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Abstract— This paper is concerned with linear state estima-
tion in sensor networks with an event-triggered exchange of
information. It is assumed that each sensor node transmits its
local estimate to a fusion center whenever an appropriately
chosen error norm exceeds a threshold. The fusion rule is
a modified version of the Covariance Intersection Algorithm.
We investigate how to incorporate the event information of
not having transmitted at the fusion center such that the
filter remains unbiased and consistent with regard to its error
covariance. An upper bound on the error covariance matrix is
derived by exploiting the structure of the posterior probability
distribution. This enables us to replace the event information
by the virtual transmission of consistent local estimates. Based
on the consistency-preserving property of the proposed scheme,
we show stability of the event-triggered state estimator in terms
of a bounded mean square error.

I. INTRODUCTION

We consider the problem of state estimation of a linear

system in which a fusion center gathers information from

multiple sensors. Each sensor node is assumed to be ca-

pable of preprocessing measurement information and has

the autonomy of deciding when it is worth to send the

preprocessed data to the fusion center. In this paper, we

take two complementary measures in order to cope with

the abundance of information emerging in such large-scale

sensor networks.

First, data transmission is carried out by an event-triggered

scheme to reduce the overall traffic over the communication

network. Event-triggered mechanisms turn out to be optimal

when there needs to be achieved a trade-off between re-

source consumption and real-time requirements, such as the

minimization of the mean squared error with communication

constraints [1]–[3]. Furthermore, it is well known that event-

triggered sampling for control and estimation commonly out-

performs time-triggered sampling considerably [4]. Second,

instead of implementing a Kalman filter at the fusion center,

we use a modified version of the Covariance Intersection

Algorithm (CI). CI has been introduced in [5] and is a

linear fusion technique that is capable of yielding consistent

estimates without relying on the cross-correlations between

data sources. Since bookkeeping of correlations between all

transmitted sensor data may exceed the numerical capabili-

ties of the fusion center when the number of sensors is large,

CI turns out to be a favorable alternative for state estimation

in sensor networks despite of its conservatism.
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The main question addressed in this paper is how to incor-

porate event information at the fusion center while preserving

the structure of the filtering mechanism. According to the

triggering rule implemented at each sensor node, the fusion

center may include the information that sensors have not

provided data into the calculation of their state estimate.

Such an idea by itself is not novel and has been investigated

by several authors [6]–[13]. In the following, we review

the major results in the literature on event-triggered state

estimation taking event information into account.

The work in [6] constitutes one of the earlier works

on event-triggered state estimation. It proposes a modified

Kalman filtering algorithm assuming measurements are sam-

pled by the send-on-delta method. If no measurement is

received, then the filter uses the previously sampled measure-

ment for estimation with an increased measurement noise.

The new measurement noise is modelled by an additive

uniform distribution depending on the threshold of the send-

on-delta sampler. In [7] and [8], the authors approximate

the prior distribution by a Gaussian distribution which en-

ables an explicit calculation of conditional means and error

covariances incorporating the event information. Though

being widely used in practice, the Gaussianity assumption

prohibits to state general properties of the event-triggered

state estimator, such as consistency, which also complicates

the analysis of its asymptotic behavior. More sophisticated

approximations of the posterior distribution incorporating the

event information have been conducted in [9] by using a

Gaussian sum filter and in [14] by implementing a particle

filter. For calculating the exact posterior probability distribu-

tion, the work in [12] has shown that the incorporation of

event information is closely related to a virtual measurement

channel. The stochastic model of the virtual measurement

is given by a modified version of the original measurement

equation disturbed by additive white noise whose distribution

is uniform and has a support defined by the triggering rule.

Another method divides the type of uncertainty arising in the

filtering procedure into stochastic noise and membership un-

certainty [10], [11]. Event information can then be classified

as the latter. The authors pursue a worst-case analysis for the

incorporation of event information into the state estimator.

Though the approach is capable of addressing a variety of fil-

tering problems beyond event-triggered state estimation [11],

it disregards potential structure arising from the statistical

properties of the event-triggered scheme due to the nature

of membership uncertainty. Hence, the estimates obtained

from the worst-case analysis might be overly conservative in

certain cases.

The main contribution of this paper is to incorporate
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event information in the filtering procedure while preserving

consistency of the predicted statistics. An estimate is said to

be consistent if the predicted error covariance matrix is an

upper bound on the true error covariance matrix, see [5], [15].

This basic property ensures that estimates do not become

too optimistic over time which might eventually lead to a

divergent behavior of the filter [15]. The novel feature of

our work is to restrict our attention to an important class

of triggering rules and exploit several statistical properties

to obtain consistent estimates that take the event information

into account. The triggering rule is assumed to be a threshold

rule on the weighted 2-norm of the estimation discrepancy

between the current estimate at the sensor and the predicted

estimate at the fusion center. Furthermore, each sensor node

is only concerned with computing the state estimate restricted

to its observable part of the space space. We transform the

event information into a consistent pair by calculating an

upper bound on the error covariance matrix. By only exploit-

ing symmetry and unimodality properties of the posterior

probability distribution, we are able to reduce the bound

on the variance arising from the uncertainty of the event-

trigger by a factor of 3 in the case of scalar local estimates

compared to a set membership analysis [11]. For higher-order

systems we obtain a similar result with a decreasing factor

for the covariance improvement. Another contribution is the

modification of the CI for fusing estimates from subspaces

of the state. Based on collective observability of the sensor

system, it is shown that the modified CI is well-defined. Fur-

thermore the consistency-preserving property remains valid

in the modified version, which implies that we are able to

guarantee that the fused estimate is consistent based on our

derived covariance bounds. Finally, this attribute of the event-

triggered state estimator enables us to show stability in the

sense of a bounded mean squared error assuming collective

observability of the dynamical system with regard to the

sensor network.

This paper is organized as follows. Section II introduces

the system model and states the assumptions on the pre-

processing at the sensor node, the triggering rule and the

data fusion technique. A consistency preserving scheme that

incorporates event information is derived in Section III,

whereas Section IV is concerned with the stability analysis

of the event-triggered state estimator. The efficiency of our

approach is illustrated by a numerical example in Section V.

II. SYSTEM MODEL

The structure of the multi-sensor system for event-

triggered state estimation is illustrated in Fig. 1. In the

following, we describe the functional blocks and the trans-

mission scheme in more detail.

A. Multiple sensor system

We consider a set of M sensors, indexed by j, 1 ≤ j ≤ M ,

which take measurements yjk from a common linear process

evolving as

xk+1 = Axk + wk (1)

S1

Sj

SM

...

...

fusion
center

linear
process x̂k

(x̂j

k|k, P
j

k|k)

y1

k

y
j

k

yM
k

Fig. 1. Multi-sensor system for networked state estimation. Sensors Sj ,

1 ≤ j ≤ M , sporadically transmit data (x̂j

k|k
, P

j

k|k
) to the fusion center

which computes the fused estimate x̂k .

with

xk ∈ R
n, A ∈ R

n×n

x0 ∼ N (0, R0), R0 ∈ R
n×n

wk ∼ N (0, Rw), Rw ∈ R
n×n

where R0 and Rw are assumed to be positive definite. The

measurements yjk are given by

yjk = Cjxk + vjk

with

yjk ∈ R
mj

, Cj ∈ R
mj×n (2)

vjk ∼ N (0, Rj
v), Rj

v ∈ R
mj×mj

where Rj
v is assumed to be positive definite. We assume

that all primitive random variables, given by the initial state

x0, the process noise wk and the measurement noise vjk, are

mutually independent.

We use the following terminology from [16] for observ-

ability in sensor networks.

Definition 1 (Collective observability): The system given

by (1) and (2) is said to be collectively observable, when

(A,C) is observable with

C =







C1

...

CM






.

B. Local filtering

In this section, we define the local filtering structure in

each sensor node. It is not presumed that the state can be

fully recovered at one sensor node by its local measurements,

i.e., (A,Cj) is not observable in general. Similar as in [12],

we aim at a representation in which a sensor node focuses on

the estimation of its observable subspace of the state xk. For

time-invariant linear systems, it is well known (see e.g. [17])

that there exists a non-singular state transformation T j that
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separates the state space into an observable and unobservable

subspace, such that

(T j)−1AT j =

[

Aj
1 0

Aj
21 Aj

2

]

, CjT j =
[

Cj
1 0

]

T j =
[

T j
1 T j

2

]

, (T j)−1 =

[

Dj
1

Dj
2

]

with (Aj
1, C

j
1) being observable. Then, the local filter at

sensor i estimates the state xj
k = Dj

1xk ∈ R
nj
o of the

subsystem evolving by

xj
k+1

= Aj
1x

j
k +Dj

1wk

yjk = Cj
1x

j
k+1

+ vjk.
(3)

The minimum mean square error (MMSE) estimator x̂j

k|k =

E[xj
k|Y

j
k ] of xj

k is given by the Kalman filter

x̂j

k|k = x̂j

k|k−1
+Kj

k(y
j
k − Cj

1 x̂
j

k|k−1
) (4a)

P j

k|k = (I
n
j
o
−Kj

kC
j
1)P

j

k|k−1
(4b)

x̂j

k+1|k = Aj
1x̂

j

k|k (4c)

P j

k+1|k = Aj
1P

j

k|k(A
j
1)

⊤ +Dj
1Rw(D

j
1)

⊤ (4d)

where Kj
k = P j

k|k−1
(Cj

k)
⊤(Cj

1P
j

k|k−1
(Cj

1)
⊤ + Rj

v)
−1 and

x̂j

0|−1
= 0, P j

0|−1
= Dj

1R0(D
j
1)

⊤. In denotes the identity

matrix in R
n.

C. Event-triggering rule

In the following, we describe the triggering rule of sen-

sors j, 1 ≤ j ≤ M . Let δjk ∈ {0, 1} denote the triggering

variable being defined as

δjk =

{

1 transmit (x̂j

k|k, P
j

k|k) to fusion center

0 no transmission.

It should be noted that we disregard packet collisions and

transmission delays in this paper. Let τ jk and σj
k denote the

times of the most recent transmission of sensor j before time

k and up to and including time k, respectively, i.e.,

τ jk = max{ℓ | δjℓ = 1, 0 ≤ ℓ < k}
σj
k = max{ℓ | δjℓ = 1, 0 ≤ ℓ ≤ k}.

If there has not been a transmission yet at sensor j, we define

τ jk = σj
k = −1. Both definitions facilitate the subsequent

description of the event-triggered system. We will commonly

refer to τ jk when considering the event rule, whereas σj
k is

used to describe the event information at the fusion center.

In case no transmission occurs at time k, the fusion center

predicts the estimate x̂j

k|k by

x̃j

k|k = E[x̂j

k|k|x̂
j

τ
j

k
|τj

k

] = (Aj
1)

k−τ
j

k x̂j

τ
j

k
|τj

k

. (5)

with x̂j

−1|−1
= 0. It must be noted that the prediction given

in the above equation does not include implicit information

of not having transmitted in the interval {τ jk+1, . . . , k}. The

type of event-triggering rule that we focus on in this paper

is given by

δjk =

{

1 ‖x̂j

k|k − x̃j

k|k‖2Γj

k

≤ rjk

0 otherwise
(6)

where Γj
k > 0, rjk > 0 and ‖z‖2Γ = z⊤Γz.

Remark 1: The rule given in (6) has been shown to be

optimal for certain event-triggered problems for first-order

systems penalizing transmissions [1], [2]. For higher-order

dynamics, optimal solutions turn out to be a threshold

function of x̂j

k|k − x̃j

k|k whose threshold manifolds have

no closed-form solution in general. It is however shown

in [18] that the form in (6) yields an efficient and numerically

tractable approximation of the optimal solution.

Besides the arguments in the above remark on the form of the

event-trigger, we will exploit the given structure extensively

in the remainder of this paper. Here, we indicate one of

consequences for the predictor at the fusion center, which

will be shown in Section III-C. A basic features of the

triggering rule is that the predictor defined in (5) is the

optimal MMSE estimate of x̂j

k|k at time k incorporating the

event information δj
τ
j

k
+1

= · · · = δjk = 0. This implies that

the conditional mean of x̂j

k|k at the fusion center does not de-

pend on the event information. Unlike the conditional mean,

the evolution of the error covariance will highly depend on

the event information. While the covariance matrix of the

predictor evolves by the prediction update given by (4d), the

knowledge of δj
τ
j

k
+1

= · · · = δjk = 0 can be exploited to

decrease the error covariance. The way how to incorporate

event information into the calculation of the error covariance

matrix will be the subject of Section III.

D. Data fusion

The task of the fusion center is to estimate the state xk

based on the sporadic data received from the sensor nodes.

The fusion rule that we use is a slightly modified version of

CI, see [5]. The modification is needed as the estimates to be

fused are restricted to their observable state space. Therefore,

an appropriate embedding into the original state space must

be performed. We define the data (x̆j

k|k, P̆
j

k|k) at the fusion

center of sensor j as

(x̆j

k|k, P̆
j

k|k) =

{

(x̂j

k|k, P
j

k|k) δjk = 1

(x̃j

k|k, P̃
j

k|k) δjk = 0.
(7)

While the fusion center uses the local estimates given by

(4a)–(4d) in case of δjk = 1, it uses the predicted state x̃j

k|k

given by (5) and the covariance matrix P̃ j

k|k when δjk = 0.

The determination of P̃ j

k|k that takes into account the event

information will be tackled in the next section.

Remark 2: Effectively, only the conditional mean must

be transmitted as the error covariance matrix P j

k|k evolves

deterministically by (4b) and (4d).
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Based on the data {(x̆j

k|k, P̆
j

k|k)}j∈{1,...,M}, the modified

CI yields the fused estimate x̂k and is defined as

P̂−1

k =

M
∑

j=1

ωjT j
1 (P̆

j

k|k)
−1(T j

1 )
⊤ (8)

P̂−1

k x̂k =

M
∑

j=1

ωjT j
1 (P̆

j

k|k)
−1x̆j

k|k (9)

with weights ωj > 0, ω1 + · · · + ωM = 1 and assuming

that the information matrix (P̆ j

k|k)
−1 exists, i.e., P̆ j

k|k is

invertible for j ∈ {1, . . . ,M}. The fact that P̂−1

k is non-

singular will be shown in Lemma 1 in the next section.

Equation (8) can be viewed as a convex combination of

information matrices. The transformation matrix T j
1 ensures

that the estimate and covariance matrix related to sensor j
are embedded appropriately in the original state space.

Besides its numerical advantages compared to the standard

Kalman filter, the major advantage of the CI is that it

yields consistent estimates without relying on the knowledge

of cross-correlations between estimates. In many applica-

tions, in which processed information from various sources

within a network is fused, the cross-correlations may not be

known [19]. In this paper, the fact that the fusion rule does

not have to take into account cross-correlations enables us to

incorporate event information into the estimation procedure

in a straight-forward manner in order to preserve consistency.

III. CONSISTENCY OF ESTIMATES

One of the main prerequisites of a filtering algorithm is

that the estimated statistics arising from the estimation pro-

cedure reflect the behavior of the true system appropriately.

In this paper, the focus is on the first- and second-order

moments of the system, i.e., we are primarily interested in the

conditional mean x̂k and its corresponding error covariance

matrix. In many cases, the error covariance matrix cannot be

determined exactly due to the lack of statistical parameters or

due to computational restrictions. The latter is the reason to

approximate the error covariance matrix in this paper. When

finding a suitable approximation, one needs to account for

the well-known fact that the estimation error may diverge if

the computed error covariance matrix becomes too optimistic

[15]. It is worth to mention that robust formulations aiming

at the computation of almost sure confidence intervals, e.g. in

[20], [21] fail in the considered setting as the noise variables

are not bounded. These facts motivate us to give a formal

definition of consistency [5], [15].

Definition 2 (Consistency): Let x̂k be an unbiased esti-

mate of the random variable xk and let P̂k be an estimate

of the corresponding error covariance matrix. Then, the

pair (x̂k, P̂k) is said to be consistent when

E[(xk − x̂k)(xk − x̂k)
⊤] ≤ P̂k.

A. Consistency-preserving property of CI

Lemma 1 (Non-singularity of P̂−1

k ): Let the system (1)

and (2) be collective observable and let P̆ j

k|k be non-singular

for 1 ≤ j ≤ M . Then, the covariance intersection algorithm

given by (8)–(9) yields a non-singular solution P̂−1

k .

Proof: Define the observability matrix for sensor j,

1 ≤ j ≤ M , as

Oj =











Cj

CjA
...

CjAn−1











.

The nullspace of Oj denoted as RŌj
corresponds to the

unobservable part of the original state space R
n. Let RO|

be the observable subspace of sensor j. From Section II-B,

we know that this space is spanned by the columns of T j
1 .

Collective observability implies that the nullspace of the

aggregated observability matrix O = [O⊤
1 , . . . ,O⊤

M ]⊤ only

contains the trivial solution. Hence, we have

M
⋂

j=1

RŌj
= 0.

This means on the other hand that the union of the com-

plementary spaces ROj
covers the complete state space.

Defining

T̄ = [T 1
1 , . . . , T

M
1 ],

Ω̄k = diag[ω1(P̆ 1
k|k)

−1, . . . , ωM P̆M
k|k],

we conclude that P−1

k = T̄ Ω̄kT̄
⊤ is non-singular because Ω̄

is positive definite and T̄ has rank n.

Theorem 1 (Consistency-preserving property of CI):

Let the system (1), (2) be collectively observable. If the

pair (x̆j

k|k, P̆
j

k|k) is a consistent estimate of xj
k with P̆ j

k|k
being non-singular for 1 ≤ j ≤ M , then the CI defined by

(8)–(9) yields an unbiased and consistent estimate (x̂k, P̂k)
of state xk.

Proof: Using Lemma 1, it is ensured that the inverse

of P̂k is well defined by collective observability of the system

and non-singularity of P̆ j

k|k. As x̆j

k|k is an unbiased estimate

of xj
k, the linear combination (9) also yields an unbiased

estimate x̂k. To conclude the proof, we need to show that

P̂k is an upper bound on the error covariance matrix. This

follows along the same lines as in [5] for the standard CI

and is not repeated here.

B. Incorporation of event information

What remains to be determined is the estimate P̃ j

k|k of

the error covariance matrix when sensor j does not transmit

information at time k. In the spirit of Theorem 1, the goal

is to choose P̃ j

k|k in such way that the pair (x̃j

k|k, P̃
j

k|k)
is consistent. At the same time, we aim for a simple

computation of P̃ j

k|k that incorporates the event information

without introducing too much conservatism. Define the errors

for sensor j at time k

ejk = xj
k − x̃j

k|k,

êjk = xj
k − x̂j

k|k,

ẽjk = x̂j

k|k − x̃j

k|k
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where xj
k evolves by (3) and x̂j

k|k, x̃j

k|k are defined by (4a)

and (5), respectively. Moreover, we define the innovation at

time k of sensor j as

ỹjk = yjk − Cj
1 x̂

j

k|k−1
.

Clearly, the event rule (6) can be described as a function

of ẽjk. Furthermore, the variable ẽjk can be expressed by

the innovation sequence {ỹjℓ}ℓ∈{τk+1,...,k}. The subsequent

lemma is central for the computation of P̃ j

k|k. It shows

that the error covariance matrix E[(ejk)(e
j
k)

⊤|x̂j
k, σ

j
k] can be

decomposed into two parts. One arises from the estimation

error at the local sensor and the other is due to the uncertainty

of the event information.

Lemma 2: Let σj
k < k. Then, the following equality holds

for sensor j, 1 ≤ j ≤ M ,

E[(ejk)(e
j
k)

⊤|x̂j
k, σ

j
k] = P j

k|k + E[(ẽjk)(ẽ
j
k)

⊤|x̂j
k, σ

j
k] (10)

Proof: Let us define Ijk = {x̂j
k, σ

j
k} Then, we can

reformulate the covariance matrix of the estimation error ejk
as

E[(ejk)(e
j
k)

⊤|Ijk] = E[(êjk + ẽjk)(ê
j
k + ẽjk)

⊤|Ijk]
= E[(êjk)(ê

j
k)

⊤|Ijk] + E[(êjk)(ẽ
j
k)

⊤|Ijk]
+ E[(ẽjk)(ê

j
k)

⊤|Ijk] + E[(ẽjk)(ẽ
j
k)

⊤|Ijk]

Define the index set Lj
k = {τ jk +1, . . . , k} and the measure-

ment sequence Y j

Lj

k

= {yjℓ}ℓ∈Lj

k

. Then, we obtain for the

first term

E[(êjk)(ê
j
k)

⊤|Ijk] = E[E[(êjk)(ê
j
k)

⊤|Ijk, Y
j

Lj

k

]|Ijk]

= E[E[(êjk)(ê
j
k)

⊤|x̂j
k, Y

j

Lj

k

]|Ijk]

= E[P j

k|k|I
j
k]

= P j

k|k.

The first equality is because of the tower property of the

conditional expectation. The second equality is due to the

fact that σj
k is a measurable random variable with respect to

{x̂j
k, Y

j

Lj

k

}. The third equality arises from the basic properties

of the Kalman filter: the error covariance matrix is invariant

with respect to the measurements used by the filter. For the

cross correlation, we obtain

E[(êjk)(ẽ
j
k)

⊤|Ijk] = E[E[êjk(ẽ
j
k)

⊤|Ijk, Y
j

Lj

k

]|Ijk]

= E[E[êjk|x̂
j
k, Y

j

Lj

k

](ẽjk)
⊤|Ijk]

= 0.

In the first equality, we use the tower property of the

conditional expectation. The second equality is that σj
k is

a measurable random variable with respect to {x̂j
k, Y

j

Lj

k

}.

The cross terms vanish eventually due to the unbiasedness

of estimate x̂j

k|k, i.e., E[êjk|x̂
j
k, Y

j

Lj

k

] = 0. This concludes the

proof.

In the light of Lemma 2, our remaining concern is the com-

putation of the error covariance matrix E[(ẽjk)(ẽ
j
k)

⊤|x̂j
k, σ

j
k].

As the covariance depends on the event information, there

will not exist a closed-form solution in general and its

computation will involve the knowledge of the conditional

probability distribution, which makes the calculation infea-

sible already for a moderate number of state variables. This

motivates us to find an upper bound on E[(ẽjk)(ẽ
j
k)

⊤|x̂j
k, σ

j
k]

whose computation scales with the state dimension, nj
o, at

each sensor j, 1 ≤ j ≤ M . By the definition of the event

rule (6), the event information δjk = 0 corresponds to

‖ẽjk‖Γj

k

≤ rjk.

Given the last transmission of sensor j at time τ j , the

discrepancy between the Kalman estimate at the sensor and

the predicted value given by ẽjℓ evolves by the recursion

ẽjℓ+1
= Aj

1ẽ
j
ℓ +Kj

ℓ+1
ỹjℓ+1

for ℓ > τ j with ẽj
τj = 0. As the innovation process can

be regarded as white noise [22], ỹjℓ+1
is independent of ẽjℓ .

Clearly, this also holds when conditioned on δj
τj = · · · =

δjℓ = 0.

C. Unimodality and symmetry

In the following, we characterize the conditional probabil-

ity distribution of ẽjk given the event information δj
τ
j

k
+1

=

· · · = δjk = 0 summarized by σj
k.

Let us introduce two definitions from [23] for the charac-

terization.

Definition 3 (Centrally symmetric sets): A set A ⊂ R
n is

said to be centrally symmetric if x ∈ A implies −x ∈ A.

We call a distribution in R
n centrally symmetric if its density

function f(x) satisfies f(x) = f(−x).
Definition 4 (Central convex unimodality): A probability

distribution in R
n is said to be central convex unimodal if it

belongs to the closed convex hull of the set of all uniform

distributions on centrally symmetric sets in R
n.

The above definition implies that central convex unimodal

distributions are centrally symmetric.

According to the statistical properties of the innovations

process, the prior probability distribution of ẽjℓ at time

ℓ = τ j + 1 is zero-mean Gaussian with covariance matrix

Kj
ℓ (C

j
1P

j

ℓ|ℓ−1
(Cj

1)
⊤ + Rj

v)(K
j
ℓ )

⊤. Clearly, Gaussian distri-

butions are central convex unimodal since the sup-level sets

of their density function are convex.

By applying the Bayes’ rule recursively, the following

operations are applied sequentially until arriving at the

conditional distribution of ẽjk.

• Conditioning on δjℓ = 0, i.e., set the density function to

0 for all ‖ẽjk‖Γj

k

≥ rjk
• Skew the density function by Aj

1

• Add the weighted innovation, i.e., convolute with a

zero-mean Gaussian

The last step results from the fact that the density function of

two independent random variables can be computed by the

convolution of the individual densities. We have omitted here

that the first two steps involves normalization, as normaliza-

tion does not change the shape of the density function and
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therefore naturally preserves symmetry and unimodality. It is

known that the operations defined in the above list preserve

central convex unimodality [23]. Therefore, we can conclude

that the conditional probability distribution of ẽjk given the

event information σj
k is central convex unimodal.

As a consequence of symmetry, we have that E[ẽjk|σ
j
k] =

0. This implies that the linear predictor x̃j

k|k in (5) is identical

with the MMSE estimate of x̂j

k|k at time k given the event

information σj
k, i.e.,

x̃j

k|k = E[x̂j

k|k|x̂
j

σ
j

k
|σj

k

, σj
k].

D. Bounds on the error covariance matrix

Based on the symmetry and unimodality properties derived

in the last section, we aim at finding upper bounds on the

corresponding covariance matrices E[(ẽjk)(ẽ
j
k)

⊤|σj
k].

1) Scalar subsystems (nj
o = 1): For illustrative purposes,

we will first consider first-order subsystems at sensor j,

i.e., the dimension of the observable subspace at sensor j
denoted as nj

o is 1. The following lemma gives a bound on

the variance of the error ẽjk.

Lemma 3: Let nj
o = 1 and σj

k < k. Then, the variance of

ẽjk given the event information σj
k is upper bounded by

E[(ẽjk)
2|σj

k] ≤
1

3
(rjk)

2(Γj
k)

−1 (11)

Proof: Because of the assumption σj
k < k, we have

‖ẽjk‖Γj

k

≤ rjk. Therefore, the support of the density function

of ẽjk given σj
k will be given by

D1 =
[

− rjk
√

Γj
k

,
rjk

√

Γj
k

]

.

Moreover, we can assert from the previous discussion that the

density function of ẽjk given σj
k is even and unimodal, having

its peak at 0. Among these density functions having their

support on D1, it is well known that the uniform distribution

on D1 maximizes the variance [24]. This gives us the bound

in (11).

Remark 3: In a worst case analysis as performed in

[11] and [10], the error covariance matrix is bounded by

(rjk)
2(Γj

k)
−1. This implies that taking into account symmetry

and unimodality improves the bound at least by a factor of 3
for scalar subsystems. This bound could further be improved

by incorporating σj
k, the system matrix Aj

1, the Kalman gain

and the statistical properties of the innovations process.

Remark 4: The inequality (11) is tight in the sense that we

can choose the system parameters in such way that the error

covariance matrix approaches the bound arbitrarily close.

2) Higher-order subsystems (nj
o > 1): In the general

case, we obtain the following bound on the error covariance

matrix.

Lemma 4: Let σj
k < k. Then, the covariance matrix of ẽjk

given the event information σj
k is upper bounded by

E[(ẽ′k)(ẽ
′
k)

⊤|σj
k] ≤

nj
o

2 + nj
o

(rjk)
2(Γj

k)
−1. (12)

Proof: Let us fix an arbitrary j and define the bijective

state transformation

ẽ′k =
1

rjk
Γ

1

2

k ẽ
j
k

where Γj
k = (Γ

1

2

k )
⊤Γ

1

2

k . Then, the event information δjk = 0
translates into

‖ẽ′k‖ ≤ 1.

As the above transformation is linear and bijective, it will

preserve central convex unimodality. Denote the conditional

error covariance matrix as

Σẽ′
k
= E[(ẽ′k)(ẽ

′
k)

⊤|σj
k].

Let us take the eigenvalue decomposition

Σẽ′
k
= V∆V ⊤

where V ⊤V = I
n
j
o

with V = [v1, . . . , vnj
o
] being composed

of the eigenvectors vi of Σẽ′
k

with corresponding eigenvalue

λi ≥ 0 and ∆ = diag[λi].
Define the hyper-rectangle

R1 = {ζ ∈ R
nj
o |‖ζ‖∞ ≤ 1}

and consider its V -transformed version

RV = {ζ ∈ R
nj
o |‖V ⊤ζ‖∞ ≤ 1}.

Consider the uniform distribution on RV . Compare the

marginals of this distribution with the conditional proba-

bility distribution of ẽ′k projected onto vi. We make two

observations. On the one hand, the marginal of the uniform

distribution is again a uniform distribution on the interval

[−1, 1]. On the other hand, we know that the marginal

distribution of a central convex unimodal distribution is

again central convex unimodal [23]. Therefore, the marginal

of the conditional probability distribution of ẽ′k is central

convex unimodal with support on [−1, 1]. Similar as in the

scalar case, we conclude that the variance of the uniform

distribution on [−1, 1] is not smaller than any symmetric

unimodal distribution with support on [−1, 1]. As this holds

true for all 1 ≤ i ≤ nj
o, we conclude that the covariance

matrix of the uniform distribution on RV is a bound on the

error covariance matrix Σẽ′
k
.

As we do not know V , we need to take an overapproximation

of the covariance matrices resulting from any choice of V .

This can be done by considering the uniform distribution

on the nj
o-ball with radius

√

nj
o. Its covariance matrix is

identical with the right-hand side of (12) when transformed

back into the original coordinates system referring to ẽjk. This

concludes the proof.

Remark 5: Similar as in the scalar case, we can improve

the bound on the error covariance matrix by a factor of
nj
o

2+n
j
o

with respect to the a worst case analysis as performed in [11].

Hence, the benefit of exploiting unimodality and symmetry

vanishes when nj
o grows in our case. It is believed that

incorporating more statistical details of the linear system will

lead to a significant improvement.

7499



By taking Lemma 2–4 into account, we arrive at the

following result on consistency.

Theorem 2: Let σj
k < k, 1 ≤ j ≤ M . If we set

P̃ j

k|k = P j

k|k +
nj
o

2 + nj
o

(rjk)
2(Γj

k)
−1, (13)

then, the pair (x̃j

k|k, P̃
j

k|k) is a consistent estimate of xj
k.

Remark 6: Because of the above theorem and the

consistency-preserving property of the modified CI given in

Theorem 1, we can conclude that the estimate (x̂k, P̂k) at

the fusion center is consistent when using (13) in (7).

IV. STABILITY ANALYSIS

In this section, we investigate the asymptotic behavior of

the event-triggered state estimator. Our notion for stability

of the filter at the fusion center is given by means of

the bounded mean square error. By using the concept of

consistency and the bound on the error covariance matrix

derived in Theorem 2, we can state the following assertion

on stability.

Theorem 3: Let the system (1) and (2) be collective ob-

servable and let the time-varying event-triggering parameters

be uniformly bounded by Γj
k ≥ Γj > 0 and rjk ≤ rj .

Suppose that P̃ j

k|k is defined by (13) for 1 ≤ j ≤ M . Then,

the covariance intersection algorithm given by (8)–(9) yields

a stable estimate x̂k in the sense of a uniformly bounded

mean square error in the limit, i.e.,

lim sup
k→∞

E[‖x− x̂k‖2] < ∞.

Proof: Because R0, Rw and Rj
v are positive definite,

P j

k|k can be assumed to be positive definite for any time k.

This together with collective observability and the definition

of P̃ j

k|k implies that P̂−1

k is non-singular due to Lemma 1

for any time k. As we have the identity

E[‖x− x̂k‖2] = tr[E[(x− x̂k)(x− x̂k)
⊤]],

it suffices to show that the error covariance matrix is bounded

in the limit when k approaches infinity. Furthermore, we

know that the estimate (x̂k, P̂k) is consistent because of the

consistency-preserving property of the modified CI in (8)–

(9) due to Theorem 1 and the consistency guarantee due to

Theorem 2. Due to the definition of consistency, it remains

to show that we have a bound on P̂k in the limit k → ∞.

Define P j
∞ to be the limit error covariance matrix of the local

Kalman filter at sensor j given by (4a)–(4d). The limit exists

by construction due to observability of (Aj
1, C

j
1) for each

1 ≤ j ≤ M . By taking the uniform bounds of the triggering

rule into account, we arrive at the following bound on the

mean square error in the limit

lim sup
k→∞

E[‖x− x̂k‖2] ≤

tr











M
∑

j=1

ωjT j
1

(

P j
∞ +

nj
o

2 + nj
o

(rj)2(Γj)−1

)−1

(T j
1 )

⊤





−1






(14)

This concludes the proof.

Remark 7: In addition to the stability guarantee, we are

also able to quantify a bound on the error covariance matrix

given by (14).

V. NUMERICAL EXAMPLE

In the following, we provide a numerical example to

demonstrate the benefits of our approach. Suppose the dy-

namical system

xk+1 =

[

1.25 0.25
0 1.05

]

xk + wk

with R0 = I2 and Rw = 1

4
I2. The system is observed by

M = 10 sensors with measurement matrices

C1 =
[

0 1
]

, C2 =
[

4/
√
41 5/

√
41

]

,

Cj =
[

0.1j 1− 0.1j
]

, 3 ≤ j ≤ 10.

and with a measurement noise variance Rj
v = 2 for 1 ≤ j ≤

10. The systems (A,C1) and (A,C2) are not observable with

n1
o = n2

o = 1. The triggering threshold is given by (6) with

Γj
k = I

n
j
o

and the threshold rjk is chosen to be identical for

any k ≥ 0 and any j ∈ {1, . . . , 10}. The weights of the CI

algorithm are assumed to be identical for every sensor in all

cases.

0 1 2 3 4 5
0

1

2

3

4

5

rate

M
S

E

 

 

periodic CI
ET-CI (worst-case)
ET-CI (our approach)

Fig. 2. Trade-off curve of the overall transmission rate and the mean square
error (MSE).

Fig. 2 depicts the trade-off between the mean square

error (MSE) and the average total rate for three different

schemes. The values on the trade-off curve are determined

by computing the empirical means of the MSE and the

total rate for a fixed transmission scheme over a horizon

of 50 with 10, 000 trials. By either varying the thresholds

for the event-triggered strategy or the sampling period in

the periodic case, different transmission rates are achieved.

The red solid line refers to our approach using the event-

triggered CI (ET-CI) with the covariance bound (13). In

the case of the dashed blue line, we assume a worst case

bound omitting the correction factor nj
o/(2 + nj

o) in (13).

The gray dashed line refers to periodically sampled sensors
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using the CI. In this case the sensors are sampled at the same

sampling period TS ∈ {1, 2, . . . , 10} resulting in a total rate

of M/TS . The phase shift between transmissions of sensor

j and j+1 is 1 for 1 ≤ j < 10. When comparing our event-

triggered strategy with the periodic scheme, we observe a

performance improvement ranging from 15% to 30% within

the rate range of [1, 4] taking its maximum at a total rate

of 2. Compared with the worst-case event-triggered strategy,

we obtain a performance gain between 3% and 8% in the

rate range of [1, 4] taking its maximum at a total rate of 1.2.

The averages of the predicted MSE at the fusion center

are illustrated in Fig. 3. These average bounds are obtained

by calculating the empirical mean of tr[P̂k] for a fixed trans-

mission scheme over a horizon of 50 with 10, 000 trials. We

observe a significant difference between our approach using

the covariance bound (13) and the worst-case computation.

The improvement on the average MSE estimate ranges from

20% to 55% within the rate range of [1, 4], which is growing

for a decreasing total rate.
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ou
nd
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ET-CI (worst-case)
ET-CI (our approach)

Fig. 3. Bounds on the mean square error (MSE) depending the overall
transmission rate.

VI. SUMMARY

This paper demonstrates how event information can be

incorporated consistently for event-triggered state estimation

within a sensor network. The key feature is to exploit

symmetry and unimodality properties of the error distribution

in order to give non-trivial bounds on the error covariance

matrix that take into account the event information. These

bounds ensure that the event-triggered state estimator is

stable in the sense of bounded mean square error.

Future work includes the consideration of cross-

correlations between sensor estimates to improve perfor-

mance at the fusion center, the incorporation of more statis-

tical information of the dynamical system in order to obtain

tighter bounds on the error covariance matrix and the study

of unreliable communication channels for the transmission

of sensor data.
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[4] K. J. Åström and B. M. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in Proceedings

of the 41th IEEE Conference on Decision and Control (CDC’02),
2002.

[5] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm
in the presence of unknown correlations,” in Proceedings of the

American Control Conference, pp. 2369–2373, 1997.
[6] Y. S. Suh, V. H. Nguyen, and Y. S. Ro, “Modified Kalman filter for

networked monitoring systems employing a send-on-delta method,”
Automatica, vol. 43, no. 2, pp. 332–338, 2007.

[7] J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor
data scheduling: Trade-off between communication rate and estimation
quality,” Automatic Control, IEEE Transactions on, vol. 58, no. 4,
pp. 1041–1046, 2013.

[8] D. Shi, T. Chen, and L. Shi, “An event-triggered approach to state
estimation with multiple point-and set-valued measurements,” Auto-

matica, vol. 50, no. 6, pp. 1641–1648, 2014.
[9] J. Sijs and M. Lazar, “Event based state estimation with time syn-

chronous updates,” Automatic Control, IEEE Transactions on, vol. 57,
no. 10, pp. 2650–2655, 2012.

[10] J. Sijs, B. Noack, and U. D. Hanebeck, “Event-based state estimation
with negative information,” in Information Fusion (FUSION), 2013

16th International Conference on, pp. 2192–2199, IEEE, 2013.
[11] B. Noack, F. Pfaff, and U. D. Hanebeck, “Combined stochastic

and set-membership information filtering in multisensor systems,” in
Information Fusion (FUSION), 2012 15th International Conference

on, pp. 1218–1224, IEEE, 2012.
[12] G. Battistelli, A. Benavoli, and L. Chisci, “Data-driven communication

for state estimation with sensor networks,” Automatica, vol. 48, no. 5,
pp. 926–935, 2012.

[13] C. Ramesh, H. Sandberg, and K. H. Johansson, “Multiple access with
attention-based tournaments for monitoring over wireless networks,”
in European Control Conference, pp. 4302–4307, EUCA, 2009.

[14] M. G. Cea and G. C. Goodwin, “Event based sampling in non-linear
filtering,” Control Engineering Practice, vol. 20, no. 10, pp. 963–971,
2012.

[15] A. H. Jazwinski, Stochastic processes and filtering theory. Courier
Corporation, 2007.

[16] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Distributed moving
horizon estimation for linear constrained systems,” IEEE Transactions

on Automatic Control, vol. 55, no. 11, pp. 2462–2475, 2010.
[17] P. J. Antsaklis and A. N. Michel, Linear systems. Springer Science &

Business Media, 2006.
[18] R. Cogill, “Event-based control using quadratic approximate value

functions,” in Proceedings of the 48th IEEE Conference on Decision

and Control (CDC’09), pp. 5883–5888, IEEE, 2009.
[19] L. Chen, P. O. Arambel, and R. K. Mehra, “Estimation under

unknown correlation: covariance intersection revisited,” Automatic

Control, IEEE Transactions on, vol. 47, no. 11, pp. 1879–1882, 2002.
[20] G. Reissig, “Computing abstractions of nonlinear systems,” Automatic

Control, IEEE Transactions on, vol. 56, pp. 2583–2598, Nov 2011.
[21] L. El Ghaoui and G. Calafiore, “Robust filtering for discrete-time

systems with bounded noise and parametric uncertainty,” Automatic

Control, IEEE Transactions on, vol. 46, no. 7, pp. 1084–1089, 2001.
[22] B. D. O. Anderson and J. B. Moore, Optimal filtering. Courier

Corporation, 2012.
[23] S. W. Dharmadhikari and K. Joag-Dev, Unimodality, convexity, and

applications, vol. 27. Academic Press, 1988.
[24] H. Gray and P. Odell, “On least favorable density functions,” SIAM

Review, vol. 9, no. 4, pp. 715–720, 1967.

7501


