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a b s t r a c t

An invariant cover quantifies the information needed by a controller to enforce an invariance spec-
ification. This paper investigates some fundamental problems concerning existence and computation
of an invariant cover for uncertain discrete-time linear control systems subject to state and control
constraints. We develop necessary and sufficient conditions on the existence of an invariant cover
for a polytopic set of states. The conditions can be checked by solving a set of linear programs, one
for each extreme point of the state set. Based on these conditions, we give upper and lower bounds
on the minimal cardinality of the invariant cover, and design an iterative algorithm with finite-time
convergence to compute an invariant cover. We further show in two examples how to use an invariant
cover in the design of a coder–controller pair that ensures invariance of a given set for a networked
control system with a finite communication data rate.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In a networked control system a plant is connected with a con-
roller through a communication network (Bemporad, Heemels, &
ohansson, 2010; Sinopoli et al., 2004; Zhang, Branicky, & Phillips,
001), as shown in Fig. 1. Networked control systems are in
idespread use in a variety of application areas, for example,
mart buildings (Agarwal et al., 2010) and intelligent transporta-
ion (Zhou, Cao, Zeng, & Wu, 2010). Since the data rate of a
ommunication channel is usually limited, a central question is
ow much information is needed by the controller to enforce a
iven specification.
Feedback control under limited data rate has been widely

tudied (Nair & Evans, 2003; Nair, Fagnani, Zampieri, & Evans,
007; Tatikonda & Mitter, 2004). One well-known result is that
he critical data rate necessary for stabilization of linear systems
epends on the unstable poles of their open-loop system. In Nair,
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Evans, Mareels, and Moran (2004), the notion of topological feed-
back entropy, which is an extension of topological entropy (Adler,
Konheim, & McAndrew, 1965; Bowen, 1971), has been used to
quantify the information necessary for stabilization of nonlinear
control systems.

Invariance is one of the most fundamental concepts in sys-
tems and control (Blanchini, 1999; Blanchini & Miani, 2007).
In the context of networked control systems, the minimal data
rate necessary for set invariance under feedback control was
studied in Kawan (2013) and Nair et al. (2004). It was shown
in Nair et al. (2004) that a finite topological feedback entropy
is necessary to achieve invariance. Later, the notion of invari-
ance entropy was proposed for continuous-time deterministic
control systems based on spanning sets (Kawan, 2013). Equiv-
alence between these two notions was established for discrete-
time control systems under the assumption of strong invariance
in Colonius, Kawan, and Nair (2013).

The notion of invariance feedback entropy was first pro-
posed in Rungger and Zamani (2017a) for generalizing the notion
of invariance entropy (Kawan, 2013) to uncertain discrete-time
control systems and was further explored in Rungger and Za-
mani (2017b), Tomar, Rungger, and Zamani (2020). It was shown
in Tomar et al. (2020) that the invariance feedback entropy of
a given set of states is finite if and only if an invariant cover
exists for this set. An invariant cover is a pair consisting of a finite
cover of the given set and a map from this cover to the control
set (see Definition 2.2). We remark that the invariant cover plays
an important role in designing a coder–controller which achieves a
finite data rate and ensures invariance.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Coder–controller feedback loop, where x is the measured state, [x] is the
encoded state, and u is the control.

This paper establishes fundamental results on invariant cover
for uncertain discrete-time linear control systems. The main con-
tributions are summarized as follows:

• We develop two necessary and sufficient conditions for the
existence of an invariant cover for a given polytopic set
(Theorems 3.1 and 3.2). They suggest a computationally
tractable method of determining whether an invariant cover
exists through linear programming.
• Based on these conditions, we give upper and lower bounds

on the minimal cardinality of an invariant cover (Theo-
rem 4.1). As a complement to Tomar et al. (2020), this upper
bound is valid for the invariance feedback entropy and the
minimal data rate necessary for invariance.
• We provide an iterative algorithm to compute an invariant

cover (Algorithm 1) and prove its finite-time convergence
(Theorem 5.1). The performance of the algorithm is illus-
trated in two examples that use an invariant cover to design
a static coder–controller pair for a networked control system
with a finite data rate to enforce the invariance of a given
set.

The remainder of the paper is organized as follows. The prob-
lem statement is given in Section 2. Section 3 addresses the
existence of an invariant cover and Section 4 gives bounds on its
minimal cardinality. Section 5 provides an algorithm for comput-
ing an invariant cover. The examples in Section 6 detail how to
use the invariant cover to design coder–controllers for networked
control systems. Section 7 concludes the paper.

Notation. N is the set of nonnegative integers and R is the set
of real numbers. For q, s ∈ N with q < s, the sets {r ∈ N |
r ≥ q} and {r ∈ N | q ≤ r ≤ s} are denoted by N≥q and
[q,s], respectively. The ith row and (i, j)-th element of a matrix
∈ Rr×n are denoted as [A]i ∈ R1×n and [A]ij, respectively.

nequalities involving vectors are interpreted element-wise and
is the vector [1 · · · 1]⊤ with dimension dependent on context.
he Euclidean ball with center x ∈ Rn and radius r ∈ R>0 is
r (x) = {z ∈ Rn

| ∥z−x∥2 ≤ r}, where ∥·∥2 is the Euclidean norm.
or sets X,Y ⊆ Rn, the convex hull of X is denoted by conv(X),
nd the Minkowski sum and Pontryagin difference are denoted by
⊕Y = {x+y | x ∈ X, y ∈ Y} and X⊖Y = {x | x+y ∈ X, ∀y ∈ Y}.

For α ∈ R and A ∈ Rr×n we define αX = {αx | x ∈ X} and
X = {Ax | x ∈ X}. The extreme points (vertices) of a polytope P

are denoted vert(P), and for P = {x ∈ Rn
: Vx ≤ v}with V ∈ Rr×n,

v ∈ Rr and k ∈ N[1,r], we denote vertk(P) = {x ∈ vert(P) : [V ]kx <
[v]k}.

2. Problem statement

Consider a discrete-time linear system in the form of

xk+1 = Axk + Buk + wk, (1)

where xk ∈ X ⊆ Rnx is the state, uk ∈ U ⊂ Rnu the control
input and w ∈ W ⊂ Rnx the disturbance input, and A, B are
k

2

matrices with appropriate dimensions. The state and control sets
X and U and the disturbance setW are each assumed to be convex
polyhedral sets:

X ≜ {x ∈ Rnx | Fxx ≤ fx}, (2)
U ≜ {u ∈ Rnu | Fuu ≤ fu}, (3)
W ≜ {w ∈ Rnx | Fww ≤ fw}, (4)

where Fx, Fu, Fw , and fx, fu, fw are matrices and vectors with ap-
propriate dimensions. We assume that U and W are compact sets
and define Q as a compact subset of X.1

Definition 2.1. A set Q ⊆ X is said to be a robust controlled
invariant set (RCIS) if for each x ∈ Q, there exists a control input
u ∈ U such that Ax+ Bu ∈ Q⊖W.

Remark 2.1. An RCIS is a set that can be made invariant by
a state feedback control law under any admissible disturbance.
The computation of such sets is widely studied in the literature,
e.g., Rungger and Tabuada (2017).

A cover of a set Q is a collection of sets whose union includes
Q as a subset. Next we define an invariant cover of Q ⊆ X, which
is a pair consisting of a finite cover of Q and a map from this cover
to the control set U. Each state set from the finite cover can be
driven to the set Q by means of a single control input generated
by the map.

Definition 2.2 (Tomar et al., 2020). A cover A of a nonempty
set Q and a function G : A → U is an invariant cover (A,G)
of the system (1) and Q if A is finite and, for all Xic

∈ A,
AXic
⊕ {BG(Xic)} ⊆ Q⊖W.

Remark 2.2. In the context of networked control systems, an
invariant cover is used to define the invariance feedback entropy
in Tomar et al. (2020). Note that an invariant cover (A,G) im-
mediately provides a static coder–controller: for any x ∈ Q,
the coder transmits one of the sets Xic

∈ A that contains x to
he controller and the controller implements G(Xic) to guarantee
invariance (Fig. 1). In Tomar et al. (2020), the data rate of the
static coder–controller under the invariant cover (A,G) is defined
o be log2 |A| bits per time unit.

xample 2.1. Consider the linear scalar system

k+1 = 2xk + uk + wk,

ith X = R, U = [−1, 1], and W = [−0.4, 0.4]. Let Q =
[−0.6, 0.6]. It is easy to verify that Q is an RCIS. Let Xic

1 =

[−0.6,−0.4], Xic
2 = [−0.4,−0.2], X

ic
3 = [−0.2, 0], X

ic
4 = [0, 0.2],

Xic
5 = [0.2, 0.4], and Xic

6 = [0.4, 0.6]. Define A = {Xic
i }

6
i=1 and

the map G : A→ U with G(Xic
1 ) = 1, G(Xic

2 ) = 0.6, G(Xic
3 ) = 0.2,

G(Xic
4 ) = −0.2, G(X

ic
5 ) = −0.6, and G(Xic

6 ) = −1. We can verify
that (A,G) is an invariant cover for this system and the set Q. The
data rate of the static coder–controller defined by this invariant
cover (A,G) is log2 6 bits per time unit.

From Definition 2.2 it is obvious that Q must be an RCIS in
order that there exists an invariant cover (A,G) of the system (1)
and Q. In this paper, we firstly consider the existence of an
invariant cover.

1 We assume that Q is full-dimensional. If this is not the case, i.e., if Q lies
n an affine subspace of Rnx , then we assume that Q ⊆ S1×S2 and Q∩S1 = {x0}
or some x0 ∈ Rnx , and we apply the following arguments to the subspace S2
and the projection of Q (assumed full-dimensional) onto S .
2



Y. Gao, M. Cannon, L. Xie et al. Automatica 129 (2021) 109588

P

c

3

a

Q

w
d
∥

t

x
(
c

Γ

d
t

L

s

roblem 2.1. Consider the system (1) and a set Q. Find necessary
and sufficient conditions such that there exists an invariant cover
(A,G) of the system (1) and the set Q.

From Remark 2.2 it follows that the data rate of the (static)
coder–controller decreases as the cardinality of the invariant
cover decreases. We define the minimal cardinality of the invari-
ant cover as follows:

|A|∗ = inf |A| s.t. (A,G) is an invariant cover for (1) and Q.

If an invariant cover is known to exist, we consider the following
problem.

Problem 2.2. If an invariant cover (A,G) exists for the system
(1) and a set Q, provide upper and lower bounds on the minimal
cardinality of the invariant cover.

We further consider the computation problem.

Problem 2.3. Design an algorithm to compute an invariant cover
(A,G) for the system (1) and a set Q whenever such invariant
over exists.

. Existence of an invariant cover

This section focuses on Problem 2.1. The sets Q and Q⊖W are
ssumed to have the H-representations

Q = {x ∈ Rnx | Qx ≤ q}, (5)

⊖W = {x ∈ Rnx | Px ≤ p}, (6)

here q ∈ Rnq , p ∈ Rnp and Q , P are matrices with appropriate
imensions. We assume that the rows of Q are normalized so that
[Q ]i∥2 = 1, ∀i ∈ N[1,nq], and that q > 0 so that the origin lies in
he interior of Q.2

For x ∈ Q, we say that a control u is feasible for x if it drives
to Q for all w ∈ W. We denote by Γ ⊆ Rnx+nu the set of all

x, u) such that u is feasible for x. The set Γ can be written as a
ompact polytopic set:

=

{
(x, u) ∈ Rnx × Rnu | Qx ≤ q  

x∈Q

, Fuu ≤ fu  
u∈U

, PAx+ PBu ≤ p  
Ax+Bu∈Q⊖W

}
.

(7)

Define the map Π : U→ 2R
nx as

Π (u) = {x ∈ Rnx | (x, u) ∈ Γ }. (8)

For convenience we set Π (u) = ∅ if u /∈ U. For given u ∈ U, the
set Π (u) has the property that any state x ∈ Π (u) is steered into
Q by u in a single time-step.

Lemma 3.1. For any given u ∈ U, if Π (u) ̸= ∅, then AΠ (u) ⊕
{Bu} ⊆ Q⊖W.

Proof. If Π (u) ̸= ∅, then (7)–(8) imply that Ax+ Bu ⊆ Q⊖W for
all x ∈ Π (u), i.e., AΠ (u)⊕ {Bu} ⊆ Q⊖W. □

The following lemma gives a necessary and sufficient condi-
tion for the existence of an invariant cover.

2 For any full-dimensional Q this can be ensured by redefining the state and
isturbance input of (1) as xk − x0 and wk − x0 + Ax0 , respectively, for any x0 in
he interior of Q.
3

emma 3.2. An invariant cover (A,G) of the system (1) and the
set Q exists if and only if there exist a finite number N ∈ N and a
et {ui ∈ U}Ni=1 such that
N⋃
i=1

Π (ui) = Q. (9)

Proof. See Appendix.

Lemma 3.2 is important to prove the following result.

Theorem 3.1. An invariant cover (A,G) of the system (1) and the
set Q exists if and only if for all x ∈ Q, there exists a control input
u ∈ U such that Br (x) ∩ Q ⊆ Π (u) for some r > 0.

Proof. See Appendix.

We note that there is no obvious computationally tractable
method of checking the necessary and sufficient conditions of
Lemma 3.2 and Theorem 3.1.

3.1. Optimization-based existence condition

This subsection provides computationally tractable necessary
and sufficient conditions for the existence of an invariant cover
for a given set Q. To avoid the computational difficulties of
checking the conditions of Theorem 3.1 based on Br (x) ∩ Q, we
consider instead the set X̄ (x, α) defined for x ∈ Q, α ∈ [0, 1] by

X̄ (x, α) =
{
z ∈ Rnx | Q

(
z − (1− α)x

)
≤ αq

}
.

This set can be equivalently expressed as

X̄ (x, α) = {(1− α)x} ⊕ αQ, (10)

so we therefore have x ∈ X̄ (x, α) ⊆ Q, for all x ∈ Q and
α ∈ [0, 1]. It also follows from (10) that X̄ (x, α) is monotonically
non-decreasing with α, i.e., X̄ (x, α1) ⊆ X̄ (x, α2), for all x ∈ Q and
0 ≤ α1 ≤ α2 ≤ 1.

The results of this section rely on the following two lem-
mas, which are derived from the convexity and linearity of the
conditions defining Π (u) and X̄ (x, α).

Lemma 3.3. Let u =
∑N

i=1 λiu∗i , where u∗i ∈ U, Π (u∗i ) ̸= ∅ and
λi ≥ 0 for all i ∈ N[1,N] with

∑N
i=1 λi = 1. Then

N⨁
i=1

λiΠ (u∗i ) ⊆ Π (u). (11)

Proof. The convexity of U implies that u =
∑N

i=1 λiu∗i ∈ U,
while the convexity of Q and Q ⊖ W imply that x ∈ Q and
Ax + Bu ∈ Q ⊖ W if x =

∑N
i=1 λix∗i , for any {x∗i }

N
i=1 such that

x∗i ∈ Π (u∗i )∀i ∈ N[1,N]. We therefore have x ∈ Π (u) and hence
(11) holds. □

Lemma 3.4. Let x =
∑N

i=1 λix∗i , where x∗i ∈ Q and λi ≥ 0 for all
i ∈ N[1,N] with

∑N
i=1 λi = 1, and let αi ∈ [0, 1] for all i ∈ N[1,N].

Then

X̄
(
x, min

i∈N[1,N]
αi

)
⊆

N⨁
i=1

λiX̄ (x∗i , αi) ⊆ X̄
(
x, max

i∈N[1,N]
αi

)
. (12)

Proof. Given the assumptions on x∗i , λi and αi, we have X̄ (x∗i , αi)
⊇ X̄ (x∗i ,mini∈N[1,N] αi), ∀i ∈ N[1,N], and hence

N⨁
λiX̄ (x∗i , αi) ⊇

N⨁
λiX̄

(
x∗i , min

i∈N[1,N]
αi

)

i=1 i=1



Y. Gao, M. Cannon, L. Xie et al. Automatica 129 (2021) 109588

T
p

D
o

i
a
Γ

c

b
e

t

Fig. 2. The set Γ for two different RCISs: (a) Q = [−0.6, 0.6]; (b) Q′ = [−0.4, 0.4].
i

Π

= {(1− min
i∈N[1,N]

αi)x} ⊕ min
i∈N[1,N]

αi Q

= X̄ (x, min
i∈N[1,N]

αi).

his proves the first subset relation in (12); the second can be
roved using a similar argument. □

We define the critical vertices of Γ as follows.

efinition 3.1. A vertex (x, u) of Γ is said to be a critical vertex
f Γ if: (i) x ∈ vert(Q), (ii) X̄ (x, α) ⊆ Π (u) for some α ∈ (0, 1].

The main result of this section (Theorem 3.2) states that an
nvariant cover (A,G) exists for the system (1) and the set Q if
nd only if every x ∈ vert(Q) corresponds to a critical vertex of
. We prove this using Lemmas 3.3, 3.4, and the properties of
ritical vertices to define for each x ∈ Q a control u such that
X̄ (x, α) ⊆ Π (u) for some α > 0. However, as x approaches the
oundary of Q, x also approaches the boundary of X̄ (x, α). To
nsure the existence of r > 0 such that Br (x) ∩ Q ⊆ Π (u) for all

x ∈ Q and thus fulfill the conditions of Theorem 3.1, we therefore
consider the set X̄ (yσ (x), α). For σ ∈ (0, 1) and x ∈ Q \ (1− σ )Q,
yσ (x) is defined as a point in the boundary of Q given by the
solution of a linear program (LP)

yσ (x) = argmax
y∈Q

min
i/∈Jσ (x)

σ [q]i − [Q ]i
(
x− (1− σ )y

)
s.t. [Q ]jy = [q]j ∀j ∈ Jσ (x)

(13)

with Jσ (x) = {j ∈ N[1,nq] | [Q ]jx > (1− σ )[q]j}. For x ∈ (1 − σ )Q,
we define yσ (x) by

yσ (x) = x. (14)

An upper limit on σ is provided by the following result.

Lemma 3.5. Let σ ∈ (0, σ̄ ], where

σ̄ =
mink∈N[1,nq] minx∈vertk(Q) [q]k − [Q ]kx

maxk∈N[1,nq] maxx∈Q [q]k − [Q ]kx
,

hen

(i). yσ (x) exists for all x ∈ Q;
(ii). Br (x) ∩ Q ⊆ X̄ (yσ (x), σ ) if r = σ 2 minj∈N[1,nq] [q]j.

Proof. See Appendix.

Theorem 3.2. There exists an invariant cover (A,G) of the system
(1) and the set Q if and only if each vertex x of Q corresponds to a
critical vertex (x, u) of Γ .

Proof. See Appendix.

Theorem 3.2 shows that it can be determined whether or
not an invariant cover exists by checking if each vertex of Q
4

has a corresponding critical vertex of Γ . This is the basis of the
computational procedure described in Section 5.

Example 3.1. The set Γ is shown in Fig. 2(a) for the system
n Example 2.1 with Q = [−0.6, 0.6] being an RCIS. It can be
seen that the vertices x = −0.6 and x = 0.6 of Q correspond
respectively to critical vertices (−0.6, 1) and (0.6,−1) of Γ . In
particular, it is easy to verify that α = 1/6 gives X̄ (−0.6, 1/6) =

(1) = [−0.6,−0.4] and X̄ (0.6, 1/6) = Π (−1) = [0.4, 0.6].
Theorem 3.2 therefore implies that an invariant cover of Q exists,
which was given in Example 2.1 and is shown in Fig. 2(a).

Consider the set Q′ = [−0.4, 0.4], which is also an RCIS. The
corresponding set Γ for Q′ is shown in Fig. 2(b). In this case
the set Γ is a line segment. Therefore the vertices of Q′ have no
corresponding critical vertices of Γ . In particular, there is no finite
set of control inputs such that (9) holds and thus there does not
exist an invariant cover for this scalar system and the set Q′.

It can be determined whether or not a given vertex of Q
corresponds to a critical vertex of Γ by solving a linear program,
as we show next. Given the vertices of Q, this suggests a com-
putationally tractable method for checking whether or not an
invariant cover exists: solve the LP for each vertex x ∈ vert(Q).

Lemma 3.6. Let α∗(x) be the optimal value of the LP

α∗(x) = max
α∈[0,1], S≥0, u

α

s.t.
(1− α)PAx+ Sq+ PBu ≤ p
Fuu ≤ fu
SQ = αPA

(15)

and u∗(x) be the solution set for u. Then (x, u) is a critical vertex of
Γ if and only if α∗(x) > 0, x ∈ vert(Q), and u ∈ u∗(x).

Proof. See Appendix.

4. Bounds on the minimal cardinality of an invariant cover

This section develops an approach based on the existence
condition of Theorem 3.2 to address Problem 2.2. We derive
upper and lower bounds on |A|∗, the minimal cardinality of an
invariant cover (A,G) of the system (1) and the set Q.

Define

v∗ = max
u∈Φ

vol
(
Π (u)

)
,

where Φ = {u ∈ U | ∃x, (x, u) ∈ Γ } and vol(·) denotes the
volume. Let α∗ and ᾱ∗ denote the optimal values

α∗ = min
x∈vert(Q)

max
α∈[0,1], S≥0, u

α

s.t.
(1− α)PAx+ Sq+ PBu ≤ p
Fuu ≤ fu

(16)
SQ = αPA
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nd
ᾱ∗ = max

α∈[0,1],S≥0,y,u
α

s.t.

Qy ≤ (1− α)q
PAy+ Sq+ PBu ≤ p
Fuu ≤ fu
SQ = αPA.

(17)

emark 4.1. In (17), ᾱ∗ is the solution of a single LP, whereas
α∗ in (16) is computed by solving one LP for each vertex of Q. In
particular, α∗ = minx∈vert(Q) α

∗(x), where α∗(x) is given by (15).

Before giving the bounds on |A|∗, we need the following
emma.

emma 4.1. Let δ ⊆ Q and σ = min{α∗, σ̄ }. Then,

(i).
(
{x} ⊕ σδ

)
⊆ X̄

(
(1− σ )−1x, σ

)
for x ∈ (1− σ )Q;

(ii).
(
{x} ⊕ σ 2δ

)
∩ Q ⊆ X̄ (yσ (x), σ ) for x ∈ Q \ (1− σ )Q,

where yσ (x) is defined in (13).

Proof. See Appendix.

Theorem 4.1. Let δ = [d1, d1]×· · ·×[dnx , dnx ] and ∆ = [D1,D1]×

· · · × [Dnx ,Dnx ] be inner- and outer-bounding hyperrectangles such
that δ ⊆ Q ⊆ ∆, and let σ = min{α∗, σ̄ }. Then |A|∗ satisfies

a).
⌈
vol(Q)

v∗

⌉
≤ |A|∗ ≤

nx∏
i=1

⌈
Di − Di

(di − di)σ 2

⌉
(18)

b). |A|∗ = 1 if and only if ᾱ∗ = 1.

roof. See Appendix.

emark 4.2. We note that Tomar et al. (2020) only provides a
ower bound on the invariance feedback entropy and the minimal
ata rate necessary for invariance. As a complement, the upper
ound in (18) on the minimal cardinality of an invariant cover
lso provides a bound on these quantities in the light of Lemma 3
f Tomar et al. (2020). Note that this upper bound is likely to
e loose due to the appearance of σ 2 in the denominator, and
his is observed in numerical examples. In addition, the lower
ound in (18) is valid for the minimal data rate achieved over
ll admissible static coder–controllers, but differs from its lower
ound in Theorem 8 of Tomar et al. (2020).

The lower bound on |A|∗ in (18) can in principle be computed
y determining vol(Π (u)) over a finite set of points. Specifically,
he vertices of Π (u) are obtained (as functions of u ∈ Φ) as
he solutions of a set of right-hand-side multiparametric lin-
ar programs, and they are therefore piecewise affine functions
f u with the pieces defined by a polyhedral complex, K, of
ubsets of Φ (Gal, 1995). As a result, the volume of Π (u) can
e expressed (by triangulating Π (u) into a collection of sim-
lexes (Henk, Richter-Gebert, & Ziegler, 2017)) as a sum of non-
egative determinants of matrices whose elements are piecewise
ffine functions of u. It follows that vol(Π (u)) is piecewise quasi-
onvex in u and the maximum, v∗, over u ∈ Φ , is therefore
chieved at a vertex of the complex K.
Determining the volume of an arbitrary polytopic set is com-

utationally hard, see Schneider (2014). Since ᾱ∗ in (17) is the
aximum value of α such that X̄ (x, α) ⊆ Π (u) for some x ∈ Q
nd u ∈ U, a convenient approximation is
∗
≈ (ᾱ∗)nxvol(Q).
 v

5

his implies that the lower bound on |A|∗ in (18) is approxi-
ately equal to (1/ᾱ∗)nx . We note however that (1/ᾱ∗)nx does
ot necessarily lower-bound |A|∗ since v∗ ≥ (ᾱ∗)nxvol(Q).

emark 4.3. Consider a scalar system:

k+1 = axk + uk + wk,

ith X = R, U = [u, ū], and W = [w, w̄]. Let Q = [q, q̄]. Assume
that q < w < w̄ < q̄. Then, we have that vert(Q) = {q, q̄} and
Q⊖W = [q− w, q̄− w̄].

Recall α∗ and ᾱ∗ defined in Eqs. (16)–(17). Since v∗ = (ᾱ∗)nx
vol(Q) when nx = 1, the lower bound in (18) becomes ⌈ 1

ᾱ∗
⌉ ≤

A|∗. On the other hand, according to the definitions of X̄ (x, α)
and α∗, we have that X̄ (x, α∗) ⊆ X̄ (x, α) ⊆ Q, ∀α ∈ [α∗, 1].
ince nx = 1, one can find an invariant cover of Q of the
orm ∪N

i=1X̄ (xi, α∗) for some N ∈ N. Thus, due to the fact that
vol

(
X̄ (xi, α∗)

)
= α∗vol(Q), an upper bound on |A|∗ is |A|∗ ≤

⌈
1
α∗
⌉.
Denote by α∗(q) and α∗(q̄) the optimal value of LP (15) for

the vertices of Q, respectively. Since the optimal value occurs
at a vertex of the feasible region for the LP, we have α∗ ∈

{α∗(q), α∗(q̄)} and ᾱ∗ ∈ {α∗(q), α∗(q̄)}. Therefore, for the scalar
case, the bounds ⌈ 1

ᾱ∗
⌉ ≤ |A|∗ ≤ ⌈ 1

α∗
⌉ are tight if and only if

α∗(q) = α∗(q̄).
In the case of a symmetric scalar system, we set 0 < −u = ū,

0 < −w = w̄, and 0 < −q = q̄. Without loss of generality, we
assume that a > 0. In this case, α∗(q) = α∗(q̄) holds. The explicit
minimal cardinality of an invariant cover is then

|A|∗ =

{
⌈

aq̄
q̄−w̄
⌉ if (a− 1)q̄+ w̄ + ū ≥ 0

+∞ otherwise.

his can be validated by Example 3.1. Note that, in contrast
o Tomar et al. (2020), the control limits are taken into account
n this analysis.

. Algorithm to compute an invariant cover

This section uses the existence conditions discussed in
ection 3 to solve Problem 2.3. Algorithm 1 describes a procedure
or computing an invariant cover of system (1) and a given poly-
opic set Q. The algorithm makes use of the following result (see
emporad, Morari, Dua, & Pistikopoulos, 2002, Theorem 3).

emma 5.1. Let Ȳ be a polytope and let Y0 = {z ∈ Ȳ | Yz ≤ y}
e a nonempty polytopic subset of Ȳ with y ∈ Rny . Let Yi = {z ∈
¯ | [Y ]iz ≥ [y]i, [Y ]jz ≤ [y]j ∀j < i} for each i ∈ N[1,ny]. Then,

ny
i=0 Yi = Ȳ, int(Yi) ∩ int(Y0) = ∅, ∀i, and int(Yi) ∩ int(Yj) = ∅,
i ̸= j. That is, {Yi}

ny
i=1 is a partition of Ȳ with respect to Y0.

Algorithm 1 first uses the condition in Theorem 3.2 to check
he existence of an invariant cover (lines 1–9). If no invariant
over exists, the algorithm stops and returns Null. Otherwise, the
lgorithm continues by repeatedly partitioning subsets of Q using
emma 5.1, with the initial subset Y0 defined in terms of a set
(u) constructed using a convex combination of the vertices of
. The procedure partition(Ȳ) (lines 12–23) constructs a cover
f the set Ȳ and stores this cover and the corresponding control
nputs in (A,G). This process continues until the elements of A
over the entire set Q.
A vertex of Ȳ in line 13 can be found by checking whether any

ertex of Q lies in Ȳ and then solving a LP in n variables if this
x
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Algorithm 1 Invariant Cover Computation

Input: System (1), and sets Q, U, and Q⊖W.
Output: An invariant cover (A, G) for (1) and Q.
1: {xv

i }
N
i=1 ← vert(Q)

2: for all i ∈ N[1,N] do
3: Solve (15) for α∗(xv

i )
4: uv

i ← u∗(xv
i )

5: end for
6: α∗ ← mini α

∗(xv
i )

7: if α∗ = 0 then
8: Stop and return Null
9: end if

10: σ ← min{α∗, σ̄ } and A← ∅
1: Execute partition(Q)
2: procedure partition(Ȳ)
3: Compute x ∈ vert(Ȳ)
4: Compute yσ (x) using (13)–(14)
5: Compute {λi}

N
i=1 satisfying yσ (x) =

∑N
i=1 λixv

i ,
∑N

i=1 λi = 1
and λi ≥ 0∀i ∈ N[1,N]

16: u←
∑N

i=1 λiuv
i

17: A← {A, Π (u)} and G(Π (u))← u
18: Y0 ← Ȳ ∩Π (u)
19: Partition Ȳ \ Y0 into {Yi}

ny
i=1 using Lemma 5.1

20: for each nonempty sub-region Yi do
1: Execute partition(Yi)
2: end for
3: end procedure
4: Return: (A,G)

check fails. The set {λi}
N
i=1 in line 15 can be defined uniquely as

he solution of a LP in N variables:

min
λ1,...,λN

∥

N∑
i=1

λiuv
i ∥∞

.t. y =
N∑
i=1

λixv
i ,

N∑
i=1

λi = 1, λi ≥ 0, ∀i ∈ N[1,N]

he main computational effort of the Algorithm is spent on solv-
ng the LPs in lines 13–15.

heorem 5.1. Algorithm 1 finds an invariant cover of the system
1) and the set Q in finite time if it exists.

roof. See Appendix.

emark 5.1. In contrast to methods for determining robust in-
ariant sets by iteratively computing robust backward reachable
ets until convergence (e.g., Rungger & Tabuada, 2017), Algo-
ithm 1 computes an invariant cover by repeatedly partitioning
n unexplored region.

emark 5.2. In common with other piecewise affine control
aws (e.g., Bemporad et al., 2002), the online implementation of a
tatic coder–controller based on an invariant cover (A,G) may be
omputationally expensive for high-dimensional systems. How-
ver, we can evaluate and may reduce the online computational
omplexity in the following way. Note that the invariant cover
omputed by Algorithm 1 has the property that each element
f A is a polytope Π (u), u ∈ U , defined by the intersection of
t most np + nq half-spaces. As a result, the coder–controller
an be computed for any state x ∈ Q in time that scales as
((np+ nq) log2 N) where N = |A|. To see this, let A = ∪N

i=1Π (ui)
nd Π (u ) = {x ∈ Rnx | H x + H u ≤ h}, where h ∈ Rnh with
i x u

6

h ≤ np + nq, and suppose that, for each j ∈ N[1,nh], the set
[Hu]jui, i ∈ N[1,N]} is sorted (e.g., in increasing order) offline.
nline, given the state x, we can determine a set Inh such that
∈ Π (ui) for all i ∈ Inh by setting I0 = N[1,N] and computing

j = Ij−1 ∩ {i ∈ N[1,N] | [Hu]jui + [Hx]jx ≤ [h]j} for j = 1, . . . , nh.
ince sorting is done offline, the online computation of Ij can

be performed by a binary search requiring fewer than O(log2 N)
comparisons for each j = 1, . . . , nh. The control law can then be
btained by selecting u ∈ {ui, i ∈ Inh}.

. Numerical examples

This section illustrates the proposed algorithm and explores
he dependence of computation on the system dimension. The
umerical experiments were performed using Matlab R2018b
ith the lrs library (Avis, 2000) on a 2.9 GHz Intel Core i7 CPU
ith 16 GB RAM.

.1. Example 1

Consider (1) with parameters defined by

=

[
0.9225 1.0476
1.0476 0.9320

]
, B =

[
1.1518 0
2.4188 0.4991

]
,

Fu =

⎡⎢⎣ 1 0
0 1
−1 0
0 −1

⎤⎥⎦ , fu =

⎡⎢⎣ 1
1
1
1

⎤⎥⎦ ,

Fw =

⎡⎢⎢⎢⎣
−0.9847 0.1745
−0.4028 −0.9153
0.2153 −0.9766
0.6809 −0.7324
0.4028 0.9153

⎤⎥⎥⎥⎦ , fw =

⎡⎢⎢⎢⎣
0.1000
0.1000
0.1000
0.1000
0.1000

⎤⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎢⎢⎢⎣
−0.4040 0.9148
0.3521 0.9360
−0.7061 0.7081
0.1622 0.9868
0.7061 −0.7081
−0.1622 −0.9868

⎤⎥⎥⎥⎥⎥⎦ , q =

⎡⎢⎢⎢⎢⎢⎣
1.0572
1.0744
1.0704
1.0000
1.0000
1.0000

⎤⎥⎥⎥⎥⎥⎦ .

By solving the optimization problem (16), we obtain α∗ =
.2813 > 0, which from Theorem 3.2 implies the existence of
nvariant cover.

First, we compare the bounds on the minimal cardinality of the
nvariant cover in Theorem 4.1 with that in Tomar et al. (2020).
he lower bound on |A|∗ obtained by Theorem 8 of Tomar et al.
2020) is 1, while the lower bound from Theorem 4.1 is |A|∗ ≥ 5.
e can see that the lower bound in our paper is tighter than that

n Tomar et al. (2020) in this example. One explanation is that the
ontrol set is taken into account when deriving the bounds in (18)
y solving the LPs, while the lower bound in Theorem 8 of Tomar
t al. (2020) is independent of the control set.
By implementing Algorithm 1, we compute the invariant cover

A,G) with cardinality |A| = 5 for the set Q shown in Fig. 3.
e use this invariant cover to design a static coder–controller as

n Tomar et al. (2020) and compute the state trajectory starting
rom a vertex of Q, see Fig. 4(a). The state remains at all times
nside the set Q. The corresponding control input trajectory is
hown in Fig. 4(b). The maximal data rate needed to guarantee
nvariance is no greater than log2 5 bits per sampling interval.
ote that the system in this example is open-loop unstable.
rom Section 1.2.2 of Lunze (2014), the critical data rate nec-
ssary for the stabilization of this system without disturbances
s log2 1.9748 bits per sampling interval, where 1.9748 is the
nstable eigenvalue of the matrix A. This critical data rate is
ower than log2 5, which is required for the robust invariance
specification considered here.
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Fig. 3. Invariant cover (A,G) used in Example 1: (a) Xic
1 and G(Xic

1 ) = [0.0461 1]T ; (b) Xic
2 and G(Xic

2 ) = [−0.9317 1]T ; (c) Xic
3 and G(Xic

3 ) = [0.9485 − 0.0991]T ; (d)
ic
4 and G(Xic

4 ) = [−0.4455 1]T ; (e) Xic
5 and G(Xic

5 ) = [0.3649 0.6117]T .
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6.2. Example 2

We consider a quadrotor which is controlled by a remote
computer via a communication network. Following Lai, Lan, and
Chen (2019), the quadrotor can be modeled as a 6-DOF system.
For each axis j ∈ {x, y, z}, the dynamics can be expressed as a
-DOF discrete-time double integrator:

j,k+1 = Axj,k + Buj,k + wj,k,

here

=

[
1 τ

0 1

]
, B =

[
τ 2/2

τ

]
,

he state xj,k = [pj,k vj,k]
T
∈ R2 consists of the position and

elocity, the control input uj,k ∈ R is the acceleration, wj,k
is the external disturbance, and τ is the sampling period. The
elocity and control input are subject to the constraints: vj,k ∈

[vj,min, vj,max] and uj,k ∈ [uj,min, uj,max]. The disturbance wj,k is
bounded according to ∥wj,k∥∞ ≤ w̄j.

The objective is to design a coder–controller with a finite
data rate such that the quadrotor keeps moving in a safe region
as shown in Fig. 6(a). We first compute the maximal RCIS Qj
with respect to the safe region for each axis j. By following the
results in this paper, we then compute an invariant cover through
Algorithm 1 for each Qj. If the invariant cover exists for each axis,
we can design a coder–controller similar to Example 1.

The constraints are defined by the following parameters: vj,min
= −1ms−1, vj,max = 1ms−1, uj,min = −1ms−2, uj,max = 1ms−2,
w̄j = 0.2, and the sampling interval is τ = 0.5 s. The computed
RCIS for each axis is shown in Fig. 5. The lower bound for each
axis from Theorem 4.1 is |Aj|

∗
≥ 3. Note that the origin is not in

the interior of the sets Qj. We need to transform the system such
that the sets Qj contain the origin before using Algorithm 1. We
compute an invariant cover (A ,G ) for each Q with cardinality
j j j

7

|Aj| = 5, as shown in Fig. 5. The corresponding static coder–
controller ensures that the quadrotor position remains in the safe
region at all times and the velocity and acceleration satisfy their
constraints. See Fig. 6 for the position and velocity trajectories
and Fig. 7 for the corresponding control inputs. Note that the
control constraints are satisfied. The data rate needed to enforce
the invariance is at most 3 log2 5 ≈ 6.9658 bits/s.

6.3. Computation time and invariant cover cardinality

To investigate how the computation required by Algorithm 1
depends on the state dimension nx and control dimension nu,
we consider a range of values for (nx, nu) and for each case we
enerate 100 random systems in the form of (1) with linear state
nd control constraints, and with spectral radii no greater than
.3. For each realization we find a set Q that admits an invariant

cover and use Algorithm 1 to compute an invariant cover. The
dependence of computation time on (nx, nu) is shown in the
oxplot of Fig. 8. As expected, the computation time increases as
he state and control input dimensions increase.

Fig. 9 compares |A|, i.e., the cardinality of A computed by
lgorithm 1, with the lower bound derived in Section 4 on the
inimal cardinality |A|∗ for the same randomly generated sys-

ems. The results shown (with 1 ≤ |A| ≤ 50) represent 83% of
ystem realizations. Although Algorithm 1 is not guaranteed to
ind an invariant cover with minimal cardinality, |A| (shown by
he dashed line in Fig. 9) does not exceed the upper bound on
A|∗ in all cases.

. Conclusion

This paper considers some fundamental problems concern-
ng the invariant cover for uncertain discrete-time linear control
ystems. We provide computationally tractable necessary and
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Fig. 4. (a) State trajectory; (b) Control input trajectory.

sufficient conditions on the existence of an invariant cover, as
well as upper and lower bounds on the minimal cardinality of
the invariant cover. In addition, we give an algorithm to compute
an invariant cover in finite time, whenever it exists. Numerical
examples are given to illustrate the effectiveness of the results.
8

Future studies include tighter upper bounds on the mini-
mal cardinality of the invariance cover, abstractions of high-
dimensional spaces from complex specifications, and application
to safety–critical systems.

Appendix. Proofs

Proof of Lemma 3.2. The sufficiency directly follows from Defi-
nition 2.2 and Lemma 3.1. We prove the necessity as follows. Let
(A,G) be an invariant cover for (1) and Q, where A = {Xic

i }
Nic
i=1 and

for each Xic
i , there exists uic

i = G(Xic
i ) ∈ U such that AXic

i ⊕ Buic
i ⊆

Q⊖W. Here Nic is the cardinality of A.
From the definition of Π (u) in (8), it follows that any set
⊆ Q such that AY⊕{Bu} ⊆ Q⊖W for some u ∈ U is a subset of

Π (u). This implies that, ∀i ∈ N[1,Nic], X
ic
i ⊆ Π (uic

i ) ⊆ Q, and since
∪

Nic
i=1X

ic
i = Q, it follows that {uic

i }
Nic
i=1 satisfies ∪Nic

i=1Π (uic
i ) = Q. □

Proof of Theorem 3.1. We first show that the existence of an
invariant cover for (1) and Q implies that for all x ∈ Q there exist
u ∈ U and r > 0 such that Br (x) ∩ Q ⊆ Π (u).

For given x ∈ Q, u ∈ U and r > 0, let Θ(u) denote the set
z | PAz + PBu ≤ p} and let Pr (x) denote the set {z | PA(z − x) ≤
1}. Furthermore, suppose that the rows of PA are normalized
ith ∥[PA]i∥2 = 1, ∀i ∈ N[1,np] (this can be assumed without

oss of generality by appropriately scaling P and p). Then the nx-
imensional ball Br (x) is a subset of Θ(u) if and only if Pr (x) is a
ubset of Θ(u) (since the polytopes Θ(u) and Pr (x) share the same
et of face normals and since each face of Pr (x) is contained in a
upporting hyperplane of Br (x)). Moreover, from Π (u) = Θ(u)∩Q
t follows that Br (x) ∩ Q ⊆ Π (u) if Pr (x) ∩ Q ⊆ Π (u). But
r (x) ∩ Q ⊆ Π (u) requires that

z | PA(z − x) ≤ r1
Qz ≤ q

}
⊆

{
z | PAz + PBu ≤ p

Qz ≤ q

}
,

nd by linear programming duality this is equivalent to the con-
ition that there exists a matrix S with non-negative elements
uch that

S
[
PA
Q

]
=

[
PA
Q

]
, (19)[

r1+ PAx
q

]
≤

[
p− PBu

q

]
. (20)

eplacing q on the left side of (20) with Qx + q − Qx and using
19), we re-write (20) as

PAx+ PBu− p
]
≤ S

[
−r1

]
. (21)
Qx− q Qx− q
Fig. 5. (a) RCIS Qx and invariant cover for x axis; (b) RCIS Qy and invariant cover for y axis; (c) RCIS Qz and invariant cover for z axis. Here, the elements in the
nvariant covers are in different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. (a) Position trajectory; (b) velocity trajectory.

Fig. 7. Control input trajectory.
9

Fig. 8. Computation time of invariant cover with respect to the state dimension
nx and the control dimension nu .

Fig. 9. In red: box plot of the approximate lower bound (1/ᾱ∗)nx on |A|∗ . In
blue: the observed distribution of |A|. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Suppose that an invariant cover exists for (1) and let

ϵ = max
i∈N[1,np]

max
x∈Q

min
u∈U
[PA]ix+ [PB]iu− [p]i.

Then ϵ ≤ 0 by Lemma 3.2. If ϵ < 0, then for all x ∈ Q there
necessarily exists u ∈ U so that S = I and r = −ϵ > 0 are feasible
or (19), (21) and S ≥ 0. For the case in which ϵ = 0, let I be the
et of indices i ∈ N[1,np] such that [PA]ix∗i + [PB]iu

∗

i − [p]i = 0, for
ome x∗i ∈ Q and u∗i ∈ U. Then for all x ∈ Q there exists u ∈ U
so that [PA]ix + [PB]iu − [p]i ≤ ϵ′ for all i ∈ N[1,np] \ I, for some
ϵ′ < 0. Furthermore, for each i ∈ I, x∗i and u∗i are the solutions of
the linear programs

x∗i = argmax
x∈Q
[PA]ix, u∗i = argmin

u∈U
[PB]iu,

and it follows from LP duality that there exist an index set Ji ⊆

[1,nq] and scalars λj ≥ 0 such that

[PA]i =
∑

λj[Q ]j

j∈Ji
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a
nd [Q ]jx∗i − [q]j = 0 for all j ∈ Ji. In this case therefore
S =

[
S1 S2
0 I

]
, where S1 is diagonal and

[S1]ii =
{
0 i ∈ I,

1 i /∈ I
[S2]ij =

{
λj i ∈ I and j ∈ Ji,

0 i /∈ I

satisfies S ≥ 0 and (19), and moreover (21) holds for all x ∈ Q
with r = −ϵ′ > 0 and some u ∈ U.

To complete the proof we show that an invariant cover neces-
sarily exists for (1) and Q if, for all x ∈ Q there exists u ∈ U such
that Br (x) ∩ Q ⊆ Π (u) for some r > 0. In this case it is possible
to construct a set {x∗i }

N
i=1 for some finite N (where N = O(r−nx ))

that satisfies: (i) ∪N
i=1Br (x∗i ) ⊇ Q; and (ii) for all i ∈ N[1,N], x∗i ∈ Q

and Π (u∗i ) ⊇ Br (x∗i ) ∩ Q for some u∗i ∈ U.
Therefore an invariant cover exists by Lemma 3.2 and |A|∗ ≤

N . □

Proof of Lemma 3.5. To prove the assertion in (i) we show by
contradiction that (13) has a solution for all x ∈ Q \ (1 − σ )Q if
σ ≤ σ̄ . For σ ∈ (0, 1) and x ∈ Q \ (1 − σ )Q, let Jσ (x) = {j ∈
N[1,nq] : [Q ]jx > (1− σ )[q]j} and define σj for each j ∈ N[1,nq]

σj(x) =
{
([q]j − [Q ]jx)/[q]j if j ∈ Jσ (x)
σ otherwise

so that σj(x) ∈ [0, σ )∀j ∈ Jσ (x). Also define Qσ (x) ⊆ σQ as the set

Qσ (x) =
{
z ∈ Rnx | [Q ]jz ≤ σj(x)[q]j, ∀j ∈ N[1,nq]

}
.

For each j ∈ Jσ (x), there exists y = x+z ∈ Q such that [Q ]jy = [q]j
for some z ∈ vert(Qσ (x)).

Suppose that (i) is false and (13) is primal infeasible. Then
there exists a pair of indices j1, j2 ∈ Jσ (x) such that the hyper-
planes {y | [Q ]j1y = [q]j1} and {y | [Q ]j2y = [q]j2} have no
point of intersection in Q. But [Q ]jiyi = [q]ji where yi = x + zi,
zi ∈ vert(Qσ (x)), i = 1, 2, and hence

[q]j2 − [Q ]j2x = [q]j2 − [Q ]j2 (y1 − z1)
≥ min

x∈vertj2 (Q)

{
[q]j2 − [Q ]j2x

}
+ min

z∈Qσ (x)
[Q ]j2z

≥ min
k

min
x∈vertk(Q)

{
[q]k − [Q ]kx

}
+ σ min

x∈Q
[Q ]j2x,

where the first inequality follows from [Q ]j2y1 < [q]j2 and
z1 ∈ Qσ (x), and the second inequality from Qσ (x) ⊆ σQ. But
[q]j2 − [Q ]j2x = σ2[q]j2 < σ [q]j2 , which implies

σ [q]j2 > min
k

min
x∈vertk(Q)

[q]k − [Q ]kx+ σ min
x∈Q
[Q ]j2x,

and hence σ must be greater than σ̄ . Therefore, if σ ≤ σ̄ , then
y ∈ Q and z ∈ vert(Qσ (x)) must exist such that y = x + z and
[Q ]jy = [q]j∀j ∈ Jσ (x), and it follows that (13) has a solution for
all x ∈ Q \ (1− σ )Q.

To prove the assertion in (ii) we show that Br (x) ∩ Q ⊆
X̄ (yσ (x), σ ) with r = σ 2 minj[q]j. First consider the case in which
x ∈ (1 − σ )Q. Then yσ (x) = x so X̄ (yσ (x), σ ) = X̄ (x, σ ) and
Br (x) ⊆ X̄ (x, σ ) if and only if

{z | Q (z − x) ≤ r1} ⊆ {z | Q (z − x) ≤ σ (q− Qx)}.

The condition holds whenever r ≤ minj∈N[1,nq] σ ([q]j − [Q ]jx)
but x ∈ (1 − σ )Q implies q − Qx ≥ σq, and it follows that
Br (x) ⊆ X̄ (x, σ ) if r = σ 2 minj∈N[1,nq] [q]j.

Next we determine r so that Br (x) ∩ Q ⊆ X̄ (yσ (x), σ ) for
the case that x ∈ Q \ (1− σ )Q. The definition of yσ (x) implies
[Q ]jyσ (x) = [q]j for all j ∈ Jσ (x), and since

Br (x) ∩ Q ⊆
{
z | Q (z − yσ (x))

≤ min{r1+ Q (x− y (x)), q− Qy (x)}
}
,
σ σ

10
we have Br (x)∩Q ⊆ X̄ (yσ (x), σ ) if r + [Q ]j(x− yσ (x)) ≤ σ ([q]j −
[Q ]jyσ (x)) for all j /∈ Jσ (x), or equivalently if

r ≤ min
j/∈Jσ (x)

σ [q]j − [Q ]j
(
x− (1− σ )yσ (x)

)
.

But (13) selects yσ (x) so that the right hand side of this expression
is minimized for some x ∈ vert(Q) (since this implies that yσ (x) =
x ∈ vert(Q)), and we therefore have

min
j/∈Jσ (x)

σ [q]j − [Q ]j
(
x− (1− σ )yσ (x)

)
≥ σ min

j/∈Jσ (x)
[q]j − [Q ]jx ≥ σ 2 min

k
[q]k,

where the first inequality is obtained by setting yσ (x) = x and the
second follows from [Q ]jx ≤ (1−σ )[q]j for all j /∈ Jσ (x). Therefore
Br (x) ∩ Q ⊆ X̄ (yσ (x), σ ) if r = σ 2 minj∈N[1,nq] [q]j. □

Proof of Theorem 3.2. Every vertex of Q corresponds to a critical
vertex of Γ if and only if for each x ∈ vert(Q) there exist α ∈

(0, 1] and u ∈ U such that X̄ (x, α) ⊆ Π (u). From (10) it is obvious
that α > 0 is necessary for Br (x) ∩ Q ⊆ X̄ (x, α) for some r > 0.
Therefore Br (x) ∩ Q ⊆ X̄ (x, α) ⊆ Π (u) for some r > 0 and u ∈ U
only if every vertex of Q corresponds to a critical vertex of Γ , and
it follows from Theorem 3.1 that this is a necessary condition for
existence of an invariant cover.

To prove sufficiency, note that for all x ∈ Q, yσ (x) can be
expressed yσ (x) =

∑N
i=1 λix∗i , with {x∗i }

N
i=1 = vert(Q), λi ≥ 0 for

all i ∈ N[1,N] and
∑N

i=1 λi = 1. If every vertex of Q corresponds
to a critical vertex of Γ , then αi ∈ (0, 1] and u∗i ∈ U exist for all
i ∈ N[1,N] so that X̄ (x∗i , αi) ⊆ Π (u∗i ). Using Lemmas 3.3 and 3.4
we therefore obtain

X̄
(
yσ (x), min

i∈N[1,N]
αi

)
⊆

N⨁
i=1

λiX̄ (x∗i , αi) ⊆
N⨁
i=1

λiΠ (u∗i ) ⊆ Π (u)

where u =
∑N

i=1 λiu∗i ∈ U. Furthermore, Lemma 3.5 implies that
Br (x) ∩ Q ⊆ X̄ (yσ (x), α) with r = σ 2 mink[q]k if σ = min{α, σ̄ }.
Therefore mini∈N[1,N] αi > 0 ensures that r > 0 and hence an
invariant cover must exist by Theorem 3.1. □

Proof of Lemma 3.6. For given x ∈ Q, (15) determines the
maximum value of α ∈ [0, 1] such that X̄ (x, α) ⊆ Π (u) for
some u ∈ U. Specifically, since X̄ (x, α) ⊆ Q for all x ∈ Q and
α ∈ [0, 1], we have X̄ (x, α) ⊆ Π (u) if and only if there exists
u ∈ U such that AX̄ (x, α)⊕ {Bu} ⊆ Q⊖W. By LP duality, this set
inclusion condition holds if and only if a non-negative matrix R
exists satisfying

RQ = PA
(1− α)PAx+ αRq+ PBu ≤ p.

The variable transformation S = αR results in a set of constraints
that are linear in u, α and S. The problem of maximizing α subject
to X̄ (x, α) ⊆ Π (u) and u ∈ U can therefore be expressed as the
LP (15). □

Proof of Lemma 4.1. The assertion in (i) directly follows from the
definition of the set X̄ (x, σ ). For given x ∈ (1−σ )Q,

(
{x}⊕σδ

)
⊆(

{x} ⊕ σQ
)
= X̄

(
(1− σ )−1x, σ

)
.

The assertion in (ii) can be demonstrated by showing that(
{x} ⊕ σ 2Q

)
∩ Q ⊆ X̄

(
yσ (x), σ

)
using an argument similar to

the proof of Lemma 3.5, assertion (ii). For σ̂ > 0 we have(
{x} ⊕ σ̂Q

)
∩ Q =

{
z | [Q ]jz ≤ min{[q]j, σ̂ [q]j + [Q ]jx},

∀j ∈ N
}
.
[1,nq]
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Therefore
(
{x} ⊕ σ̂Q

)
∩ Q ⊆ X̄

(
yσ (x), σ

)
=

{
z | Qz ≤

q+ (1− σ )Qyσ (x)
}
if and only if for all j ∈ N[1,nq],

[q]j + (1− σ )[Q ]jyσ (x) ≥ min{[q]j, σ̂ [q]j + [Q ]jx}.

ecall that Jσ (x) = {j ∈ N[1,nq] | [Q ]jx > (1 − σ )[q]j} and
Q ]jyσ (x) = [q]j for j ∈ Jσ (x), from which it follows that for all
j ∈ Jσ (x),

σ [q]j + (1− σ )[Q ]jyσ (x) = [q]j ≥ min{[q]j, σ̂ [q]j + [Q ]jx}.

For j /∈ Jσ (x), σ [q]j − [Q ]j
(
x − (1 − σ )yσ (x)

)
is minimized over

x ∈ Q \ (1 − σ )Q when x = yσ (x), and we therefore have
σ [q]j − [Q ]j

(
x− (1− σ )yσ (x)

)
= σ ([q]j − [Q ]jx) ≥ σ 2

[q]j, and

σ [q]j + (1− σ )[Q ]jyσ (x) ≥ σ 2
[q]j + [Q ]jx

≥ min{[q]j, σ 2
[q]j + [Q ]jx} ∀j ̸∈ Jσ (x).

It follows that
(
{x}⊕ σ̂ δ

)
∩Q ⊆

(
{x}⊕ σ̂Q

)
∩Q ⊆ X̄

(
yσ (x), σ

)
if σ̂ = σ 2. □

Proof of Theorem 4.1. We first consider the statement in (a). The
lower bound on |A|∗ in (18) follows directly from the volumetric
scaling of the maximal set Π (u) relative to Q and the definition
of v∗ as maxu∈Φ vol(Π (u)). To prove the upper bound on |A|∗ in
(18), we note that by the proof of Theorem 3.2 and Lemma 4.1,
for all x ∈ Q,

(
{x} ⊕ σ 2δ

)
∩ Q ⊆ X̄ (yσ (x), σ ) ⊆ Π (u) for some

u ∈ U, where yσ (x) is defined in (13)–(14). The upper bound on
|A∗| in (18) then follows from an upper bound on the cardinality
of a cover ofQ of the form ∪N

i=1

(
{xi}⊕σ 2δ

)
, which can be obtained

from the ratios of the corresponding sides of the hyperrectangles
∆ (which contains Q) and σ 2δ.

To prove the statement in (b), we note that the value of ᾱ∗ in
(17) is the maximum, as x varies over Q, of α ∈ [0, 1] such that
X̄ (x, α) ⊆ Π (u) for some u ∈ U. This follows from Lemma 3.6,
which implies that ᾱ∗ = maxx∈Q α∗(x). Furthermore from (10)
e have X̄ (x, α) = Q if and only if α = 1, and it follows that

A = Q (and hence |A|∗ = 1) if and only if ᾱ∗ = 1. In this case
G(Q) is simply equal to u∗, the optimal value of u in (16). □

Proof of Theorem 5.1. We demonstrate that Algorithm 1 termi-
nates in finite time whenever an invariant cover exists for the
system (1) and set Q by showing that partition(Ȳ) in line 21
can only be invoked a finite number of times if α∗ > 0. Since

is defined in line 10 as min{σ̄ , α∗}, Lemma 3.5 implies that
ach pair (x, u) computed in lines 13 and 16 satisfies Br (x)∩Q ⊆
¯(yσ (x), σ ) ⊆ Π (u) with r = σ 2 minj[q]j > 0 if α∗ > 0. Therefore
0 computed in line 18 satisfies Br (x) ∩ Ȳ = Br (x) ∩ Q ∩ Ȳ ⊆

Π (u)∩ Ȳ = Y0, so that each vertex of Y0 that is not a vertex of Ȳ
is necessarily of a distance of at least r from x. Since x is defined
as a vertex of Ȳ in line 13, it follows that partition(Ȳ) can be
called only a finite number of times before A covers Q. □
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