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Abstract: This paper investigates the stability of Kalman filtering over Gilbert-Elliott channels where the random packet drop
follows a time-homogeneous two-state Markov chain whose state transition is determined by a pair of failure and recovery rates.
First, we establish a relaxed condition guaranteeing peak-covariance stability described by an inequality in terms of the spectral
radius of the system matrix and transition probabilities of the Markov chain. We show that this condition can be rewritten as a
linear matrix inequality feasibility problem. Next, we prove that the peak-covariance stability implies mean-square stability, if
the system matrix has no defective eigenvalues on the unit circle. This implication holds for any random packet drop process,
and is thus not restricted to Gilbert-Elliott channels. We prove that there exists a critical curve in the failure-recovery rate plane,
below which the Kalman filter is mean-square stable and above is unstable for some initial values. Finally, a lower bound for
this critical failure rate is obtained making use of the relationship we establish between the two stability criteria, based on an
approximate relaxation of the system matrix.
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1 Introduction

1.1 Background and Related Works

Wireless communications are being widely used nowa-

days in sensor networks and networked control systems for a

large spectrum of applications, such as environmental mon-

itoring, health care, smart building operation, intelligent

transportation and power grids. New challenges accompany

the considerable advantages wireless communications offer

in these applications, one of which is how channel fading

and congestion, influence the performance of estimation and

control. In the past decade, this fundamental question has in-

spired various significant results focusing on the interface of

control and communication, and has become a central theme

in the study of networked sensor and control systems [1–8].

State estimation, based on collecting measurements of the

system output from sensors deployed in the field is embed-

ded in many networked control applications and is often im-

plemented recursively using the fundamental Kalman filter.

The study of the interplay between a Kalman filtering and

a lossy communication channel is pioneered in the semi-

nal work [9], where Sinopoli et al. modeled the statistics

of intermittent observations by an independent and identi-

cally distributed (i.i.d.) Bernoulli random process and stud-

ied how packet losses affect the state estimation. It was

proved that there exists a critical arrival probability for pack-

ets, below which the expected prediction error covariance

matrix is no longer uniformly bounded [9]. Tremendous re-

search has since then been devoted to further stability anal-

ysis of Kalman filtering or the closed-loop control systems

over i.i.d. packet lossy packet networks in [10–12].

To capture the temporal correlation of realistic commu-

nication channels, the Gilbert-Elliott model [13, 14] that
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describes time-homogeneous Markovian packet losses has

been introduced to partially address this problem. The so-

called peak-covariance stability was introduced with a focus

on the stability of the error covariance matrix at certain stop-

ing times of the Markovian packet process in [15,16], which

turned out to be rather useful also for the mean-square stabil-

ity analysis [16]. Improvements to these results appeared in

[17, 18]. Besides the two widely adopted stability notions,

weak convergence of Kalman filtering with packet losses,

i.e., that error covaraince matrix converges to a limit distri-

bution, were investigated in [19–21] for i.i.d., semi-Markov,

and Markov drop models, respectively.

1.2 Our Contributions

This paper aims to answer the following two fundamental

questions that arise for Kalman filtering over lossy channels:

[Q1] What is the essential relation between peak-covariance

and mean-square stabilities for general linear time-

invariant (LTI) systems?

[Q2] Does the phase transition for mean-square stability with

i.i.d. packet losses continue to exist with Markovian

channels?

For [Q1], we prove that peak-covariance stability implies

mean-square stability if the system matrix has no defective

eigenvalues on the unit circle. Remarkably enough this im-

plication holds for arbitrary random packet drop process that

allows peak-covariance stability to be defined. This answer

bridges two stability criteria in the literature, and offers a

tool for studying mean-square stability of the Kalman fil-

ter through its peak-covariance stability, where in fact we

can easily bypass the no-defective-eigenvalue assumption

for general LTI systems using an approximation method.

For [Q2], we prove that there is a critical p − q curve,

with p being the failure rate and q being the recovery rate

of the Gilbert-Elliott channel, below which the expected pre-
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diction error covariance matrices are uniformly bounded and

unbounded above. This result is proved via a novel coupling
argument, and to the best of our knowledge, this is the first

time phase transition is established for Kalman filtering over

Markovian channels.

We also derive a relaxed condition guaranteeing peak-

covariance stability, described by an inequality in terms of

the spectral radius of the system matrix and transition prob-

abilities of the Markov chain, rather than an infinite sum of

matrix norms as in [15–17]. We show that this condition

can be recast as a linear matrix inequality (LMI) feasibility

problem. These conditions are theoretically and numerically

shown to be less conservative than those in the literature.

Making use of the above results we derive for the relation

between peak-covariance and mean-square stabilities and the

existence of the critical curve, we manage to present a lower

bound for the critical failure rate that holds for general LTI

systems under Markovian packet drops. We believe these

results add to the fundamental understanding of Kalman fil-

tering under random packet drops.

1.3 Paper Organization and Notations

The remainder of the paper is organized as follows. Sec-

tion 2 presents the problem setup. Section 3 focuses on

the peak-covariance stability. Section 4 studies the relation-

ship between the peak-covariance and mean-square stabili-

ties, the critical p− q curve, and presents a sufficient condi-

tion for mean-square stability of general LTI systems. Two

numerical examples in Section 5 demonstrate the effective-

ness of our approach compared with the literature. Finally

we provide some concluding remarks in Section 61.

Notations: N is the set of positive integers. S
n
+ is the set

of n by n positive semi-definite matrices over the complex

field. For a matrix X , σ(X) denotes the spectrum of X and

λX denotes the eigenvalue of X that has the largest magni-

tude. X∗, X ′ and X are the Hermitian conjugate, transpose

and complex conjugate of X . Moreover, ‖ · ‖ means the 2-

norm of a vector or the induced 2-norm of a matrix. ⊗ is the

Kronecker product of two matrices. The indicator function

of a subset A ⊂ Ω is a function 1A : Ω → {0, 1}, where

1A(ω) = 1 if ω ∈ A, otherwise 1A(ω) = 0. For random

variables, σ(·) is the σ-algebra generated by the variables.

2 Kalman Filtering over Markovian Channel

Consider an LTI system:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where A ∈ R
n×n is the system matrix and C ∈ R

m×n

is the observation matrix, xk ∈ R
n is the process state

vector and yk ∈ R
m is the observation vector, wk ∈ R

n

and vk ∈ R
m are zero-mean Gaussian random vectors with

auto-covariance E[wkwj
′] = δkjQ (Q ≥ 0), E[vkvj

′] =
δkjR (R > 0), E[wkvj

′] = 0 ∀j, k. Here δkj is the Kro-

necker delta function with δkj = 1 if k = j and δkj = 0 oth-

erwise. The initial state x0 is a zero-mean Gaussian random

1Due to hard space limitation we refer readers to [22] for detailed proofs

of most of the claimed results.

vector that is uncorrelated with wk and vk and has covariance

Σ0 ≥ 0. We assume that (C,A) is detectable and (A,Q1/2)
is stabilizable. By applying a similarity transformation, the

unstable and stable modes of the considered LTI system can

be decoupled. An open-loop prediction of the stable mode

always has a bounded estimation error covariance, therefore,

this mode does not play any key role in the stability issues

considered in this paper. Without loss of generality, we as-

sume that

(A1) All of the eigenvalues of A have magnitudes not less
than one.

Certainly A is nonsingular, (C,A) is observable and

(A,Q1/2) is controllable.

We consider an estimation scheme where the raw mea-

surements of the sensor {yk}k∈N are transmitted to the es-

timator via an erasure communication channel over which

packets may be dropped randomly. Denote by γk ∈ {0, 1}
the arrival of yk at time k: yk arrives error-free at the es-

timator if γk = 1; otherwise γk = 0. Whether γk takes

value 0 or 1 is assumed to be known by the receiver at

time k. Define Fk as the filtration generated by all the

measurements received by the estimator up to time k, i.e.,

Fk � σ(γtyt, γt; 1 ≤ t ≤ k) and F = σ (∪∞
k=1Fk). We

will use a triple (Ω,F ,P) to denote the probability space

capturing all the randomness in the model.

To describe the temporal correlation of realistic communi-

cation channels, we assume the Gilbert-Elliott channel [13,

14], where the packet loss process is a time-homogeneous

two-state Markov chain. To be precise, {γk}k∈N is the state

of the Markov chain with initial condition, without loss of

generality, γ1 = 1. The transition probability matrix for the

Gilbert-Elliott channel is given by

P =

[
1− q q
p 1− p

]
, (3)

where p � P(γk+1 = 0|γk = 1) is called the failure rate,

and q � P(γk+1 = 1|γk = 0) is called the recovery rate.

Assume that

(A2) The failure and recovery rates satisfy p, q ∈ (0, 1).

The estimator computes x̂k|k, the minimum mean-squared

error estimate, and x̂k+1|k, the one-step prediction, accord-

ing to x̂k|k = E[xk|Fk] and x̂k+1|k = E[xk+1|Fk]. Let Pk|k
and Pk+1|k be the corresponding estimation and prediction

error covariance matrices, i.e., Pk|k = E[(xk− x̂k|k)(·)′|Fk]
and Pk+1|k = E[(xk+1 − x̂k+1|k)(·)′|Fk]. They can be

computed recursively via a modified Kalman filter [9]. The

recursions for x̂k|k and x̂k+1|k are omitted here. To study

the Kalman filtering system’s stability, we focus on the pre-

diction error covariance matrix Pk+1|k, which is recursively

computed as

Pk+1|k =APk|k−1A
′ +Q

− γkAPk|k−1C
′(CPk|k−1C

′ +R)−1CPk|k−1A
′.

It can be seen that Pk+1|k inherits the randomness of

{γt}1≤t≤k. In what follows, we focus on characterizing the

impact of {γk}k∈N on Pk+1|k. To simplify notations in the
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sequel, let Pk+1 � Pk+1|k, and define the functions h, g, hk

and gk: Sn+ → S
n
+ as follows:

h(X) � AXA′ +Q, (4)

g(X) � AXA′ +Q−AXC ′(CXC ′ +R)−1CXA′, (5)

hk(X) � h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
k times

(X) and gk(X) �

g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k times

(X), where ◦ denotes the function com-

position.

3 Peak-covariance Stability

In this section, we study the peak-covariance stability [16]

of the Kalman filter. To this end, define

τ1 � min{k : k ∈ N, γk = 0},
β1 � min{k : k > τ1, γk = 1},

...

τj � min{k : k > βj−1, γk = 0},
βj � min{k : k > τj , γk = 1}. (6)

It is straightforward to verify that {τj}j∈N and {βj}j∈N are

two sequences of stopping times because both {τj ≤ k} and

{βj ≤ k} are Fk−measurable; see [23] for details. Due

to the strong Markov property and the ergodic property of

the Markov chain defined by (3) (see [16]), the sequences

{τj}j∈N and {βj}j∈N have finite values P-almost surely.

Then we can define the sojourn times at the state 1 and state

0 respectively by τ∗j and β∗
j ∀j ∈ N as

τ∗j � τj − βj−1,

β∗
j � βj − τj ,

where we define β0 = 1. Let us denote the prediction error

covariance matrix at the stopping time βj by Pβj
and call it

the peak covariance2 at βj . To study the stability of Kalman

filtering with Markovian packet losses, we introduce the con-

cept of peak-covariance stability [16] as follows:

Definition 1. The Kalman filtering system with packet losses
is said to be peak-covariance stable if supj∈N E‖Pβj

‖ < ∞.

3.1 Stability Conditions

To analyze the peak-covariance stability, we introduce the

observability index of the pair (C,A).

Definition 2. The observability index Io is defined as the
smallest integer such that [C ′, A′C ′, . . . , (AIo−1)′C ′]′ has
rank n. If Io = 1, the system (C,A) is called one-step ob-
servable.

We have the following result.

2 The definition of peak covariance was first introduced in [16], where

the term “peak” was attributed to the fact that for an unstable scalar sys-

tem Pk monotonically increases to reach a local maximum at time βj .

This maximum property does not necessarily hold for the multi-dimensional

case.

Theorem 1. Suppose the following two conditions hold:

(i). |λA|2(1− q) < 1;

(ii). ∃K � [K(1), . . . ,K(Io−1)], where K(i)’s are matrices
with compatible dimensions, such that |λH(K)| < 1,
where

H(K) = qp
[
(A⊗A)−1 − (1− q)I

]−1

·
Io−1∑
i=1

(Ai +K(i)C(i))⊗ (Ai +K(i)C(i))(1− p)i−1. (7)

Then supj≥1 E‖Pβj
‖ < ∞, i.e., the Kalman filtering system

is peak-covariance stable.

Remark 1. In [18], the authors defined stability in stopping

times as the stability of Pk at packet reception times. Note

that {βj}j∈N, at which the peak covariance is defined, can

also be treated as the stopping times defined on packet re-

ception times. Clearly, in scalar systems, the covariance is at

maximum when the channel just recovers from failed trans-

missions; therefore peak covariances give an upper envelop

of covariance matrices at packet reception times. For higher-

order systems, the relation between them is still unclear.

Since the second condition in Theorem 1 is difficult to

verify, in the following proposition we present another con-

dition for peak-covariance stability, which is, despite being

conservative, easy to check. The new condition is obtained

by making all K(i)’s in Theorem 1 take the value zero.

Proposition 1. If the following condition is satisfied:

pq|λA|2
Io−1∑
i=1

|λA|2i(1− p)i−1 < 1− |λA|2(1− q), (8)

then the Kalman filtering system is peak-covariance stable.

Theorem 1 and Proposition 1 establish a direct connec-

tion between λA (or λH(K)), p, q, the most essential aspects

of the system dynamic and channel characteristics on the one

hand, and peak-covariance stability on the other hand. These

results cover the ones in [15–17], as is evident using the sub-

additivity property of matrix norm, and the fact that the spec-

tral radius is the infimum of all possible matrix norms. To see

this, one should notice that

|λH(k)|
≤qp

∥∥∥[(A⊗A)−1 − (1− q)I
]−1∥∥∥

Io−1∑
i=1

(1− p)i−1
∥∥∥(Ai +K(i)C(i))⊗ (Ai +K(i)C(i))

∥∥∥
≤qp

∞∑
i=1

(1− q)i−1‖Ai ⊗Ai‖

Io−1∑
i=1

(1− p)i−1
∥∥∥(Ai +K(i)C(i))⊗ (Ai +K(i)C(i))

∥∥∥

=q
∞∑
i=1

(1− q)i−1‖Ai‖2p
Io−1∑
i=1

(1− p)i−1‖Ai +K(i)C(i)‖2,
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Ψ �

⎡
⎢⎢⎢⎢⎢⎣

X
√
p(A′Y + C′F1) · · · √

p(1− p)Io−2
(
(AIo−1)′Y + (C(i))′FIo−1

)
√
p(Y A+ F ∗

1 C) Y · · · 0
...

...
. . .

...√
p(1− p)Io−2

(
Y AIo−1 + F ∗

Io−1C
(i)
)

0 · · · Y

⎤
⎥⎥⎥⎥⎥⎦

(11)

in which the first inequality follows from |λH(K)| ≤
‖H(K)‖ and the submultiplicative property of matrix

norms, and the last equality holds because, for a matrix

X , ‖Xi ⊗ Xi‖ =
√
λ
(X

i
(X′)i)⊗(Xi(X∗)i) = λXi(X∗)i =

‖Xi‖2. Comparison with the related results in the literature

is also demonstrated by Example I in Section 5.

3.2 LMI Interpretation

In Theorem 1, a quite heavy computational overhead

may be incurred in searching for a satisfactory K. Al-

though computationally-friendly, Proposition 1 only pro-

vides a comparably rough criterion. In this part, we continue

to polish the result of Theorem 1 with a way to retaining its

power but with less computational burden. Based on what

we have established in Theorem 1, we present a criterion

which reduces to solving an LMI feasibility problem. To do

so, we first introduce a linear operator and then present the

equivalence between statements related to the linear operator

(including an LMI feasibility statement) and |λH(K)| < 1,

any of which results in peak-covariance stability.

Consider the operator LK : Sn+ → S
n
+ defined as

LK(X) = p

Io−1∑
i=1

(1−p)i−1(Ai+K(i)C(i))∗ΦX(Ai+K(i)C(i)),

(9)

where ΦX is the positive definite solution of the Lyapunov

equation (1 − q)A′ΦXA + qA′XA = ΦX with |λA|2(1 −
q) < 1, and K = [K(1), . . . ,K(Io−1)] with each matrix K(i)

having compatible dimensions. It can be easily shown that

LK(X) is linear and non-decreasing on the positive semi-

definite cone.

The following result holds.

Theorem 2. Suppose |λA|2(1−q) < 1. The following state-
ments are equivalent:

(i). There exists K � [K(1), . . . ,K(Io−1)] with each
matrix K(i) having compatible dimensions such that
limk→∞ Lk

K(X) = 0 for any X ∈ S
n
+;

(ii). There exists K � [K(1), . . . ,K(Io−1)] with each
matrix K(i) having compatible dimensions such that
|λH(K)| < 1;

(iii). There exist K � [K(1), . . . ,K(Io−1)] with each matrix
K(i) having compatible dimensions and P > 0 such
that LK(P ) < P ;

(iv). There exist F1, . . . , FIo−1, X > 0, Y > 0 such that⎡
⎣ Y

√
1− qA′Y

√
qA′X√

1− qY A Y 0√
qXA 0 X

⎤
⎦ ≥ 0 (10)

and Ψ > 0 where Ψ is given in (11).

If any of the above statements holds, then supj≥1 E‖Pβj‖ <
∞, i.e., the Kalman filtering system is peak-covariance sta-
ble.

To summarize, Theorem 2 makes it possible to check the

sufficient condition of Theorem 1 through an LMI feasibility

criterion. It can be expected that, given the ability to search

for K(i)’s on a positive semi-definite cone, Theorem 2 gives

a less conservative condition than Proposition 1 does; this is

demonstrated by Example I in Section 5.

Remark 2. In [15–17], the criteria for peak-covariance sta-

bility are difficult to check since some constants related to

the operator g are hard to explicitly compute. A thorough

numerical search may be computationally demanding. In

contrast, the stability check of Theorem 2 uses an LMI fea-

sibility problem, which can often be efficiently solved.

4 Mean-square Stability

In this section, we will discuss mean-square stability of

Kalman filtering with Markovian packet losses.

Definition 3. The Kalman filtering system with packet losses
is mean-square stable if supk∈N E‖Pk‖ < ∞.

4.1 From Peak-covariance Stability to Mean-square
Stability

Note that the peak-covariance stability characterizes the

filtering system at stopping times defined by (6), while

mean-square stability characterizes the property of stability

at all sampling times. In the literature, the relationship be-

tween the two stability notations is still an open problem. In

this section, we aim to establish a connection between peak-

covariance stability and mean-square stability. Firstly, we

need the following definition for the defective eigenvalues

of a matrix.

Definition 4. For λ ∈ σ(A) where A is a matrix, if the
algebraic multiplicity and the geometric multiplicity of λ are
equal, then λ is called a semi-simple eigenvalue of A. If λ is
not semi-simple, λ is called a defective eigenvalue of A.

We are now able to present the following theorem indicat-

ing that as long as A has no defective eigenvalues on the

unit circle, i.e., the corresponding Jordan block is 1 × 1,

peak-covariance stability always implies mean-square stabil-

ity. In fact, we are going to prove this connection for general
random packet drop processes {γk}k∈N, and is thus not re-

stricted to Gilbert-Elliott channels.

Theorem 3. Let {γk}k∈N be a random process over an
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underlying probability space (S ,S, μ) with each γk tak-
ing its value in {0, 1}. Suppose {βj}j∈N take finite values
μ−almost surely, and that A has no defective eigenvalues
on the unit circle. Then the peak-covariance stability of
the Kalman filter always implies mean-square stability, i.e.,
supk∈N E‖Pk‖ < ∞ whenever supj∈N E‖Pβj‖ < ∞.

Note that {βj}j∈N can be defined over any random packet

loss processes, therefore the peak-covariance stability with

packet losses that the filtering system is undergoing remains

in accord with Definition 1.

Theorem 3 bridges the two stability notions of Kalman

filtering with random packet losses in the literature. Particu-

larly this connection covers most of the existing models for

packet losses, e.g., i.i.d. model [9], bounded Markovian [24],

Gilbert-Elliott [15], and finite-state channel [25]. Although

supk∈N E‖Pk‖ and supj∈N E‖Pβj‖ are not equal in general,

this connection is built upon a critical understanding that, no

matter to which inter-arrival interval between two successive

βj’s the time k belongs, ‖Pk‖ is uniformly bounded from
above by an affine function of the norm of the peak covari-
ances at the starting and ending points thereof. This point

holds regardless of the model of packet loss process.

We also remark that there is some difficulty in relaxing the

assumption that A has no defective eigenvalues on the unit

circle in Theorem 3. This is due to the fact that A’s defective

eigenvalues on the unit circle will influence both the peak-

covariance stability and mean-square stability in a nontrivial

manner.

Remark 3. In [16], for a scalar model with i.i.d. packet

losses, it has been shown that the peak-covariance stability

is equivalent to mean-square stability, while for a vector sys-

tem even with i.i.d. packet losses, the relationship between

the two is unclear. In [17], the equivalence between the two

stability notions was established for systems that are one-

step observable, again for the i.i.d. case. Theorem 3 now

fills the gap for a large class of vector systems under general

random packet drops.

4.2 The Critical p− q Curve

In this subsection, we first show that for a fixed q in the

Gilbert-Elliott channel, there exists a critical failure rate pc,

such that if and only if the failure rate is below pc, the

Kalman filtering is mean-square stable. This conclusion is

relatively independent of previous results, and the proof re-

lies on a coupling argument.

Proposition 2. Let the recovery rate q satisfy |λA|2(1−q) <
1. Then there exists a critical value pc ∈ (0, 1] for the failure
rate in the sense that

(i) supk∈N E‖Pk‖ < ∞ for all Σ0 ≥ 0 and 0 < p < pc ;

(ii) there exists Σ0 ≥ 0 such that supk∈N E‖Pk‖ = ∞ for
all pc < p < 1.

Proof. If p = 0, we have the standard Kalman filter,

which evidently converges to a bounded estimation error

covariance, which suggests that there exists a transition

point for p beyond which the expected prediction error

covariance matrices are not uniformly bounded3. It re-

mains to show that with a given q this transition point is

unique. Fix a 0 ≤ p1 < 1 such that supk∈N Ep1
‖Pk‖ <

∞ ∀Σ0 ≥ 0. It suffices to show that, for any p2 < p1,

supk∈N Ep2‖Pk‖ < ∞ for all Σ0 ≥ 0. To differentiate

two Markov chains with different failure rate in (3), we use

the notation {γk(pi)}k∈N instead to represent the packet loss

process with p = pi in (3). We define a sequence of random

vectors {(zk, z̃k)}k∈N over a probability space (G ,G, π)
with G = {(0, 0), (0, 1), (1, 1)}N. Put ϕ1({zk, z̃k}k=1:t) =
ψzt ◦ · · · ◦ ψz1(Σ0) and ϕ2({zk, z̃k}k=1:t) = ψz̃t ◦ · · · ◦
ψz̃1(Σ0), where ψz = zg + (1 − z)h with h, g defined

in (4), (5) and z = {0, 1}. Since zk ≤ z̃k in G , we have

ϕ1 ({zk, z̃k}k=1:t) ≥ ϕ2 ({zk, z̃k}k=1:t).

When p2 + q ≤ 1, we let the evolution of {(zk, z̃k)}k∈N

follow the Markov chain in Fig. 1, whereby it can be seen

that π(zk+1 = j|zk = i)’s for i, j = {0, 1} are constants

independent of z̃k’s, and conversely that π(z̃k = j|z̃k = i)’s
for i, j = {0, 1} are constants independent of zk’s. More-

over,

π(zk+1 = j|zk = i) = Pp1(γk+1(p1) = j|γk(p1) = i),

π(z̃k+1 = j|z̃k = i) = Pp2
(γk+1(p2) = j|γk(p2) = i)

for all i, j = {0, 1} and k ∈ N. We assume the Markov

chain starts at the stationary distribution. Then,

E
∞
p1
‖Pk‖ =

∫
Ω

∥∥ψγk(p1) ◦ · · · ◦ ψγ1(p1)(Σ0)
∥∥ dPp1

=

∫
G

∥∥ϕ1({zj , z̃j}j=1:k)
∥∥ dπ

≥
∫

G

∥∥ϕ2({zj , z̃j}j=1:k)
∥∥ dπ

=

∫
Ω

∥∥ψγk(p2) ◦ · · · ◦ ψγ1(p2)(Σ0)
∥∥ dPp2

= E
∞
p2
‖Pk‖,

where E
∞ means that the expectations is taken conditioned

on the stationarily distributed γ1.

When p2 + q > 1, we allow the existence of negative

measures in the Markov chain described in Fig. 1. By di-

rect computation, the eigenvalues of transition probability

matrix, denoted by M ∈ R
3×3, are 1 − q − p1, 1 − q −

p2 and 1, respectively. As a result, Mk converges to a

limit as k tends to infinity, indicating that the generalized

Markov chain has a unique stationary distribution. Note that

π(z1 = i1, . . . , zt = it) = Pp1
(γ1 = i1, . . . , γt = it)

and π(z̃1 = i1, . . . , z̃t = it) = Pp2
(γ1 = i1, . . . , γt = it)

for all t ∈ N and i1, . . . , it ∈ {0, 1}. Thus, the inequality

E
∞
p1
‖Pk‖ ≥ E

∞
p2
‖Pk‖ still proves true in this case.

Finally, by Lemma 2 in [18], we have supk∈N Ep2
‖Pk‖ <

∞, which completes the proof.

It has been shown in [18] that a necessary condition for

mean-square stability of the filtering system is |λA|2(1 −
q) < 1, which is only related to the recovery rate q. For

3Without loss of generality, if the Kalman filter is mean-square stable

for any p ∈ (0, 1), the transition point for p is 1.
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Fig. 1: The transitions of the Markov chain {(zk, z̃k)}k∈N

when p2 + q ≤ 1.

    

 

 

Non-MSS  

MSS  

 

Fig. 2: The p − q plane is divided into MSS (Mean-

square Stability) and Non-MSS regions by the critical curve

fc(p, q) = 0. When p + q = 1, the Markovian packet loss

process is reduced to an i.i.d. process. As a result, the inter-

section point of the curves fc(p, q) = 0 and p+ q = 1 gives

the critical packet drop probability established in [9].

Gilbert-Elliot channels, a critical value phenomenon with re-

spect to q is also expectable. Theorem 4 proves the existence

of the critical p − q curve and Fig. 2 illustrates this critical

curve in the p− q plane.

Theorem 4. There exists a critical curve defined by
fc(p, q) = 0, dividing (0, 1)2 into two disjoint regions such
that:

(i) If (p, q) ∈ {
fc(p, q) > 0

}
, then supk∈N E‖Pk‖ < ∞

for all Σ0 ≥ 0;

(ii) If (p, q) ∈ {
fc(p, q) < 0

}
, then there exists Σ0 ≥ 0

under which supk∈N E‖Pk‖ = ∞.

Remark 4. If the packet loss process is an i.i.d. process,

where p+ q = 1 in the transition probability matrix defined

in (3), Proposition 2 and Theorem 4 recover the result of

Theorem 2 in [9]. It is worth pointing out that whether mean-

square stability holds or not exactly on the curve fc(p, q) =
0 is beyond the reach of the current analysis (even for the

i.i.d. case with p + q = 1): such an understanding relies on

the compactness of the stability or non-stability regions.

4.3 Mean-square Stability Conditions

We can now make use of the peak-covariance stability

conditions we obtained in the last section, and the connec-

tion between peak-covariance stability and mean-square sta-

bility indicated in Theorem 3, to establish mean-square sta-

bility conditions for the considered Kalman filter. It turns out

that the assumption requiring no defective eigenvalues on the

unit circle, can be relaxed by an approximation method. We

present the following result.

Theorem 5. Let the recovery rate q satisfy |λA|2(1−q) < 1.
Then there holds pc ≥ p, where

p � sup
{
p : ∃(K,P ) s.t. LK(P ) < P,P > 0

}
, (12)

i.e., for all Σ0 ≥ 0 and 0 < p < p, the Kalman filtering
system is mean-square stable.

Remark 5. For second-order systems and certain classes of

high-order systems, such as non-degenerate systems, neces-

sary and sufficient conditions for mean-square stability have

been derived in [18] and [26]. However, these results rely on

a particular system structure and fail to apply to general LTI

systems. It seems challenging to find an explicit description

of necessary and sufficient conditions for mean-square sta-

bility of general LTI systems. Theorem 5 gives a stability

criterion for general LTI systems.

5 Numerical Examples

In this section, we present two examples to demonstrate

the theoretical results we established in Sections 3 and 4.

5.1 Example I: A Second-order System

To compare with the works in [15, 16], we will examine

the same vector example considered therein. The parameters

are specified as follows:

A =

[
1.3 0.3
0 1.2

]
, C = [1, 1],

Q = I2×2 and R = 1.

First let us compare the sufficient condition we provide in

Proposition 1 with the counterpart provided in [16]. Note

that |λA|2(1 − q) < 1 is a necessary condition for mean-

square stability. We take q = 0.65 as was done in [16].

As for the failure rate p, [16] concludes that p < 0.04
guarantees peak-covariance stability; while Proposition 1

requires p < 1−|λA|2(1−q)
|λA|4q , which generates the less con-

servative condition p < 0.22. Note that, for the channel

with (p, q) = (0.04, 0.65), P(γk = 0) = 0.0580 when the

packet loss process enters the stationary distribution, which

means that the allowed long term packet loss rate is at most

5.80%. However, by choosing a larger p, Proposition 1 per-

mits P(γk = 0) = 0.2529 at the stationary distribution

at most, i.e., the allowed long term packet dropout rate is

25.29%. Separately, we note that it is rather convenient to

check the condition in Proposition 1 even with manual cal-

culation; in contrast, it involves a considerable amount of

numerical calculation to check the conditions in [16].
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Fig. 3: A sample path of ‖Pk‖ and γk with p = 0.5, q = 0.65
in Example I.
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Fig. 4: A sample path of ‖Pk‖ and γk with p = 0.99, q =
0.65 in Example I.

Then, we use the criterion established in Theorem 2 to

check for the peak-covariance stability. We obtain that when

p = 1 the LMI in 2) of Theorem 2 is still feasible.4 It

should be pointed that at least for the parameters speci-

fied in this example, the criterion of [16] only covers the

Gilbert-Elliott models with failure rate lower than 4.5%.

Fig. 3 and Fig. 4 illustrate sample paths of ‖Pk‖ and γk with

(p, q) = (0.5, 0.65) and (p, q) = (0.99, 0.65), respectively.

The figures show that even a high value of p may not ef-

fect the peak-covariance stability in this example, showing

that Theorem 2 provides a less conservative criterion than

Proposition 1 or [16] does, a fact which is consistent with

the theoretical analysis in Section 3.

4 To satisfy the assumption (A2), we need to configure p = 1− ε for an

arbitrary small positive ε.
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Fig. 5: A sample path of ‖Pk‖ and γk with p = 0.45, q = 0.5
in Example II.

5.2 Example II: A Third-order System

To compare the work in Section 4 with the result [18]

and [26], we will use the following example, where the pa-

rameters are given by

A =

⎡
⎣ 1.2 0 0

0 1.2 0
0 0 −1.2

⎤
⎦ , C =

[
1 0 1
0 1 1

]
, (13)

Q = I3×3 and R = I2×2. In [18,26,27], mean-square stabil-

ity of Kalman filtering for so-called non-degenerate systems

has been studied. Before proceeding, we introduce the defi-

nition.

Definition 5. Consider a system (C,A) in diagonal stan-
dard form, i.e., A = diag(λ1, . . . , λn) and C =
[C1, . . . , Cn]. A quasi-equiblock of the system is defined as a
subsystem (CI , AI), where I � {l1, . . . , li} ⊂ {1. . . . , n},
such that AI = diag(λl1 , . . . , λli) with |λl1 | = · · · = |λli |
and CI = [Cl1 , . . . , Cli ].

Definition 6. A diagonalizable system (C,A) is non-
degenerate if every quasi-equiblock of the system is one-step
observable. Conversely, it is degenerate if it has at least one
quasi-equiblock that is not one-step observable.

By definition, the system in (13) is observable but de-

generate since |λ1| = |λ2| = |λ3| but (C,A) is not one-

step observable. To the best of our knowledge, no tool has

been established so far to study mean-square stability of

such a system with Markovian packet losses. The results

presented in Section 4 provide us a universal criterion for

mean-square stability. Let us fix q = 0.5. We can con-

clude from Theorem 5 that if p ≤ 0.465 the Kalman filter

is mean-square stable. Fig. 5 illustrates a sample path of

‖Pk‖ and γk with (p, q) = (0.45, 0.5). Fig. 6 illustrates that

with (p, q) = (0.99, 0.5) the expected prediction error co-

variance matrices diverge. One can verify that when q = 0.5
and p = 1 the criterion in Theorem 5 is violated as the LMI

in Theorem 2 is infeasible.

6 Conclusions

We have investigated the stability of Kalman filtering

over Gilbert-Elliott channels. Random packet drop fol-
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Fig. 6: Divergence of E‖Pk‖ with p = 0.99, q = 0.5 in

Example II.

lows a time-homogeneous two-state Markov chain where

the two states indicate successful or failed packet transmis-

sions. We established a relaxed condition guaranteeing peak-

covariance stability described by an inequality in terms of

the spectral radius of the system matrix and transition proba-

bilities of the Markov chain, and then showed that the condi-

tion can be reduced to an LMI feasibility problem. It was

proved that peak-covariance stability implies mean-square

stability if the system matrix has no defective eigenvalues

on the unit circle. This connection holds for general random

packet drop processes. We also proved that there exists a

critical region in the p − q plane such that if and only if the

pair of recovery and failure rates falls into that region the

expected prediction error covariance matrices are uniformly

bounded. By fixing the recovery rate, a lower bound for the

critical failure rate was obtained making use of the relation-

ship between two stability criteria for general LTI systems.

Numerical examples demonstrated significant improvement

on the effectiveness of our appraoch compared with the ex-

isting literature.
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