c(k) € {1,2,...,M}2.

N 73,2\

—=="g —_———

Fig. 3 Graph with 3x 3+ 2 nodes.
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2.5 Example

Consider the network in Fig. 3. Some nodes in the network balye one part of
the plant model and the other nodes will have the other pheréfore, nodefl, 1),
(3,1), (1,2), (3,2), (1,3) and(3, 3) will have the same information about the plant,

that is

A =AEy=A12=AE2 =Aw3=A33): By =B@Ey=Bu2=Bam2=B13=B@3j3

and
Wiy =Weney =Waeze =Weze) =Wes)es =WEs)es):

On the other hand, the rest of the nodes will have the othépptre information
about the plant:

A1 =A@e2 =A23), By =Bpr2=Bpg3
and
Wiy =Weney =Weaz =Weze2 =Wesas =Weses):

Moreover, the cooperating couples afg1) +— (2,1), (1,2) +— (2,2), (1,3) «—
(2,3), (3,1) «— (2,1), (3,2) +— (2,2), and(3,3) +— (2,3).
So, itis easy to see that:
Aanay =Ar212 =Aw3 w3 =Arney =Ac2E2 =AG3)EG3):

By =Bu2a2 =Bas)ws) =Biyc1 =Br2)32 =B3)@3s):

Ayey =Ar222 =A2323), Briwey =Br2we2 =Brs3ws),

Awyey =Aeney =Aw2e2 =AE222 =Aw3)e3) =AGE3)23):

By =Bayey =Bw2re2 =B@2)r22 =Bwses =Bza)es),

Aeyay =Aeney =Ar212 =Ar2E2 =A23)13) =A23)33)
and

By =Beney =Be2us =Be2e2) =Bryns =Be3ea-

For example, if

11] {0 0} 11 {0 0}
01 00 01 00
Auv=|to0]To1 07| Aev=|To0] [0 0]

0 0_ 0 02 00 001
0 7o {0} 7o
1 1 0 0
Buy=|r1o1|" Bev=/|rg W ey = 0 » Wenan = | g
0 Lo [04} 1

then, the decentralized models are

11 11
Anyay = {O 1} v Aryey = {O 1} » Bayay

Il
—
-
—
gy
N
£
N
=
Il
-
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whereas the interacting models are given by:

010 00 0 0
Anyey = { 0 0.2} v Ay = {O O.l} v Bayey = {0.4} » Beyay = {1] :

3 Description of the Approach

In this section we will describe the control calculatiorgluding the algorithms that
gives the nodes to cooperate in order to calculate the dattion.

3.1 Control implementation

To implement the control law (3) over the network using p&skéthe form (4), we
will use communication driven cooperative MPC.

In this work we are assuming that pairs of neighbor nodesérsdme column
can exchange information. In Algorithm 1 we show the coofpensbetween a pair
of nodes. Then, with the CM in (2) and the Algorithm 1, it is pitde to calculate a
Feasible Cooperation-Based MPC (FC-MPC), as explamed in [2].

The calculation of the suboptimal control mpuf i) for each iteratiorp, is per-

formed by solving the FC-MPC problem. So, we WI|| choose thctive function
as a linear combination of the individual nodes’ objectjves,

Jii) = Jiw.) = @i p)\Viij) + D pViviy, - Ty Die,j) > 0, Wi jy + @ie ) = Li" € {i—1i+1}

The local objective for each cooperative node depends orathe ofy “Li-1) (k),

y((l' J’) Y(k) andy(”’)1 7Y (k). If at least one of them is equal to one, then we will have

the following cost function:
) ) . < |l.p 2 P 2
Ty = Vo O (K Uy (KX ) () :tZkHXM)(”k)HQJr Juf s emf

wherex’fi’j)(k) = [xg,j)(k+ 1\k)T7x<pi7j)(k+2|k)T7 T, u’{’i‘j)(k) = [ugvj)(k|k)T, u[’i’j)(k+
1/k)T,...]7, andQ > 0 andR > 0 are weighting matrices. To calculate these predic-
tions the CM for the nodé, j) has been used, see (2).

The notationp indicates the iteration number. During each MPC optimaati

the state and input trajectories (- j(k), u’ j)(k)) of the interacting node MPC
are not updated, so they remamﬁf( u”’.ﬁ (k).
(I )
On the other hand, IW SN = y(' J=D( y( L1 k) = 0, no informa-
tion about the state has arrlved at noidq) SO an estlmatlon is used instead. The
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cost function will be an expected value ([17]):

%U=HiﬂMWVm&mm HERTRY (tk}

0

zk (LK) TQXE j (t]k) +tr (QP ) (K)) +ufi ;, (tIk)TRU ; (t[K),

whereP; ;) (k) approximates the covariancexf ;) (k) and is calculated as follows:

Pii.j) (K+1) = APy (WAL ;) =T S (P j (K D) (k) +D,

where g
. i
I'“v”(k) 2 I—l y(agﬁig (K)
ae{01,...,i—1}
Be{01,.. . ,i—1}

is equal to 1 if and only ik j) (k) is available at nodéi, j) at timekT + (j — 1)1.
In the above expressiofig®, jg*) is one of the preceding nodes of (i,j) and is the
one that provides the best (the smallest or unique) valdg pfk).

Remark.The objective functiod; ;) is an approximation of:

3.y ~ BNV jy (R (K, 0 (K K.y (),

sinceP; j) (k) is not the covariance of; ;) (k), but just an approximate value. There-
fore the terntr (QPy; j)(k)) is not exact.

Fig. 4 Cooperative nodes for nodg j). Fig. 5 Packets received by nodk j).

In the Algorithm 1, the state sequence generated by the isuiencel j

and initial statex; ;, has been represented bé{ )P0 . Also, the notatiork is
representingX(; ;). X 1"
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Algorithm 1 Cooperative MPC algorithm
1: Given (G‘(),‘j),x(,#j)(k)), Q>0,R>0,1e{i,i*}, i* € {i—1i+4+1}, pmax(k) >0, € >0, p< 1,
€u.j) < P and® >> 1.
2: whileeg, j) > & for somer € {i,i*} andp < pmax(k) do V1 € {i,i*}

up € ar(g‘1rj1)1in FC—-MPC, j,

1

AUl )= @y + Q- @ ) )

: = lygP Pt
5. e =||ub, vl
6: for eachi € {i,i*} do
7 The nodg(t, j) transmitsuz‘j) to its neighbor
8: end for . o
9: ity g =1 vyl Yo = 1wy Y (k) = L then
10: xP ex(m(pi'”’u“*‘”;x("j)) Vi e {i,i*}

: (1.J) (1) ' ’
11:  ese PR

(@bt i)

. op S UL, ) L) ik
12: X < Xuh Ve {i,i*}
13:  endif
14: p—p+1
15: end while

Due to the communication constraints, the maximum numb@edtionsprax
is limited. It is also possible to loose information durirg tcooperation. For these
reasons only a suboptimal control inmjfj) will be available.

Notice thati* € {i —1,i + 1}, that means that the nodg j) can communicate
with the nodegi —1,j) and(i+1, ), see Fig 4. Therefore, nodg j) will solve
two cooperative MPC problems and will have two control valukhe control value
that the nodéi, j) transmits will be the one that provides the lowest cost.

3.2 State estimation

While only the nodes(k) will provide the plant input at instarig in the present for-
mulation all nodes compute local state estimatgs, (k), by using the data received
from one of the preceding nodgsg*, jg*). This serves as safeguard for instances
when the loop is broken due to dropouts.

Since the nodes don’t have full information about the plrgy are only able to
calculate a part of the state. That means &gt (k) is not an estimate of the global
state of the plant.

In the sequel, we will focus on situations where acknowleelgts of plant inputs
are “quite reliable”. Thus, the state estimates are simalyutated as

X1,y (K) = AijXi,j) (K= 1) + B jy Ui j) (K= 1) + Wi jyie jy Ugie jy (K= 1)+

. ' 5)
KD () (% 5y (€)= (AR j) (K= 1)+ By iy (K= 1) Wi jyie ) Uiy (k= 1)

)
X
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whereK (1) (k) = @D (K1,

In (5), ug j)(k—1) andu; j(k— 1) are local plant input estimates. In particular,
if 50:3)(k—1) =1, thenug j(k—1) = uA(k—1) andug j(k—1) = uA(k—1),
whereu”(k— 1) is the applied control signal in time instaft— 1) by the actuator.
On the other hand, at instances whéfe) (k— 1) = 0, node(i, j) uses the tentative
plant input value transmitted in the second field of the mresipackes!}) (k —
1) (if non-empty), or otherwise sets; j)(k— 1) andu- j(k—1) as per (3), see
Algorithm 2.

Intuitively, good control performance will be achievedlietstate estimation is
accurate. Clearly, nodes which are in columns closer toghsa@ will have access
to more output measurements, see Fig. 1. On the other haad;ammexpect that
nodes which are physically located in columns closer to ttieador node will on
average receive more plant input acknowledgments, thus, hetter knowledge of
plant inputs.



Cooperative Dynamic MPC for NCSs 13

3.3 Algorithm for dynamic controller placement

Algorithm 2 Dynamic Controller Placement

1: k< 0,%,j(0) <0, Péi’j) «— PR, m«0,i*=i—1ori* =i+1, the cooperative nodes f@r ).
2: whilet > 0do >t € R>g is actual time
3: whilet < kT +mr do > wait-loop
4 m<—m+1
5: end while .
e (im1j-1 ij—1 i+1,j-1

7Y ]. | 1) =0yl P () =0 Ay Y (k) = Othen
8 if 5(:)(k—1) = 1 then ]
10: S(I‘])(k) — ([X(LJ‘)(k)T,X(ix‘j)(k)T]T, [U(lj)(k)TU(l*l)(k)T]T,J(H)(k)) > a tentative input
11: else
12: S0 (k) « (0,0,0)
13: end if
14: endAifl_ L - i

. . i—1j— ij— i+1,j—
15 iy -)(k). =1y >(K) =1 vy )(k) =1then
16: S+ si-Li-1) (k) and/orsi-i~1 (k) and/ors(i+i=1 (k) > Sis a set containing all the

packets received. If all the packets arrigawill contain si~21-1) (k), s-1-1) (k) ands(+i-1 (k)
17: (x3,uS,3%) «—argmin J €S
1

18: if xS 0 then > X, iy (K) is available
21: end if

22: if uS # 0 then

24 U(ix"j)(k) = u(iﬁj)

Algorithm 2 is run at every nodé¢i, j). Since we assume that acknowledg-
ments from the actuator node are, in general, availabldrdmgmissions of packets
s (k) are less reliable, nodes in columns closer to the sensorsnmtebe ex-
pected to have better state estimates than nodes locateldimres further down the
network. Therefore, preference is given to forward incagrientative plant input
values.

The sensor nodg, j) = (0,0) uses as input®% (k) = (x(k),0,0), y0)(K) =
1, where 0 means that the field is empty.

This node just passes the information to all the nodes in teedolumn. The
node(0,0), as the nod¢M +1,M + 1), can't calculate control values.

The rest of the nodes in the network can only send informatidineir three clos-
est neighbors in the following column, except for the lowed appermost nodes
who can only send to two neighbors, see Fig. 2. Thereforegéneric noddi, j)
can receive zero, one, two or three (if not border node) gacke the case that
it receives more than one packet (as shown in Fig. 5), it citise one with the
minimun value of the cost functioh
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25: else .

26: U(”)(k)U(,*,”(k)“](”)(k) <—A|gor|thm 1

27 end if o

28: if uS=0A 50 (k—1) = 1then

29: SED (k) = (xS, [ ) ()T uge (KT, 365 (K) > a tentative input
30: ese

31 s (k) « (x3,uS,J9)

32: end if

33:  endif

34:  whilet <KT +(j+1)r do > wait-loop
35: m<«— m+1

36: end while

37:  transmit st1) (k)

38:  whilet <kT +(M+3)Tdo > wait-loop
39: m<— m+1

40: end while
41: if 5('~J>(k) =1then

42: R,y (K1) = A jX(ij) (K) + B jugi j) (K) + Wi jyiejy Ut jy (K)
43: elseA R

44 X1,y (K1) = Agi X jy (K) +Bgi Ui, ) (K) + Wi jy i, i) Uie, jy (K)
45 endif

460 K k41

47: end while

The first column of nodes, the nod@sj) with j = 1, calculate control values
cooperating between them per pairs, as explained in Segtlorcach node of that
column transmits:

S (k) = ([, () T %y (R T Tug iy (0T uge (K TTT, 365 (K))

to its three closest neighbors in the next column of nodelss&yuent nodes then
relay the arrived packets to the actuator node, choosingitles with minimum

Ji.j) (k).
A new tentative control value has to be calculated only inftilewing cases:

e No packet has arrived from the previous column,
i—1,j—1) iji-1) (i+1,j-1)
Vi 0=y =y o =0,

but the acknowledgment from the actuator has arriééd) (k— 1) = 1.
e At least one packet has arrived but all of them have the fafigwtructure:

s=(x,0,0),
that means that the state is available but there is no infimmabout the control.

Then u(i,j)(k) is calculated and the following packet is transmitted tortbgt col-
umn: s (k) = (%) ()7, Xge 5y (T, [ ) (0T, uge jy (T, 31,5y (K)) . The es-
timated stat&; j (k) is sent to take into account the cases in which the nodes that
receive the packet (they don't calculate control value bseahey have a packet
with u;; ;) (k) # 0) have some neighbor that is required to calculated a dorzthee,

but it can’t estimate the whole state by itself.
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4 Simulation example

We consider a system with decentralized models
The decentralized models in this example are

11 11 0 0
A(l,l)(l‘l) = [O 1] , A(z.l)(z,l) = {O 1] s B(1,1)(1,1) = {1} s B(2A1)(2.1) = {1} s

and interacting models given by:

00 00 0 0
Aryey = {0 O} . Apyey = {O O} . Bayey = {1} , Beyay = {1} )

where we are considering no noise agd= 1.

The network is as depicted in Fig. 3, with i.i.d. transmisspocesses and suc-
cess probabilitieﬁ’rob{y((i'jjj)f)l)(k) =1} = 0.4 andProb{5(:1)(1) = 1} = 1.

Fig. 6 shows the empirical distribution of the controlledea(k) obtained by

running the algorithm for 100 steps. It is possible to see A8% of the times, the
controller node is located in the last column of nodes, treeadosest to the actuator.

(1,1)
26%

Fig. 6 Controller location percentage.

Fig. 7 and 8 compare the plant state trajectory when the ithigoproposed is
used with the case in which we locate the controller at thesdot node. The results
suggest that the proposed algorithm yields a stable systkite,when the controller
is at the actuator, the system becomes unstable.
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Fig. 7 x(1) trajectory. Fig. 8 x(2) trajectory.

5 Conclusions

We have presented a cooperative MPC formulation for NCSgstio data dropouts.

We provide an algorithm that decides which nodes are in ehafrthe calculation of
the the control input, and which ones just relay the receinfmmation. This deci-
sion depends on transmission outcomes. Once the contnollr has been chosen,
it interacts with its neighbors over unreliable links salyia cooperative MPC.

Future works may include stability analysis of the propas®thitecture. Further-

more, it would be of interest to study a practical applicatdthe proposed method
for systems controlled over unreliable networks with tiveeying reliability, for
example, if there are moving obstacles blocking the nod#gs, [
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