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Abstract— New control paradigms are needed for large net-
works of wireless sensors and actuators in order to efficiently
utilize system resources. In this paper we consider when
feedback control loops are formed locally to detect, monitor, and
counteract disturbances that hit a plant at random instances
in time and space. A sensor node that detects a disturbance
dynamically forms a local multi-hop tree of sensors and fuse
the data into a state estimate. It is shown that the optimal
estimator over a sensor tree is given by a Kalman filter of
certain structure. The tree is optimized such that the overall
transmission energy is minimized but guarantees a specified

level of estimation accuracy. A sensor network reconfiguration
algorithm is presented that leads to a suboptimal solution and
has low computational complexity. A linear control law based
on the state estimate is applied and it is argued that it leads
to a closed-loop control system that minimizes a quadratic cost
function. The sensor network reconfiguration and the feedback
control law are illustrated on an example.

I. INTRODUCTION

Control over large resource-constrained infrastructures re-

quires new design paradigms beyond traditional sampled-

data control. Difficulties that are inherit of these systems

are (i) lack of global synchronization, (ii) constrained com-

munication capabilities, and (iii) limited energy resources.

(i) In most cases a centralized control strategy is unreal-

istic for these systems, since network nodes are executed

asynchronously. Instead local control objectives should be

defined that lead to that the desired global task is ac-

complished. (ii) Communication between network nodes is

limited, particularly, if nodes are located physically far way

from each other. It takes time to transfer information from

one node to another, and in many cases this time increases

if the information needs to be reliably delivered. (iii) An

increasing number of nodes are battery powered. To extend

the life time of such nodes, it is important to limit the amount

of communication and computation they do.

The main contribution of this paper is to tackle these

networked control problems by letting the communication

topology adapt to the control task. We propose a new control

structure such that if a local disturbance hits the system,

sensors close to the event inform a local controller to make

a decision of the action to take. To extend the battery lifetime
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of the wireless sensor network, data are communicated over a

multi-hop wireless network, instead of a single-hop network.

The feedback control architecture is illustrated in Figure 1.

The quality of the state estimate used in the control node

depends not only on the sensor quality but also on the

communication delay, i.e., the number of hops the sensor

reading needs to take until it reaches the fusion center (the

black dot in Figure 1). Many short hops takes longer time

than the few long hops. On the other hand, fewer hops require

larger transmission power since the required transmission

grows rapidly with the distance between the wireless nodes.

Hence, there is a trade-off between state estimation quality

and energy efficiency. The solution we propose is to optimize

the network path for the sensor data such that the overall

transmission energy is minimized, but guarantees a certain

level of estimation accuracy. The resulting local sensor topol-

ogy has the structure of a tree for which the fusion center

is the root. We also propose a tree reconfiguration algorithm

so that if sensor node failure happens, or new sensor joins,

or existing sensor leaves to serve other applications, the tree

can be reformed dynamically which increases robustness of

the overall system. When the plant is given by a linear

system, the optimal estimator is given by a Kalman filter

with extra memory due to the communication delays. A

control law is derived based on linear quadratic control

theory taking into account the achieved estimation error

covariance. The proposed estimation and control scheme

scales well with network size, because of the local nature

of the implementation and execution.

There are several potential application areas of the work

presented in this paper, including building automation, en-

vironmental monitoring, industrial automation, power distri-

bution, and transportation systems.

Some work related to this paper is described next. One

way to deal with the problem of asynchronous generation of

sensor data is to use event-triggered control instead of con-

ventional time-triggered control [1], [2]. How to efficiently

encode control information for event-triggered control over

communication channels with severe bandwidth limitations

is discussed in [3].

Kalman filtering under certain information constraints,

such as decentralized implementation, has been extensively

studied [4]. Implementations for which the computations are

distributed among network nodes is considered in [5]–[7].

Kalman filtering over lossy networks is considered in [8],

[9]. The interaction between Kalman filtering and how data is

routed on a network seems to be less studied. Routing of data

packets in networks are typically done based on the distance
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to the receiver node [10]. Some recent work addresses how to

couple data routing with the sensing task using information

theoretic measures [11].

For control over wireless sensor networks, the experienced

delays and packet losses are important parameters. Random-

ized routing protocols that gives probabilistic guarantees on

delay and loss are proposed in [12], [13]. A compensation

scheme in the controller for the variations on the transport

layer that such routing protocols give rise is presented

in [14]. A robust control approach to control over multi-

hop networks is discussed in [15]. A general cross-layer

approach to control and data routing seems to be an open

and rather difficult topic due to many practical constraints.

Our approach is different in that we make the assumption

that a tree-structured sensor topology with certain properties

can be superimposed on the sensor network. The routing of

individual packets is not considered, but instead a number of

paths are dynamically established between the sensor nodes

and the controller.

The rest of the paper is organized as follows. The prob-

lem setup is described in Section II. Some definitions and

preliminary facts on Kalman filter is provided at Section III.

Optimal estimation over a sensor tree using a Kalman filter

is discussed in Section IV. How to find a tree that uses a

minimum transmission energy is described in Section V. This

estimate is combined with a linear control law and Section VI

shows that the closed-loop system solves an LQG control

problem. An example is presented in Section VII to illustrate

both the sensor reconfiguration algorithm for finding energy

efficient sensor trees and the closed-loop control performance

under varying input disturbances. The paper is concluded in

Section VIII with a discussion on future work.

II. PROBLEM SET-UP

A. Mathematical Models

Consider the feedback control system in Figure 1. The

plant is given by

xk = Axk−1 + Buk−1 + wk−1, (1)

where (A, B) is controllable, A−1 exists and wk is white

Gaussian noise with zero-mean and covariance matrix Qk ≥
0. 1A wireless sensor network is used to measure the state.

The measurement equation for sensor Si is given by

yi
k = Hixk + vi

k, (2)

where vi
k is white Gaussian noise with zero-mean and

covariance matrix Πi > 0.

Each sensor can potentially communicate via a single-hop

connection with a subset of all the sensors by adjusting its

transmission power. Let us introduce a sensor S0, which we

denote the fusion center, and consider a tree T with root S0

(see Figure 2). We suppose that there is a non-zero single-hop

communication delay, which is smaller than the sampling

1We require A−1 exists in order to prove certain property of the
algorithms presented in Section V. If Eqn (1) is derived by discretizing
a continuous process, then A−1 is guaranteed to exist.

Fig. 1. Structure of Closed-Loop Control System with Measurements
Gathered by a Wireless Sensor Tree

Fig. 2. An Example of a Tree

time of the plant. All sensors are synchronized in time, so

the data packet transmitted from Si to S0 is delayed one

sample when compared with the parent node of Si.

B. Problems of Interest

We are interested in the following problems.

1) Optimal Control Over Sensor Tree: One of the main

objectives of the paper is to study how we can close the loop

of control over the wireless sensor network. In particular, we

pose the standard LQG optimal control problem as follows.

Problem 2.1: Given a tree T representing the sensor

communications with S0, find the static gain control law

uk = −Lx̂k that minimizes

J = lim
K→∞

1

K

K
∑

k=1

E[x′
kΦxk + u′

kΨuk] (3)

where Φ ≥ 0 and Ψ > 0.

2) Optimal Estimation Over Sensor Tree: By the Separa-

tion Principle, Solving Problem 2.1 relies on the solution to

the following optimal estimation problem.

Problem 2.2: Given a tree T representing sensor commu-

nications with S0, compute the optimal state estimate x̂k(T ).
3) Minimum Energy Routing Tree: Since the network life

is largely determined by how fast individual node consumes

energy, it is natural to let the network operates at an energy

level that is as low as possible, thus we seek the solution to
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the following problem which is rephrased in mathematical

terms in Section V.

Problem 2.3: How should the tree T be established such

that the total network energy cost is minimum yet the

network provides a guaranteed level of estimation accuracy?

These three problems are examined in detail in the rest of

the paper. We first study the optimal estimation problem as

it will form the basis to solve other two problems.

III. DEFINITIONS AND KALMAN FILTER PRELIMINARIES

A. Definitions

Define the following terms for a given a tree T represent-

ing sensor communications with S0.

• Node(T ): The nodes of T , a subset of {Si}.

• FamT (Si): The subtree of T that is rooted at Si.

• ParT (Si): The parent node of Si in T .

• Edge(T ): The edges of T .

We use the notation ST = Node(T ). Sometimes with write

Si ∈ T to mean Si ∈ ST . The depth of T is denoted hT , i.e.,

the length of the path between S0 and the leave of T furthest

away. For all notations in the paper, we drop the subscript

T when the considered tree follows from the context.We

suppose T can be modified by each sensor Si 6= S0 via

the following two simple operations:

• Si breaks its link to Par(Si), i.e., T := T \ Fam(Si).
• Si breaks its link to Par(Si) and connects to S0, i.e.,

Par(Si) := S0.

The first operation corresponds to removing the sensors

Fam(Si) from T . The second operation corresponds to

reducing the number of hops between the sensors Fam(Si)
and S0. Let Tall denote all trees that these operations can lead

to for a given initial tree T0. We will provide an algorithm

to construct such an initial tree T0 rooted at S0 in Section V-

B.1. Note that Tall is typically a strict subset of all trees with

root S0 and nodes from S.

Next, we formalize estimation over a sensor tree under

communication energy constraints, in which the operations

above can be used to improve the performance.Let us define

the following state estimates and other quantities at S0:

x̂−

k (T ) , E[xk|all measurements up to k − 1],

x̂k(T ) , E[xk|all measurements up to k],

P−

k (T ) , E[(xk − x̂−

k (T ))(xk − x̂−

k (T ))′],

Pk(T ) , E[(xk − x̂k(T ))(xk − x̂k(T ))′],

P−
∞(T ) , lim

k→∞
P−

k (T ), if the limit exists,

P∞(T ) , lim
k→∞

Pk(T ), if the limit exists.

B. Kalman Filter Preliminaries

Consider the following discrete time system

xk = Axk−1 + wk−1

yk = Ckxk + vk

where wk−1 and vk are white Gaussian noises with zero-

mean and covariances Qk ≥ 0 and Rk > 0, respectively.

The estimates x̂k and Pk can be computed as

(x̂k, Pk) = KF(x̂k−1, Pk−1, yk, Ck, Qk, Rk),

where KF denotes the Kalman filter which is given by

x̂−

k = Ax̂k−1, (4)

P−

k = APk−1A
′ + Qk, (5)

Kk = P−

k C′
k[CkP−

k C′
k + Rk]−1, (6)

x̂k = Ax̂k−1 + Kk(yk − CkAx̂k−1), (7)

Pk = (I − KkCk)P−

k . (8)

It can be shown that P−

k evolves as

P−

k = AP−

k−1A
′ + Qk

− AP−

k−1C
′
k−1[Ck−1P

−

k−1C
′
k−1 + Rk]−1Ck−1P

−

k−1A
′.

(9)

In the case Ck = C, Qk = Q, Rk = R and the limit exists,

P−

k in steady state satisfies

P−
∞ = AP−

∞A′ +Q−AP−
∞C′[CP−

∞C′ +R]−1CP−
∞A′.

IV. OPTIMAL ESTIMATION OVER A TREE

Let the tree T that represents the sensor communications

with S0 be given. Recall that T has depth h. Thus at time

k, S0 has the following measurements:

• Y 1
k , {yi

k: Si is 1 hop away from S0},

• Y 2
k , {yi

k−1: Si is 2 hop away from S0},

•

...

• Y h
k , {yi

k−h+1: Si is h hop away from S0}.

For example in Figure 2, at time k, S0 has measurements

Y 1
k = {y1

k, y2
k}, Y

2
k = {y3

k−1, y
4
k−1}. We can then define

Y k−i+1
k , Y 1

k−i+1

⋃

· · ·
⋃

Y i
k , i = 1, · · · , h

as all the measurement available for time k − i + 1 at time

k. Notice that Y 1
k−1 are the available measurements at time

k−1. However at time k, the available measurements for time

k − 1 changes to Y k−1
k = Y 1

k−1

⋃

Y 2
k . Hence we can obtain

a better estimate of xk−1 at time k than at time k − 1. This

inspired us to regenerate the optimal estimate of the previous

states and use them as input to generate the current estimate.

That is the basic idea contained in Theorem 4.1 where we

generated the optimal estimate of xk−h+1, · · · , xk−1 at time

k and then make use of the updated estimates to generate the

current estimate x̂k. Similar idea was presented in [16] when

estimation over a queuing network was considered. Figure 3

shows the overall estimation scheme at time k.

Let Sij
be the node that is j hops away from S0. Define

Γj , [H1j
; H2j

; · · · ], j = 1, · · · , h

Ci , [Γ1; · · · ; Γi], i = 1, · · · , h

Υj , diag{Π1j
, Π2j

, · · · }, j = 1, · · · , h

Ri , diag{Υ1, · · · , Υi}, i = 1, · · · , h

For X ≥ 0, define

gCi
(X) , AXA′ + Q − AXC′

i[CiXC′
i + Ri]

−1CiXA′.
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Fig. 3. Kalman Filter Iterations at Time k

Theorem 4.1: Consider a sensor tree T with depth h.

1) x̂k and Pk can be computed from h parallel filter as

(x̂k−h+1, Pk−h+1)

= KF(x̂k−h, Pk−h, Y k−h+1
k , Ch, Qk, Rh)

...

(x̂k−1, Pk−1)

= KF(x̂k−2, Pk−2, Y
k−1
k , C2, Qk, R2)

(x̂k, Pk)

= KF(x̂k−1, Pk−1, Y
k
k , C1, Qk, R1)

2) Furthermore P−

k and P−
∞ satisfies

P−

k = gC2
· · · ◦ gCh

(P−

k−h) (10)

P−
∞ = gC2

· · · ◦ gCh−1
(P̄−

∞) (11)

where P̄∞ is the unique solution to gCh
(P̄−

∞) = P̄−
∞.

Proof: 1) We know that the estimate x̂k is generated

from the estimate of x̂k−1 together with all the available

measurements at time k through a traditional Kalman filter.

Similarly, the estimate x̂k−1 is generated from the estimate

of x̂k−2 together with all the available measurements for time

k − 1 at time k, etc. This recursion for h steps corresponds

to the parallel filter stated in the theorem.

2) From Eqn (9), P−

k−i+1 satisfies

P−

k−i+1 = gCi+1
(P−

k−i), i = 1, 2, · · · , h − 1. (12)

Hence P−

k and P−
∞ satisfy Eqn (10) and (11).

V. MINIMUM ENERGY COMMUNICATION OVER SENSOR

TREES

Let us incorporate the cost of communication by defining

an optimization problem over the total transmission power

used by the sensor tree. Define Ei to be the energy cost for

Si sending the measurements of Fam(Si) to Par(Si). The

total energy cost for a tree T is denoted as

E(T ) =
∑

Si∈T

Ei.

The transmission power typically grows rapidly with the

distance to the receiver. 2 Hence, it is desirable to commu-

nicate only with close nodes to save energy. On the other

hand, low transmission power, leads to many hops between

some sensors and the fusion center, which adds delays to the

measurements gathered in the fusion center. It is thus natural

to seek a tree T ∈ Tall with desired estimation accuracy

Pdesired > 0 and minimum communication energy cost. We

rephrase Problem 2.3 as follows

Problem 5.1:

min
T∈Tall

E(T )

subject to

Tr(P∞(T )) ≤ Pdesired

We write P∞(T ) ≤ Pdesired in the trace sense later. We first

analyze the complexity of the problem by seeking the optimal

solution, which is shown to be intractable. We then present

some heuristic algorithms to tackle the problem, which are

efficient but at the price of only producing local optimal

solution in general.

A. Optimal Solution Via Exhaustive Search

Let N be the total number of sensors in T0. Then

|Tall| ≈

N
∑

i=1

(

i

N

)

3i =

N
∑

i=1

N !

i!(N − i)!
3i, (13)

as a tree in Tall can have i sensors, 1 ≤ i ≤ N , and each

sensor has the choice of disconnecting to its parent, con-

necting to its parent or to the fusion center directly (except

those sensors that are 1 hop away from S0). Problem 5.1 is

an optimization problem over the discrete set Tall. From Eqn

(13), it is apparent that the optimal solution via exhaustive

search is intractable for large N .

B. Tree Reconfiguration Algorithm

In this section, we present a Tree Reconfiguration Al-

gorithm (Figure 4) which solves Problem 5.1 efficiently.

However, the solution from this algorithm may not be the

optimal one in general.

The Tree Reconfiguration Algorithm consists of three

subroutines. The first subroutine is called by executing

the Tree Initialization Algorithm to produce the initial tree

T0 (the top rectangular block in Figure 4). Depending on

whether T0 provides enough required accuracy, two other

subroutines are called by executing the Switching Tree Topol-

ogy Algorithm (the middle right rectangular block) and the

Minimum Energy Subtree Algorithm(the bottom rectangular

block) respectively. These algorithms are presented in details

next.

2An estimate of Ei can be be computed based on the considered wireless
technology. A common model is that if the distance between Si and Par(Si)
is di, then Ei = βi + αi(di)ni , where βi represents the static part of the
energy consumption and αi(di)ni the dynamic part. The path loss exponent
ni is typically between 2 and 6.
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Fig. 4. Tree Reconfiguration Algorithm

Fig. 5. Tree Initialization Algorithm

1) Tree Initialization Algorithm: Let T0 denote the tree

which represents the initial connection of the sensors with

S0. T0 is constructed via the Tree Initialization Algorithm

presented graphically in Figure 5. The idea is that S0 first

establishes direct connections with its neighbor sensors.

After that, its neighbor sensors establish further connections

with their own neighbor sensors. This process continues until

a tree of depth hT is formed. The actual implementation of

the algorithms is provided in Section A of the Appendix.

2) Switching Tree Topology Algorithm: For a given tree

Tt, if P∞(Tt) > Pdesired, the tree needs to be adjusted in

a way that the accuracy is improved. The Switching Tree

Topology Algorithm provides such a way.

We assume if Si breaks connection with Par(Si) and

connects directly to S0, Ei(Par(Si)) ≤ Ei(S0) and define

this operation as π(Tt, Si), i.e.,

Node
(

π(Tt, Si)
)

= Node(Tt) and

Edge
(

π(Tt, Si)
)

= Edge(Tt)
⋃

{Si, S0} \ {Si, ParTt
(Si)}.

Further define S2hop , {Si : Par(Par(Si)) = S0}. The

algorithm is then given as follows.
Switching Tree Topology Algorithm

• Init: Tt.

• Compute Si = arg minSi∈S2hop
P∞(π(Tt, Si)).

• Return Tt+1 := π(Tt, Si).

3) Minimum Energy Subtree Algorithm: For a given tree

Tt with P∞(Tt) ≤ Pdesired, The Minimum Energy Subtree

Algorithm finds the subtree T ′ rooted at S0 with the property

that P∞(T ′) ≤ Pdesired, and E(T ′) ≤ E(T̃ ) for any subtree

T̃ of Tt rooted at S0. The idea is that all possible subtrees

Fig. 6. Switching Tree Topology

T̃ rooted at S0 and satisfying

P∞(T̃ ) ≤ Pdesired

are found in an efficient way utilizing the structure of the

initial tree T0. Then the subtree T ′ which has the least com-

munication energy is returned. The actual implementation of

the algorithm and an example are provided in Section B of

the Appendix.

C. Performance Analysis of the Algorithms

The performance of the Tree Reconfiguration Algorithm in

previous section is summarized in the following theorem.

Theorem 5.2: (1) Given a tree T with P∞(T ) > Pdesired,

the Switching Tree Topology Algorithm returns T ′ ∈ Tall such

that

P∞(T ′) ≤ P∞(T ) and E(T ′) ≥ E(T ).

(2) Given a tree T with P∞(T ) ≤ Pdesired, the Minimum

Energy Subtree Algorithm returns T ′ ⊂ T rooted at S0 such

that

P∞(T ′) ≤ Pdesired and E(T ′) ≤ E(T̃ )

for any other T̃ ⊂ T that is rooted at S0.

(3) If ∃ T ∈ Tall such that P∞(T ) ≤ Pdesired, then the

output T ′ from the Tree Reconfiguration Algorithm satisfies

P∞(T ′) ≤ Pdesired.

Proof: (1) We provide the proof for the line topology

(Figure 6). It is straightforward to extend the proof for a

general tree. Following the notations in Section IV, for T ,

P−
∞(T ) satisfies

P−
∞(T ) = gC2

◦ gC3
· · · gCh−1

(P̄−
∞),

where P̄−
∞ ≥ 0 is the unique solution to gCh

(P̄−
∞) = P̄−

∞

and Ci = [H1; H2; · · ·Hi], Ri = diag{Π1, Π2, · · · , Πi} for

i = 2, · · · , h. For T ′, P−
∞(T ′) satisfies

P−
∞(T ′) = gC3

◦ gC4
· · · gCh−1

(P̄−
∞)

= gC3
◦ gC4

· · · gCh−1
◦ gCh

(P̄−
∞)

≤ gC2
· · · gCi

· · · gCh−2
◦ gCh−1

(P̄−
∞)

= P−
∞(T )

where the inequality is from Corollary 1.3 in Appendix C.

Therefore

P∞(T ′) = A−1(P−
∞(T ′))A′−1 − A−1QA′−1

≤ A−1(P−
∞(T ))A′−1 − A−1QA′−1

= P∞(T ).
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E(T ) ≤ E(T ′) holds from the assumption.

(2) Suppose T ∗ = (S∗, Edge(T ∗)) is the subtree that

has the least energy expenses. Let ∆S = S \ S∗ =
{Si1 , Si2 , · · · , Sim

} with i1 ≤ i2 ≤ · · · ≤ im. Then ∆S ⊂
Dr

3, as P∞(T ∗) ≤ Pdesired. We also have S(i1i2) ∈ Dr as

P∞(T \ S(i1i2)) ≤ P∞(T ∗) ≤ Pdesired.

Similarly, S(i1i2 · · · im) ∈ Dr and so T ∗ = T \
S(i1i2 · · · im) is returned by the Tree Reconfiguration Al-

gorithm as we assume T ∗ is the subtree that has the least

energy expense.

(3) Since Ptotal ≤ P∞(T ) for all T ∈ Tall, if such T

exists with P∞(T ) ≤ Pdesired, we have Ptotal ≤ P∞(T ).
Suppose at t = t1, P∞(Tt1) ≤ Pdesired, then it is clear

that P∞(T ′) ≤ Pdesired. Otherwise, the Tree Reconfiguration

Algorithm continues until direct connections between all

sensors with S0 are established, in which case P∞(Tt) =
Ptotal ≤ Pdesired. Hence P∞(T ′) ≤ Pdesired.

VI. OPTIMAL LQG CONTROL OVER ENERGY EFFICIENT

WIRELESS SENSOR NETWORK

The theorem below provides an answer to Problem 2.1.

Theorem 6.1: For a given T , let the optimal x̂k(T ) and

corresponding P∞(T ) be generated as in Theorem 4.1. Then

uk = −Lx̂k that minimizes J(T ) defined in Eqn (3) is given

by

uk = −[B′S∞B + Ψ]−1B′S∞Ax̂k

where S∞ ≥ 0 is the unique solution to

S∞ = A′S∞A+Φ−A′S∞B[B′S∞B +Ψ]−1B′S∞A.

Furthermore, J(T ) can be computed as

J(T ) = Tr(S∞Q) + Tr(FP∞F ′)

where F = A′S∞B[B′S∞B + Ψ]−
1
2 .

Proof: Following from [17] and together with Theorem 4.1.

Notice that S∞ is a fixed quantity, hence Tr(S∞Q) is

independent of T . Also notice that FP∞F ′ is quadratic in

P∞, therefore in order to keep J(T ) ≤ Jdesired, P∞ has

to satisfy P∞ ≤ Pdesired, which is the reason we choose the

minimum energy subtree subject to the estimation constraint.

VII. EXAMPLE

We consider an integrator chain as an example in this

section. The discrete time system dynamics is given by Eqn

(1) with

A =









1 0.1 0.05 0.0002
0 1 0.1 0.05
0 0 1 0.1
0 0 0 1









, B =









0
0
0
1









.

3See Section B of the Appendix for the definition of Dr and
S(i1i2 · · · il) later in the proof.

Fig. 7. Different Trees Formed by the Tree Reconfiguration Algorithm

There are three sensors available. The measurement equa-

tions are given by

y1
k = [ 1 0 0 0 ]xk + v1

k,

y2
k = [ 0 1 0 0 ]xk + v2

k,

y3
k = [ 0 0 1 0 ]xk + v3

k,

where vi
k are white Gaussian with zero-mean and covariances

Π1 = 0.25, Π2 = 0.5 and Π3 = 0.5. Assume sensor i is i

hops away from S0 (Figure 7).

Further assume that if Si is connected to Si−1, i = 1, 2, 3,

the energy of communication is e; if Si is connected to

Si−2, i = 2, 3, the energy is 4e and if S3 is connected to

S0, the energy is 8e. The control law uk is computed as in

Theorem 6.1. Suppose it is required that Tr(Pdesired) ≤ 10
for this system. Initially, assume Qk = Q0 for all k ≤
k1 = 200, where Q0 = 0.2I . After T0 is set up, S0

computes Tr(P∞(T0)) = 4.1297 < 10. Thus it starts to

run the Minimum Energy Subtree Algorithm to find out T ′.

In this case T ′ = T0 \ S3 with Tr(P∞(T ′)) = 9.6411 and

E(T ′) = 2e.

We model the disturbance to the plant as changes to Qk.

Suppose at time k1, Qk changes to 4Q0 and will last for 100
time steps. We assume the changes in Qk is known to S0.4

In this case, T0 \ S3 no longer provides enough accuracy

as P∞(T ′) changes to 34.9300. Thus S0 executes the Tree

Reconfiguration Algorithm again to find the desired tree.

Now only the star topology T2, with Tr(P∞(T2)) = 9.6369,

provides enough accuracy. The price to pay for reconfiguring

to T2 is that E(T2) = 13e. Figure 10 shows how the different

tree location changes in the E − P∞ diagram for these two

scenarios. Later when Qk changes back to Q0 at k2 = 300,

T2 is reconfigured to T0 \ S3 as well.

Figure 8- 9 show the evolution of the first and fourth

component of xk and the estimation error ek with and

without the tree reconfiguration. As we can see from the

lower half of the Figures, the state and the estimation remain

almost the same after the tree reconfiguration, while if the

tree is kept the same, there is a big fluctuation in the state and

the estimation error during the time Qk changes to higher

values.

4In the actual implementation, we can estimate the value of Qk using
various available schemes (eg, see [18]).
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VIII. CONCLUSION AND FUTURE WORK

In this paper, we have considered an optimal control

problem over a wireless sensor network. By dynamically

reconfiguring the sensor network, the desired performance

can be met minimum energy usage. We present optimal

estimation and control schemes over a tree of wireless

sensors. We also provide algorithms that seeks the minimum

energy subtree.

There are a number of interesting extensions of the current

work that we shall pursue in the future. We will include the

analysis of the time complexity of the algorithm presented in

Section V. We will also explore the case where an estimator

of the plant input disturbance Qk is included and see how

the uncertainties in estimating Qk relates to the uncertainties

in J(T ).

Fig. 11. Tree Initialization Algorithm

Fig. 12. Tree T and its subtrees T̃ s

APPENDIX

A. Tree Initialization Algorithm

We have represented the Tree Initialization Algorithm

graphically in Figure 5 in Section V-B.1. In this section, we

provide the actual implementation of the algorithm. Define

the following quantities.

• S(t): Sensors added to T0 at step t.

• ∆S(t): Newly added sensors at step t.

• V∆E(Si) , {Sj : Sj is reachable by Si using ∆E

energy }.

•

V∆E(Σ) ,
⋃

Si∈Σ

V∆E(Si).

The Tree Initialization Algorithm is presented in its flow

diagram form in Figure 11.

B. Minimum Energy Subtree Algorithm

We present the Minimum Energy Subtree Algorithm with

mathematical detail here. To make the presentation clear and

easy to follow, we divide the algorithm into several key steps

and provide an example to illustrate each step. Before we

introduce the algorithm, let us define

• S(i1i2 · · · il) , {Si1 , Si2 , · · ·Sil
}.

• Ω(i1i2 · · · il) , T \ S(i1i2 · · · il).

where it is assumed i1 ≤ i2 ≤ · · · ≤ il. The example we

will use is given as follows.

Example 1.1: Consider the tree T with 4 sensor nodes in

Figure 12. Assume the following:

1) T provides enough estimation accuracy, i.e., P∞(T ) ≤
Pdesired.

2) No single sensor provides enough estimation accuracy,

i.e., P∞(S(i)) > Pdesired, i = 1, 2, 3, 4.
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3) Among the two sensor pairs, only sensor 1 and 4

can provide enough estimation accuracy, i.e., P∞(S(ij)) ≤
Pdesired iff {i, j} = {1, 4}.

4) Any three sensors except (S2, S3, S4) can provide

enough estimation accuracy, i.e., P∞(Ω(i)) ≤ Pdesired, i =
2, 3, 4.

5) The energy cost of single hop communication is e.

By the above assumptions, it is easy to see that the

minimum energy subtree T ′ is given by T̃4 with E(T ′) = 2e.

Let us examine the case when we take T as an input to

the Minimum Energy Subtree Algorithm which consists of

the following key steps.

Step 1

• Init: T

• t := 0,Dt := {Sip
∈ T : P∞(Ω(ip)) ≤ Pdesired}.

In this step, D0 holds all single sensor node without

which, the rest sensors still satisfy the accuracy requirement.

Therefore in Example 1.1 D0 = {S2, S3, S4}.

Step 2

• t := t + 1,Dt := Dt−1

• ∀ Sip
∈ Dt−1 with P∞(Ω(ip)) < Pdesired

- ∀ q > p and Siq
6∈ Fam(Sip

),
if P∞(Ω(ipiq)) ≤ Pdesired, Dt := Dt

⋃

S(ipiq).

In this step, D1 holds all single sensor or two sensor

pair without which, the rest sensors still satisfy the accuracy

requirement. The third line of step 2 eliminates the

redundancy in listing the subtrees as S(ipiq) = S(iqip), and

if Sip
is removed from a tree, so is Fam(Sip

). Therefore in

Example 1.1 D1 = {S2, S3, S4, S(23)}.

Step 3

• t := t + 1,Dt := Dt−1

• ∀ S(ipiq) ∈ Dt−1 with P∞(Ω(ipiq)) < Pdesired

- ∀ l > q and Sil
6∈ (Fam(Sip

)
⋃

Fam(Siq
)),

if P∞(Ω(ipiqil)) ≤ Pdesired,

Dt := Dt

⋃

S(ipiqil).

Similar to step 3, D2 holds all single sensor, two

sensor pair or three sensor group without which, the rest

sensors still satisfy the accuracy requirement. The algorithm

continues in this way until Dr = Dr−1 at step r ≤ h.

Step r

• Return T ′ = arg minΩ(·)∈D E(Ω(·))

In Example 1.1, D2 = {S2, S3, S4, S(23)} = D1. Hence

the algorithm stops and returns T ′ = Ω(23) = S(14) = T̃4

with P∞(T ′) ≤ Pdesired and E(T ′) = 2e. It is easy to verify

that |Tall| = 25 in this case and the algorithm only calculates

7 of them. In general, the time complexity of executing the

Minimum Energy Subtree Algorithm is significantly less than

solving Problem 5.1 via exhaustive search.

C. Some Background

Let Ci, Ri, gCi
(X) be defined as

Ci , [Γ1; · · · ; Γi], i = 1, · · · , h

Ri , diag{Υ1, · · · , Υi}, i = 1, · · · , h

gCi
(X) , AXA′ + Q − AXC′

i[CiXC′
i + Ri]

−1CiXA′.

Lemma 1.2: Let 1 ≤ i ≤ j ≤ h be given. Then

C′
i[CiPC′

i + Ri]
−1Ci ≤ C′

j [CjPC′
j + Rj ]

−1Cj (14)

Proof: The proof is omitted due to space limitation.

Corollary 1.3: For all i = 1, · · · , n − 1, and all X ≥ 0,

gCi+1
(X) ≤ gCi

(X).
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