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Abstract This work studies cooperative MPC for Networked Control Systems with
multiple wireless nodes. Communication between nodes is affected by random
packet dropouts. An algorithm is presented to decide at eachtime instant which
nodes will calculate the control input and which will only relay data. The nodes
chosen to calculate the control values solve a cooperative MPC by communicat-
ing with their neighbors. This algorithm makes the control architecture flexible by
adapting it to the possible changes in the network conditions.

1 Introduction

Networked Control Systems (NCSs) are systems in which practical communication
links are used to exchange system information and control signals between various
components of the system that may be physically distributed. Major advantages of
NCSs include low cost, reduced weight and power requirements, simple installa-
tion and maintenance, and high reliability. Nonetheless, closing a control loop on
a shared communication network introduces additional dynamics and constraints
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in the control problem. In addition to being bit-rate limited [13, 6], practical com-
munitacion channels are commonly affected by packet dropouts and time delays,
mainly due to transmission errors and waiting times to access the medium; see, e.g.,
[3]-[16] and the many references therein.

This chapter studies NCS in which the transmissions are affected by random
packet dropouts. The network is composed of a certain numberof nodes forming
a matrix strucure. These nodes follow an algorithm, that decides which node will
calculate the control input. This node will solve a cooperative MPC communicating
with its neighbors. Each node knows a part of the whole systemmodel and it shares
its information with a group of neighbor nodes, so they cooperate in order to ex-
change their information about the system. At each samplingtime, we have a differ-
ent group of nodes chosen to calculate the control signal. This group of nodes will be
chosen depending on the particular network outcomes for that sampling time. The
present work extends our recent conference contribution [7] to encompass NCSs
with parallel links and the use of cooperative MPC. The idea is motivated by the
fact that the link transmission outcomes may change at each sampling instant, so
one particular node is not always the best suited to perform the control calculation.

In the network under consideration in this work, the only node that receives the
state of the plant without any dropouts is the sensor node, which is located next
to the plant. The actuator node is directly connected to the plant input, therefore
this data is received without problems. The actuator node isalso the only node
that provides transmission acknowledgments. We assume as well that there is an
array of nodes between the sensor and the actuator nodes, as shown in Fig. 1. Each
node in a column sends the information to the three closest nodes in the following
column. We will assume that the nodes, except the sensor and the actuator nodes,
can communicate with some of its neighbors in the same column, and may thereby
cooperate and exchange information. The sensor and actuator nodes can’t calculate
control values; they can only transmit information. The communication between
nodes is limited to a maximum number of iterations, and subject to dropouts.

We are supposing that the model of the plant is divided into a certain number of
incomplete subsystems. Each node will know only a part of themodel of the system,
that is why it has to collaborate with its neighbors, which know the other parts of
the system. Therefore, each node will estimate just a part ofthe state.

The control policy to be used will be a cooperative MPC. Within this context,
we present a flexible NCS architecture where the role played by cooperative nodes
depends upon transmission outcomes and their acknowledgments. With the algo-
rithm proposed, transmission outcomes and their acknowledgments will determine,
at each time instant, whether the control input will be calculated at the actuator node,
or closer to the sensor node.

Therefore, the distinguishing feature of this approach is the dynamic architecture
of the controlled system, plus the fact that we are using a matrix of nodes which do
not know the whole information of the plant model. The algorithm seeks to find the
best group of nodes to calculate the control, depending on the network transmission
outcomes.
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The remainder of this chapter is organized as follows. Section 2 describes the
NCS topology of interest. In Section 3.1 we present the control law. Section 3.2
provides the state estimation. Section 3.3 presents the algorithm that chooses the
best node to calculate the control action. In Section 4 an example illustrating the
control algorithm is presented and in Section 5 conclusionsare drawn.

Notation: We writeN0 for {0,1,2, . . .}; R are the real numbers, whereasR≥0 ,

[0,∞). The trace of a matrixA is denoted bytr(A). If a matrixQ is positive definite,
then we writeQ > 0. We adopt the convention∑0

j=1 a j = 0, for all a0,a1 ∈ R. The
expectation of a random variableµ is denoted byE{µ}. A real random variableµ ,
which is zero-mean Gaussian with covarianceΓ is denoted byµ ∼N (0,Γ ).

Fig. 1 Control over a graph with dropouts and unreliable acknowledgments of actuator values.

2 Considerations about the System Setup Control Objectives and
the Network Constraints

We consider MIMO LTI plant models of the form

x(k+1) = Ax(k)+Bu(k)+d(k) (1)

wherex(0)∼N (0,P0), P0 > 0. In (1),u(k) ∈ R
nu is the plant input,x(k) ∈ R

nx is
the state, andd(k)∼N (0,D), D > 0 is driving noise.
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The model described in (1) represents the whole plant. But, as foreshadowed
in the introduction, individual nodes do not have knowlegdeof this whole model.
Thus, nodes have to interact with their neighbors to get all the information about the
plant. We are considering that, between a certain number of nodes, they have all the
information about the plant model. Fig. 1 shows a particularsituation in which the
whole information is shared by two nodes.

2.1 The composite model

For each node, thecomposite model (CM)[2], is the combination of the decentral-
ized model and all the interaction models. In order to make the problem formulation
simpler, we will consider the particular case shown in Fig. 1, in wich the cooperation
is done between two nodes in the same column, i.e., we have oneinteration model.
The decentralized state vector in node(i, j), x(i, j), is augmented with the state from
the neighbor node(i∗, j).

Therefore, the augmented statex(i, j) = [xT
(i, j)(i, j),x

T
(i, j)(i∗, j)]

T represents the CM
states for the node(i, j), (i∗, j) being the neighbor node interacting, pairwise, with
(i, j), which is in the same column andi∗ ∈ {i−1, i+1}. In this augmented state,
x(i, j)(i∗, j) is the influence of the node(i∗, j) on the node(i, j), andx(i, j)(i, j) is the
part of the state that take into account just the part of the model that the node(i, j)
knows, so it is a decentralized state. In this case, the CM forthe node(i, j) is written
as

x(i, j)(k+1) = A(i, j)x(i, j)(k)+B(i, j)u(i, j)(k)+W(i, j)(i∗, j)u(i∗, j)(k)

where

A(i, j) =

[

A(i, j)(i, j)
A(i, j)(i∗, j)

]

, B(i, j) =

[

B(i, j)(i, j)
0

]

, W(i, j)(i∗, j) =

[

0
B(i, j)(i∗, j)

]

.

Since

A(i, j)(i−1, j) = A(i, j)(i+1, j) and B(i, j)(i−1, j) = B(i, j)(i+1, j),

A(i, j), B(i, j) andW(i, j)(i∗, j) do not depend on the value ofi∗. Therefore, two neighbor
cooperating nodes have available the entire information about the system model.
Therefore, the node(i, j) has one part of the model, and the neighbor nodes(i−1, j)
and(i+1, j) have the other part of the model.
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2.2 Control problem

The augmented control signal to calculate is denoted as

u(i∗, j)
(i, j) (k) = [u(i, j)(k)

T ,u(i∗, j)(k)
T ]T , k ∈ N0, (2)

and will be calculated with MPC techniques employing pair-wise cooperation
among the neighboring nodes. Thus, the control problem solved for this kind of
systems is

u(i∗, j)
(i, j) (k) =Cooperative MPC

(

x(i, j)(k),x(i∗, j)(k)
)

, k ∈ N0, (3)

wherex(i, j)(k) andx(i∗, j)(k) represent the CM states for the nodes(i, j) and(i∗, j),
respectively.

2.3 Network issues

Sensor and actuator nodes are connected via a wireless network, characterised via a
graph havingM×M +2 nodes, see Fig. 1. Control values cannot be calculated by
the sensor nor the actuator nodes, they are just used to measure the plant state and
apply the control signal, respectively. Therefore, according to Fig. 1, the network has
M×M nodes that could act as the controller. Transmissions are done in a sequential
manner as shown in Fig. 2. More precisely, the packets(i, j)(k) is transmitted from
node(i, j) to its closest neighbors1 at timeskT + jτ, whereT is the sampling period
of (1) andτ≪ T/(M+1) refers to the times between transmissions of packets. The
plant inputu(k) is applied at timekT +(M+1)τ. We, thus assume that in-network
processing is much faster than the plant dynamics (1) and, asin, e.g., [4], neglect
delays introduced by the network.

A distinguishing characteristic of the situation at hand isthat (due to channel
fading) the network introduces packet dropouts. To study the situation, we adopt an
analog erasure channel model and introduce the binary success random processes

γ(i, j−1)
(i, j) (k) ∈ {0,1}, k ∈ N0, i ∈ {0,1,2, . . . ,M+1}, j ∈ {0,1,2, . . . ,M+1}

where γ(i, j−1)
(i, j) (k) = 1 indicates that transmission of the packets(i, j−1)(k) from

node(i, j− 1) to node(i, j) at time kT + ( j + 1)τ, is successful, i.e., error-free;

γ(i, j−1)
(i, j) (k) = 0 refers to a packet-dropout. Throughout this work we assumethat the

sensor node(0,0) has direct access to plant output measurements. For notational
convenience, we writeγ(0,0)(k) = 1, for all k ∈ N0.

1 These are(i+1, j+1), (i, j+1) and(i−1, j+1).
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Fig. 2 Transmission Schedule;t ∈ R≥0 is actual time.

To save energy, in our formulation the wireless nodes(i, j), where

i, j ∈ {0,1,2, . . . ,M},

do not provide acknowledgments of receipt of the packets. However, the actuator
node,(M + 1,M + 1), will in general have less stringent energy constraints, soat
time kT + (M + 1)τ the control signal is received, atkT + (M + 2)τ this control
value is applied and at timekT +(M+3)τ, the actuator broadcasts the control value
applied, namelyu(k) = [uA

(i, j)(k)
T ,uA

(i∗, j)(k)
T ]T , back to the wireless nodes(i, j),

see Fig. 1. This acknowledgment-like signal is unreliable and affected by dropouts
with associated success processes

δ (i, j)(k) ∈ {0,1}, k ∈ N0, i, j ∈ {0,1,2, . . . ,M}.

More precisely, ifu(k) is successfully received at node(i, j), then we setδ (i, j)(k) =
1; see also [11] and [18] for studies on the importance of acknowledgments in closed
loop control. We assume that the actuator node has perfect knowledge of plant in-
puts, and thus, writeδ (M+1,M+1)(k) = 1,∀k ∈ N0.

Due to packet dropouts, plant state measurements are not always available at
the actuator node. On the other hand, the sensor node will, ingeneral, not have
perfect information of previous plant inputs. This makes the implementation of (3)
via estimated state feedback a challenging task. The main purpose of the present
work is to decide which nodes of the network (with the exception of the sensor
and actuator nodes) should use their local state estimates to implement the control
law (3), that is, which node will play the role of the controller and which ones
only relay the received information. We foresee that our approach will lead to a
dynamic assignment of the role played by the individual network nodes. Which tasks
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are carried out by each node at each time instant, will dependupon transmission

outcomes, i. e., onγ(i, j−1)
(i, j) (k) andδ (i, j)(k).

2.4 Dynamic controller placement

The packets transmitted by each node(i, j) have three fields, namely, state measure-
ments, tentative plant inputs (if available) and the value of the objective function
under consideration:

s(i, j)(k) =
(

x(k),u(α∗,β )
(α,β ) (k),J(k)

)

,α ∈ {1, . . . , i},α∗ ∈ {α−1,α +1},β ∈ {1, . . . , j}. (4)

The plant statesx(k) includes the two components corresponding to the cooperation
nodes, that isx(k) = [x(i, j)(k)T ,x(i∗, j)(k)T ], with i∗ ∈ {i−1, i+1}.

The control signalu(k)(α
∗,β )

(α ,β ) in (4) with the structure shown in (2), is the plant

input which is applied at the plant provided the packets(i, j)(k) is delivered at the
actuator node. Ifs(i, j)(k) is lost, then following Algorithm 2, which will be described
in Section 3.3, the plant input will be provided by one of the nodes in subsequent
columns, see Fig. 1, which thereby takes on the controller role at timek. For further
reference, we will refer to the node which calculates the plant input at timek as

c(k) ∈ {1,2, . . . ,M}2 .

Fig. 3 Graph with 3×3+2 nodes.
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2.5 Example

Consider the network in Fig. 3. Some nodes in the network onlyhave one part of
the plant model and the other nodes will have the other part. Therefore, nodes(1,1),
(3,1), (1,2), (3,2), (1,3) and(3,3) will have the same information about the plant,
that is

A(1,1) =A(3,1) =A(1,2) =A(3,2) =A(1,3) =A(3,3), B(1,1) =B(3,1) =B(1,2) =B(3,2) =B(1,3) =B(3,3)

and
W(1,1)(2,1) = W(3,1)(2,1) = W(1,2)(2,2) = W(3,2)(2,2) = W(1,3)(2,3) = W(3,3)(2,3).

On the other hand, the rest of the nodes will have the other part of the information
about the plant:

A(2,1) = A(2,2) = A(2,3), B(2,1) = B(2,2) = B(2,3)

and
W(2,1)(1,1) = W(2,1)(3,1) = W(2,2)(1,2) = W(2,2)(3,2) = W(2,3)(1,3) = W(2,3)(3,3).

Moreover, the cooperating couples are:(1,1)←→ (2,1), (1,2)←→ (2,2), (1,3)←→

(2,3), (3,1)←→ (2,1), (3,2)←→ (2,2), and(3,3)←→ (2,3).
So, it is easy to see that:

A(1,1)(1,1) = A(1,2)(1,2) = A(1,3)(1,3) = A(3,1)(3,1) = A(3,2)(3,2) = A(3,3)(3,3),

B(1,1)(1,1) = B(1,2)(1,2) = B(1,3)(1,3) = B(3,1)(3,1) = B(3,2)(3,2) = B(3,3)(3,3),

A(2,1)(2,1) = A(2,2)(2,2) = A(2,3)(2,3), B(2,1)(2,1) = B(2,2)(2,2) = B(2,3)(2,3),

A(1,1)(2,1) = A(3,1)(2,1) = A(1,2)(2,2) = A(3,2)(2,2) = A(1,3)(2,3) = A(3,3)(2,3),

B(1,1)(2,1) = B(3,1)(2,1) = B(1,2)(2,2) = B(3,2)(2,2) = B(1,3)(2,3) = B(3,3)(2,3),

A(2,1)(1,1) = A(2,1)(3,1) = A(2,2)(1,2) = A(2,2)(3,2) = A(2,3)(1,3) = A(2,3)(3,3)

and
B(2,1)(1,1) = B(2,1)(3,1) = B(2,2)(1,2) = B(2,2)(3,2) = B(2,3)(1,3) = B(2,3)(3,3).

For example, if

A(1,1) =









[

1 1
0 1

] [

0 0
0 0

]

[

0 0
0 0

] [

0.1 0
0 0.2

]









, A(2,1) =









[

1 1
0 1

] [

0 0
0 0

]

[

0 0
0 0

] [

0 0
0 0.1

]









,

B(1,1) =









[

0
1

]

[

0
0

]









, B(2,1) =









[

0
1

]

[

0
0

]









, W(1,1)(2,1) =









[

0
0

]

[

0
0.4

]









, W(2,1)(1,1) =









[

0
0

]

[

0
1

]









.

then, the decentralized models are

A(1,1)(1,1) =

[

1 1
0 1

]

, A(2,1)(2,1) =

[

1 1
0 1

]

, B(1,1)(1,1) =

[

0
1

]

, B(2,1)(2,1) =

[

0
1

]

,
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whereas the interacting models are given by:

A(1,1)(2,1) =

[

0.1 0
0 0.2

]

, A(2,1)(1,1) =

[

0 0
0 0.1

]

, B(1,1)(2,1) =

[

0
0.4

]

, B(2,1)(1,1) =

[

0
1

]

.

3 Description of the Approach

In this section we will describe the control calculation, including the algorithms that
gives the nodes to cooperate in order to calculate the control action.

3.1 Control implementation

To implement the control law (3) over the network using packets of the form (4), we
will use communication driven cooperative MPC.

In this work we are assuming that pairs of neighbor nodes in the same column
can exchange information. In Algorithm 1 we show the cooperation between a pair
of nodes. Then, with the CM in (2) and the Algorithm 1, it is possible to calculate a
Feasible Cooperation-Based MPC (FC-MPC), as explained in [2].

The calculation of the suboptimal control input,u∗p
(i, j), for each iterationp, is per-

formed by solving the FC-MPC problem. So, we will choose the objective function
as a linear combination of the individual nodes’ objectives, i.e.,

J(i, j) = J(i∗, j) = ϖ(i, j)V(i j)+ϖ(i∗, j)V(i∗, j), ϖ(i, j),ϖ(i∗, j) > 0,ϖ(i, j)+ϖ(i∗, j) = 1, i∗ ∈ {i−1, i+1}

The local objective for each cooperative node depends on thevalue ofγ(i−1, j−1)
(i, j) (k),

γ(i, j−1)
(i, j) (k) andγ(i+1, j−1)

(i, j) (k). If at least one of them is equal to one, then we will have
the following cost function:

J(i, j) =V(i, j)(x
′ p
(i, j)(k),u

′ p
(i, j)(k);x(i, j)(k)) =

∞

∑
t=k

∥

∥

∥
xp
(i, j)(t|k)

∥

∥

∥

2

Q
+
∥

∥

∥
up
(i, j)(t|k)

∥

∥

∥

2

R
,

wherex′p
(i, j)(k)= [xp

(i, j)(k+1|k)T ,xp
(i, j)(k+2|k)T , ...]T , u′p

(i, j)(k)= [up
(i, j)(k|k)

T ,up
(i, j)(k+

1|k)T , ...]T , andQ > 0 andR > 0 are weighting matrices. To calculate these predic-
tions the CM for the node(i, j) has been used, see (2).

The notationp indicates the iteration number. During each MPC optimization,
the state and input trajectories (x′(i∗, j)(k), u′(i∗, j)(k)) of the interacting node MPC

are not updated, so they remain at (x′p−1
(i∗, j)(k), u′p−1

(i∗, j)(k)).

On the other hand, ifγ(i−1, j−1)
(i, j) (k) = γ(i, j−1)

(i, j) (k) = γ(i+1, j−1)
(i, j) (k) = 0, no informa-

tion about the state has arrived at node(i, j), so an estimation is used instead. The
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cost function will be an expected value ([17]):

J(i, j) = E{
∞

∑
t=k

xp
(i, j)(t|k)

T Qxp
(i, j)(t|k)+up

(i, j)(t|k)
T Rup

(i, j)(t|k)}

=
∞

∑
t=k

x̂p
(i, j)(t|k)

T Qx̂p
(i, j)(t|k)+ tr

(

QP(i, j)(k)
)

+up
(i, j)(t|k)

T Rup
(i, j)(t|k),

whereP(i, j)(k) approximates the covariance ofx(i, j)(k) and is calculated as follows:

P(i, j)(k+1) = A(i, j)P(i, j)(k)A
T
(i, j)−Γ (i, j)(k)P(i, j)(k)Γ (i, j)(k)+D,

where
Γ (i, j)(k), ∏

α ∈ {0,1, . . . , i−1}
β ∈ {0,1, . . . , i−1}

γ(ig
∗, jg∗)

(α ,β ) (k)

is equal to 1 if and only ifx(i, j)(k) is available at node(i, j) at timekT +( j−1)τ.
In the above expression,(ig∗, jg∗) is one of the preceding nodes of (i,j) and is the
one that provides the best (the smallest or unique) value ofJ(i, j)(k).

Remark.The objective functionJ(i, j) is an approximation of:

J(i, j) ≈ E{V(i, j)(x̂
′ p
(i, j)(k),u

′ p
(i, j)(k); x̂(i, j)(k))},

sinceP(i, j)(k) is not the covariance ofx(i, j)(k), but just an approximate value. There-
fore the termtr

(

QP(i, j)(k)
)

is not exact.

Fig. 4 Cooperative nodes for node(i, j). Fig. 5 Packets received by node(i, j).

In the Algorithm 1, the state sequence generated by the inputsequenceu(i, j)

and initial statex(i, j) has been represented byx
(u(i, j);x(i, j))
(i, j) . Also, the notation̂x is

representing[x̂T
(i, j), x̂

T
(i∗, j)]

T .
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Algorithm 1 Cooperative MPC algorithm
1: Given (ū0

(ι , j),x(ι , j)(k)), Q > 0, R > 0, ι ∈ {i, i∗}, i∗ ∈ {i− 1, i+ 1}, pmax(k) ≥ 0, ε > 0, p← 1,
e(ι , j)←Φ andΦ >> 1.

2: while e(ι , j) > ε for someι ∈ {i, i∗} andp≤ pmax(k) do ∀ι ∈ {i, i∗}
3: u∗p

(ι , j) ∈ argmin
(ι , j)

FC−MPC(ι , j)

4: up
(ι , j) = ϖ(ι , j)u

∗p
(ι , j)+(1−ϖ(ι , j))u

p−1
(ι , j)

5: e(ι , j) =
∥

∥

∥
up
(ι , j)−up−1

(ι , j)

∥

∥

∥

6: for eachι ∈ {i, i∗} do
7: The node(ι , j) transmitsup

(ι , j) to its neighbor

8: end for
9: if γ(i−1, j−1)

(i, j) (k) = 1∨γ(i, j−1)
(i, j) (k) = 1∨γ(i+1, j−1)

(i, j) (k) = 1 then

10: xp
(ι , j)← x

(ūP
(i, j),ū

p
(i∗ , j);x(ι, j))

(ι , j) , ∀ι ∈ {i, i∗}
11: else

12: x̂p
(ι , j)← x̂

(ūP
(i, j),ū

p
(i∗ , j);x̂(ι, j))

(ι , j) , ∀ι ∈ {i, i∗}
13: end if
14: p← p+1
15: end while

Due to the communication constraints, the maximum number ofiterationspmax

is limited. It is also possible to loose information during the cooperation. For these
reasons only a suboptimal control inputu∗p

(i, j) will be available.

Notice thati∗ ∈ {i− 1, i+ 1}, that means that the node(i, j) can communicate
with the nodes(i− 1, j) and(i+ 1, j), see Fig 4. Therefore, node(i, j) will solve
two cooperative MPC problems and will have two control values. The control value
that the node(i, j) transmits will be the one that provides the lowest cost.

3.2 State estimation

While only the nodec(k) will provide the plant input at instantk, in the present for-
mulation all nodes compute local state estimates,x̂(i, j)(k), by using the data received
from one of the preceding nodes,(ig∗, jg∗). This serves as safeguard for instances
when the loop is broken due to dropouts.

Since the nodes don’t have full information about the plant,they are only able to
calculate a part of the state. That means thatx̂(i, j)(k) is not an estimate of the global
state of the plant.

In the sequel, we will focus on situations where acknowledgments of plant inputs

are “quite reliable”. Thus, the state estimates are simply calculated as

x̂(i, j)(k) = A(i, j)x̂(i, j)(k−1)+B(i, j)u(i, j)(k−1)+W(i, j)(i∗, j)u(i∗, j)(k−1)+

K(i, j)(k)
(

x(i, j)(k)− (A(i, j)x̂(i, j)(k−1)+B(i, j)u(i, j)(k−1)+W(i, j)(i∗, j)u(i∗, j)(k−1))
)

,
(5)
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whereK(i, j)(k) = Γ (i, j)(k)I.
In (5), u(i, j)(k−1) andu(i∗, j)(k−1) are local plant input estimates. In particular,

if δ (i, j)(k− 1) = 1, thenu(i, j)(k− 1) = uA(k− 1) and u(i∗, j)(k− 1) = uA(k− 1),
whereuA(k−1) is the applied control signal in time instant(k−1) by the actuator.
On the other hand, at instances whereδ (i, j)(k−1) = 0, node(i, j) uses the tentative
plant input value transmitted in the second field of the previous packets(i, j)(k−
1) (if non-empty), or otherwise setsu(i, j)(k−1) andu(i∗, j)(k−1) as per (3), see
Algorithm 2.

Intuitively, good control performance will be achieved if the state estimation is
accurate. Clearly, nodes which are in columns closer to the sensor will have access
to more output measurements, see Fig. 1. On the other hand, one can expect that
nodes which are physically located in columns closer to the actuator node will on
average receive more plant input acknowledgments, thus, have better knowledge of
plant inputs.
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3.3 Algorithm for dynamic controller placement

Algorithm 2 Dynamic Controller Placement

1: k← 0, x̂(i, j)(0)← 0, P(i, j)
0 ← P0 , m← 0, i∗ = i−1 or i∗ = i+1, the cooperative nodes for(i, j).

2: while t ≥ 0 do ⊲ t ∈ R≥0 is actual time
3: while t ≤ kT +mτ do ⊲ wait-loop
4: m← m+1
5: end while
6: P(i, j)(k+1)← A(i, j)P(i, j)(k)A

T
(i, j)+D

7: if γ(i−1, j−1)
(i, j) (k) = 0∧γ(i, j−1)

(i, j) (k) = 0∧γ(i+1, j−1)
(i, j) (k) = 0 then

8: if δ (i, j)(k−1) = 1 then
9: u(i, j)(k),u(i∗ , j)(k),J(i, j)(k)← Algorithm 1

10: s(i, j)(k)←
(

[x(i, j)(k)
T ,x(i∗ , j)(k)

T ]T , [u(i, j)(k)
T ,u(i∗ , j)(k)

T ]T ,J(i, j)(k)
)

⊲ a tentative input
11: else
12: s(i, j)(k)←

(

/0, /0, /0
)

13: end if
14: end if
15: if γ(i−1, j−1)

(i, j) (k) = 1∨γ(i, j−1)
(i, j) (k) = 1∨γ(i+1, j−1)

(i, j) (k) = 1 then

16: S← s(i−1, j−1)(k) and/ors(i, j−1)(k) and/ors(i+1, j−1)(k) ⊲ S is a set containing all the
packets received. If all the packets arrive,S will contain s(i−1, j−1)(k), s(i, j−1)(k) ands(i+1, j−1)(k)

17: (xS,uS,JS)← argmin
l

Jl ∈ S

18: if xS 6= /0 then ⊲ x(i, j)(k) is available

19: x̂(i, j)(k)← xS
(i, j)

20: P(i, j)(k+1)← D
21: end if
22: if uS 6= /0 then
23: u(i, j)(k) = uS

(i, j)

24: u(i∗, j)(k) = uS
(i∗ , j)

Algorithm 2 is run at every node(i, j). Since we assume that acknowledg-
ments from the actuator node are, in general, available, buttransmissions of packets
s(i, j)(k) are less reliable, nodes in columns closer to the sensor nodes can be ex-
pected to have better state estimates than nodes located in columns further down the
network. Therefore, preference is given to forward incoming tentative plant input
values.

The sensor node(i, j) = (0,0) uses as input:s(0,0)(k) = (x(k), /0, /0), γ(0,0)(k) =
1, where /0 means that the field is empty.

This node just passes the information to all the nodes in the first column. The
node(0,0), as the node(M+1,M+1), can’t calculate control values.

The rest of the nodes in the network can only send informationto their three clos-
est neighbors in the following column, except for the lower and uppermost nodes
who can only send to two neighbors, see Fig. 2. Therefore, thegeneric node(i, j)
can receive zero, one, two or three (if not border node) packets. In the case that
it receives more than one packet (as shown in Fig. 5), it chooses the one with the
minimun value of the cost functionJ.
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25: else
26: u(i, j)(k),u(i∗ , j)(k),J(i, j)(k)← Algorithm 1
27: end if
28: if uS = /0∧δ (i, j)(k−1) = 1 then
29: s(i, j)(k)←

(

xS, [u(i, j)(k)
T ,u(i∗, j)(k)

T ]T ,J(i, j)(k)
)

⊲ a tentative input
30: else
31: s(i, j)(k)← (xS,uS,JS)
32: end if
33: end if
34: while t < kT +( j+1)τ do ⊲ wait-loop
35: m← m+1
36: end while
37: transmit s(i, j)(k)
38: while t ≤ kT +(M+3)τ do ⊲ wait-loop
39: m← m+1
40: end while
41: if δ (i, j)(k) = 1 then
42: x̂(i, j)(k+1)← A(i, j)x̂(i, j)(k)+B(i, j)u

A
(i, j)(k)+W(i, j)(i∗, j)u

A
(i∗ , j)(k)

43: else
44: x̂(i, j)(k+1)← A(i, j)x̂(i, j)(k)+B(i, j)u(i, j)(k)+W(i, j)(i∗, j)u(i∗ , j)(k)
45: end if
46: k← k+1
47: end while

The first column of nodes, the nodes(i, j) with j = 1, calculate control values
cooperating between them per pairs, as explained in Section3.1. Each node of that
column transmits:

s(i, j)(k) =
(

[x(i, j)(k)
T ,x(i∗, j)(k)

T ]T , [u(i, j)(k)
T ,u(i∗, j)(k)

T ]T ,J(i, j)(k)
)

to its three closest neighbors in the next column of nodes. Subsequent nodes then
relay the arrived packets to the actuator node, choosing theones with minimum
J(i, j)(k).

A new tentative control value has to be calculated only in thefollowing cases:

• No packet has arrived from the previous column,

γ(i−1, j−1)
(i, j) (k) = γ(i, j−1)

(i, j) (k) = γ(i+1, j−1)
(i, j) (k) = 0,

but the acknowledgment from the actuator has arrived,δ (i, j)(k−1) = 1.
• At least one packet has arrived but all of them have the following structure:

s = (x, /0, /0),

that means that the state is available but there is no information about the control.

Thenu(i, j)(k) is calculated and the following packet is transmitted to thenext col-

umn:s(i, j)(k) =
(

[x̂(i, j)(k)T , x̂(i∗, j)(k)T ]T , [u(i, j)(k)
T ,u(i∗, j)(k)

T ]T ,J(i, j)(k)
)

. The es-
timated statêx(i, j)(k) is sent to take into account the cases in which the nodes that
receive the packet (they don’t calculate control value because they have a packet
with u(i, j)(k) 6= 0) have some neighbor that is required to calculated a control value,
but it can’t estimate the whole state by itself.



Cooperative Dynamic MPC for NCSs 15

4 Simulation example

We consider a system with decentralized models
The decentralized models in this example are

A(1,1)(1,1) =

[

1 1
0 1

]

, A(2,1)(2,1) =

[

1 1
0 1

]

, B(1,1)(1,1) =

[

0
1

]

, B(2,1)(2,1) =

[

0
1

]

,

and interacting models given by:

A(1,1)(2,1) =

[

0 0
0 0

]

, A(2,1)(1,1) =

[

0 0
0 0

]

, B(1,1)(2,1) =

[

0
1

]

, B(2,1)(1,1) =

[

0
1

]

,

where we are considering no noise and ¯x0 = 1.
The network is as depicted in Fig. 3, with i.i.d. transmission processes and suc-

cess probabilitiesProb{γ(i, j−1)
(i, j)) (k) = 1}= 0.4 andProb{δ (i, j)(1) = 1}= 1.

Fig. 6 shows the empirical distribution of the controller node c(k) obtained by
running the algorithm for 100 steps. It is possible to see how43% of the times, the
controller node is located in the last column of nodes, the one closest to the actuator.

Fig. 6 Controller location percentage.

Fig. 7 and 8 compare the plant state trajectory when the algorithm proposed is
used with the case in which we locate the controller at the actuator node. The results
suggest that the proposed algorithm yields a stable system,while when the controller
is at the actuator, the system becomes unstable.
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Fig. 7 x(1) trajectory.
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Fig. 8 x(2) trajectory.

5 Conclusions

We have presented a cooperative MPC formulation for NCSs subject to data dropouts.
We provide an algorithm that decides which nodes are in charge of the calculation of
the the control input, and which ones just relay the receivedinformation. This deci-
sion depends on transmission outcomes. Once the controllernode has been chosen,
it interacts with its neighbors over unreliable links solving a cooperative MPC.

Future works may include stability analysis of the proposedarchitecture. Further-
more, it would be of interest to study a practical application of the proposed method
for systems controlled over unreliable networks with time-varying reliability, for
example, if there are moving obstacles blocking the nodes, [5].
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