
Chapter 9
Discrete-Time Networked Control Under
Scheduling Protocols

Kun Liu, Emilia Fridman and Karl Henrik Johansson

Abstract This chapter analyzes the exponential stability of discrete-time networked
control systems viadelay-dependent Lyapunov-Krasovskii methods. The time-delay
approach has been developed recently for the stabilization of continuous-time net-
worked control systems under a Round-Robin protocol and a weighted Try-Once-
Discard protocol, respectively. In the present chapter, the time-delay approach is
extended to the stability analysis of discrete-time networked control systems under
both these scheduling protocols. First, the closed-loop system is modeled as a
discrete-time switched system with multiple and ordered time-varying delays under
the Round-Robin protocol. Then, a discrete-time hybrid systemmodel for the closed-
loop system is presented under these protocols. It contains time-varying delays in
the continuous dynamics and in the reset conditions. The communication delays are
allowed to be larger than the sampling intervals. Polytopic uncertainties in the sys-
tem model can be easily included in our analysis. The efficiency of the time-delay
approach is illustrated in an example of a cart-pendulum system.

9.1 Introduction

Network control systems (NCSs) are spatially distributed systems in which the
communication between sensors, actuators, and controllers occurs through a com-
munication network [1, 22]. In many such systems, only one node is allowed to use

K. Liu (B)
School of Automation,
Beijing Institute of Technology, 100081 Beijing, China
e-mail: kunliubit@bit.edu.cn

E. Fridman
School of Electrical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
e-mail: emilia@eng.tau.ac.il

K.H. Johansson
ACCESS Linnaeus Centre and School of Electrical Engineering, KTH Royal Institute of
Technology, SE-100 44, Stockholm, Sweden
e-mail: kallej@kth.se

© Springer International Publishing Switzerland 2016
A. Seuret et al. (eds.), Delays and Networked Control Systems,
Advances in Delays and Dynamics 6, DOI 10.1007/978-3-319-32372-5_9

151



152 K. Liu et al.

the communication channel at each time instant. In the present chapter, we focus
on the stability analysis of discrete-time NCSs with communication constraints. The
scheduling of sensor information towards the controller is defined by a Round-Robin
(RR) protocol or by a weighted Try-Once-Discard (TOD) protocol. A linear system
with distributed sensors is considered. Three recent approaches for NCSs are based
on discrete-time systems [2, 3, 7], impulsive/hybrid systems [10, 18, 19] and time-
delay systems [4, 6, 8, 12, 21].

The time-delay approach was developed for the stabilization of continuous-time
NCSs under a RR protocol in [15] and under a weighted TOD protocol in [16]. The
closed-loop system was modeled as a switched system with multiple and ordered
time-varying delays under RR protocol or as a hybrid system with time-varying
delays in the dynamics and in the reset equations under TOD protocol. Differently
from the existing hybrid and discrete-time approaches on the stabilization of NCS
with scheduling protocols, the time-delay approach allows treating the case of large
communication delays.

In the present chapter, the time-delay approach is extended to the stability analysis
of discrete-time NCSs under RR and weighted TOD scheduling protocols. First, the
closed-loop system is modeled as a discrete-time switched system with multiple
and ordered time-varying delays under RR protocol. Then, a discrete-time hybrid
system model for the closed-loop system is presented that contains time-varying
delays in the continuous dynamics and in the reset conditions under TOD and RR
protocols. Differently from [14], the same conditions are derived for the exponential
stability of the resulting hybrid systemmodel under both these scheduling protocols.
The communication delays are allowed to be larger than the sampling intervals.
The conditions are given in terms of Linear Matrix Inequalities (LMIs). Polytopic
uncertainties in the systemmodel canbe easily included in the analysis. The efficiency
of the presented approach is illustrated by a cart-pendulum system.

Notation: Throughout the chapter, the superscript ‘T ’ stands for matrix transpo-
sition, Rn denotes the n dimensional Euclidean space with vector norm | · |, Rn×m

is the set of all n × m real matrices, and the notation P>0, for P ∈ R
n×n means

that P is symmetric and positive definite. The symmetric elements of a symmetric
matrix will be denoted by ∗. Z+,N and R

+ denote the set of non-negative integers,
positive integers integers and non-negative real numbers, respectively.

9.2 Discrete-Time Networked Control Systems Under
Round-Robin Scheduling: A Switched System Model

9.2.1 Problem Formulation

Consider the system architecture in Fig. 9.1 with plant

x(t + 1) = Ax(t) + Bu(t), t ∈ Z
+, (9.1)
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Fig. 9.1 Discrete-time
NCSs under RR scheduling

where x(t) ∈ R
n is the state vector,u(t) ∈ R

nu is the control input, A and B are system
matrices with appropriate dimensions. The initial condition is given by x(0) = x0.

The NCS has several nodes connected via networks. For the sake of simplicity, we
consider two sensor nodes yi (t) = Ci x(t), i = 1, 2 and we denote C = [

CT
1 CT

2

]T
,

y(t) = [
yT1 (t) yT2 (t)

]T ∈ R
ny , t ∈ Z

+.We let sk denote the unbounded andmonoto-
nously increasing sequence of sampling instants, i.e.,

0 = s0 < s1 < · · · < sk < · · · , lim
k→∞ sk = ∞, sk+1 − sk ≤ MATI, k ∈ Z

+,

(9.2)
where {s0, s1, s2, . . . } is a subsequence of {0, 1, 2, . . . } andMATI denotes the Maxi-
mumAllowableTransmission Interval.At each sampling instant sk , one of the outputs
yi (t) ∈ R

ni (n1 + n2 = ny) is sampled and transmitted via the network. First, we con-
sider the RR scheduling protocol for the choice of the active output node: the outputs
are transmitted one after another, i.e., yi (t) = Ci x(t), t ∈ Z

+ is transmitted only at
the sampling instant t = s2p+i−1, p ∈ Z

+, i = 1, 2. After each transmission and
reception, the values in yi (t) are updated with the newly received values, while the
values of y j (t) for j �= i remain the same, as no additional information is received.
This leads to the constrained data exchange expressed as

yik =
{
yi (sk) = Ci x(sk), k = 2p + i − 1,

yik−1, k �= 2p + i − 1,
p ∈ Z

+.

It is assumed that no packet dropouts and no packet disorders will happen during
the data transmission over the network. The transmission of the information over the
network is subject to a variable delay ηk ∈ Z

+, which is allowed to be larger than
the sampling intervals. Then tk = sk + ηk is the updating time instant of the ZOH
device.

Assume that the network-induced delay ηk and the time span between the updating
and the current sampling instants are bounded:

tk+1 − 1 − tk +ηk ≤ τM , 0 ≤ ηm ≤ ηk ≤ ηM , k ∈ Z
+, (9.3)
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where τM , ηm and ηM are known non-negative integers. Then

(tk+1 − 1) − sk = sk+1 − sk + ηk+1 − 1 ≤ MATI+ηM − 1 = τM ,

(tk+1 − 1) − sk−1 = sk+1 − sk−1 + ηk+1 − 1 ≤ 2MATI+ηM − 1

= 2τM − ηM + 1
Δ= τ̄M ,

tk+1 − tk ≤ τM − ηm + 1.

(9.4)

Note that the first updating time t0 corresponds to the first data received by the
actuator, which means that u(t) = 0, t ∈ [0, t0 − 1]. Then for t ∈ [0, t0 − 1], (9.1)
is given by

x(t + 1) = Ax(t), t = 0, 1, . . ., t0 − 1, t ∈ Z
+. (9.5)

In [15], a time-delay approach was developed for the stability and L2-gain analy-
sis of continuous-time NCSs with RR scheduling. In this section, we consider the
stability analysis of discrete-time NCSs under RR scheduling protocol.

It is assumed that the controller and the actuator are event-driven. Suppose
that there exists a matrix K = [

K1 K2
]
, K1 ∈ Rnu×n1 , K2 ∈ Rnu×n2 such that

A + BKC is Schur. Consider the static output feedback of the form:

u(t) = K1y
1
k + K2y

2
k , t ∈ [

tk, tk+1 − 1
]
, t ∈ N, k ∈ N,

Following [15], the closed-loop system with RR scheduling is modeled as a
switched system:

x(t + 1) = Ax(t) + A1x(tk−1 − ηk−1) + A2x(tk − ηk), t ∈ [tk, tk+1 − 1],
x(t + 1) = Ax(t) + A1x(tk+1 − ηk+1) + A2x(tk − ηk), t ∈ [tk+1, tk+2 − 1],

(9.6)
where k = 2p − 1, p ∈ N, Ai = BKiCi , i = 1, 2. For t ∈ [tk, tk+1 − 1], we can
represent

tk − ηk = t − τ1(t), tk−1 − ηk−1 = t − τ2(t),

where
τ1(t) = t − tk + ηk < τ2(t) = t − tk−1 + ηk−1,

τ1(t) ∈ [ηm, τM ], τ2(t) ∈ [ηm, τ̄M ], t ∈ [tk, tk+1 − 1]. (9.7)

Therefore, (9.6) for t ∈ [tk, tk+1 − 1] can be considered as a system with two
time-varying interval delays, where τ1(t) < τ2(t). Similarly, for t ∈ [tk+1, tk+2 − 1],
(9.6) is a system with two time-varying delays, one of which is less than another.

For t ∈ [t0, t1 − 1], the closed-loop system is reduced to the following form

x(t + 1) = Ax(t) + A1x(t0 − η0), t ∈ [t0, t1 − 1].
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9.2.2 Stability Analysis of the Switched System Model

Applying the following discrete-time Lyapunov-Krasovskii functional (LKF) to
system (9.6) with time-varying delay from the maximum delay interval [ηm, τ̄M ] [5]:

VRR(t) = xT (t)Px(t) +
t−1∑

s=t−ηm

λt−s−1xT (s)S0x(s)

+ηm

−1∑

j=−ηm

t−1∑

s=t+ j

λt−s−1ηT (s)R0η(s) +
t−ηm−1∑

s=t−τ̄M

λt−s−1xT (s)S1x(s)

+(τ̄M − ηm)

−ηm−1∑

j=−τ̄M

t−1∑

s=t+ j

λt−s−1ηT (s)R1η(s),

η(t) = x(t + 1) − x(t), P > 0, Si > 0, Ri > 0, i = 0, 1, 0 < λ < 1, t ≥ 0,

where following [13], we define (for simplicity) x(t) = x0, t ≤ 0.
Similar to [15], by taking advantage of the ordered delays and using convex

analysis of [20], we arrive to the following sufficient conditions for the stability of
the switched system:

Theorem 1 Given scalars 0 < λ ≤ 1, positive integers 0 ≤ ηm ≤ ηM < τM, and
K1, K2, let there exist scalars n × n matrices P > 0, Sϑ > 0, Rϑ > 0 (ϑ = 0, 1),
Gi

1,G
i
2,G

i
3 (i = 1, 2) such that the following matrix inequalities are feasible:

Ωi =
⎡

⎣
R1 Gi

1 Gi
2

∗ R1 Gi
3

∗ ∗ R1

⎤

⎦ ≥ 0, (9.8)

(Fi
0)

T PFi
0 + Σ + (Fi

01)
T H Fi

01 − ληm FT
12R0F12 − λτ̄M FTΩi F < 0, (9.9)

where
Fi
0 = [A 0 Ai A3−i 0],

Fi
01 = [A − I 0 Ai A3−i 0], i = 1, 2,

F12 = [I − I 0 0 0],

F =
⎡

⎣
0 I −I 0 0
0 0 I −I 0
0 0 0 I −I

⎤

⎦ ,

Σ = diag{S0 − λP,−ληm (S0 − S1), 0, 0,−λτ̄M S1},
H = η2

m R0 + (τ̄M − ηm)2R1.

Then, the closed-loop system (9.6) is exponentially stable with the decay rate λ.

Proof Consider t ∈ [tk, tk+1 − 1] and define ξ(t) = col{x(t), x(t − ηm), x(tk−1 −
ηk−1), x(tk − ηk), x(t − τ̄M)}. Along (9.6), we have
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VRR(t + 1) − λVRR(t) ≤ ξ T (t)[(Fi
0)

T PFi
0 + Σ + (Fi

01)
T H Fi

01]ξ(t)

−ληmηm

t−1∑

s=t−ηm

ηT (s)R0η(s)

−λτ̄M (τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s).

By Jensen’s inequality [9], we have

ηm

t−1∑

s=t−ηm

ηT (s)R0η(s) ≥
t−1∑

s=t−ηm

ηT (s)R0

t−1∑

s=t−ηm

η(s)

= ξ T (t)FT
12R0F12ξ(t).

Taking into account that tk−1 − ηk−1 < tk − ηk (i.e. that the delays satisfy the
relation (9.7)) and applying further Jensen’s inequality, we obtain

−(τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s)

= −(τ̄M − ηm)
[ t−ηm−1∑

s=tk−ηk

ηT (s)R1η(s) +
tk−ηk−1∑

s=tk−1−ηk−1

ηT (s)R1η(s)

+
tk−1−ηk−1−1∑

s=t−τ̄M

ηT (s)R1η(s)
]

≤ − 1

α1
f1(t) − 1

α2
f2(t) − 1

α3
f3(t),

where

α1 = t − ηm − tk + ηk

τ̄M − ηm
, α2 = tk − ηk − tk−1 + ηk−1

τ̄M − ηm
, α3= τ̄M − t + tk−1 − ηk−1

τ̄M − ηm
,

f1(t) = [x(t − ηm) − x(tk − ηk)]T R1[x(t − ηm) − x(tk − ηk)],
f2(t) = [x(tk − ηk) − x(tk−1 − ηk−1)]T R1[x(tk − ηk) − x(tk−1 − ηk−1)],
f3(t) = [x(tk−1 − ηk−1) − x(t − τ̄M)]T R1[x(tk−1 − ηk−1) − x(t − τ̄M)].

Denote

g1,2(t) = [x(t − ηm) − x(tk − ηk)]T G1
1[x(tk − ηk) − x(tk−1 − ηk−1)],

g1,3(t) = [x(t − ηm) − x(tk − ηk)]T G1
2[x(tk−1 − ηk−1) − x(t − τ̄M)],

g2,3(t) = [x(tk − ηk) − x(tk−1 − ηk−1)]T G1
3[x(tk−1 − ηk−1) − x(t − τ̄M)].
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Note that (9.8) with i = 1 guarantees
[
R1 G1

j
∗ R1

]
≥ 0 ( j = 1, 2, 3), and, thus,

[
fi (t) gi, j (t)
gi, j (t) f j (t)

]
≥ 0, i �= j, i = 1, 2, j = 2, 3.

Then, we arrive to

−(τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s) ≤ − 1

α1
f1(t) − 1

α2
f2(t) − 1

α3
f3(t)

≤ − f1(t) − f2(t) − f3(t) − 2g1,2(t) − 2g1,3(t) − 2g2,3(t) = −ξ T (t)FTΩ1Fξ(t),

where Ω1 is given by (9.8) with i = 1. The latter inequality holds if (9.8) is feasible
[20]. Hence, (9.9) with i = 1 guarantees that VRR(t + 1) − λVRR(t) ≤ 0 for t ∈
[tk, tk+1 − 1].

Similarly, for t ∈ [tk+1, tk+2 − 1], (9.8) and (9.9) with i = 2 guarantee VRR(t +
1) − λVRR(t) ≤ 0. Thus, (9.6) is exponentially stable with the decay rate λ.

9.3 Discrete-Time Networked Systems Under the
Try-Once-Discard and Round-Robin Scheduling:
A Hybrid Time-Delay Model

9.3.1 Problem Formulation

In [16], a weighted TOD protocol was analyzed for the stabilization of continuous-
time NCSs. In this section, we consider discrete-time NCSs under TOD and RR
scheduling via a hybrid delayed model.

Consider (9.1) with two sensor nodes yi (t) = Ci x(t), i = 1, 2 and a sequence
of sampling instants (9.2). At each sampling instant sk , one of the outputs yi (t) ∈
R

ni (n1 + n2 = ny) is sampled and transmitted via the network. Denote by ŷ(sk) =
[
ŷT1 (sk) ŷT2 (sk)

]T ∈ R
ny the output information submitted to the scheduling pro-

tocol. At each sampling instant sk , one of ŷi (sk) values is updated with the recent
output yi (sk).

It is assumed that no packet dropouts and no packet disorders will happen during
the data transmission over the network. The transmission of the information over
the network is subject to a variable delay ηk . Then tk = sk + ηk is the updating time
instant. As in the previous section, we allow the delays to be large provided that the
old sample cannot get to the destination (to the controller or to the actuator) after the
current one. Assume that the network-induced delay ηk and the time span between
the updating and the current sampling instants satisfy (9.3).
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Following [16], consider the error between the system output y(sk) and the last
available information ŷ(sk−1):

e(t) = col{e1(t), e2(t)} ≡ ŷ(sk−1) − y(sk), t ∈ [tk, tk+1 − 1],
t ∈ Z

+, k ∈ Z
+, ŷ(s−1)

Δ= 0, e(t) ∈ R
ny .

The control signal to be applied to the system (9.1) is given by

u(t) = Ki∗k yi∗k (tk − ηk) + Ki ŷi (tk−1 − ηk−1)|i �=i∗k , t ∈ [tk, tk+1 − 1],

where K = [K1 K2], K1 ∈ R
nu×n1 , K2 ∈ R

nu×n2 such that A + BKC is Schur. The
closed-loop system can be presented as

x(t + 1) = Ax(t) + A1x(tk − ηk) + Biei (t)|i �=i∗k ,

e(t + 1) = e(t), t ∈ [tk, tk+1 − 2], t ∈ Z
+,

(9.10)

with the delayed reset system for t = tk+1 − 1

x(tk+1) = Ax(tk+1 − 1) + A1x(tk − ηk) + Biei (tk)|i �=i∗k ,

ei (tk+1) = Ci [x(tk − ηk) − x(tk+1 − ηk+1)], i = i∗k ,
ei (tk+1) = ei (tk) + Ci [x(tk − ηk) − x(tk+1 − ηk+1)], i �= i∗k ,

(9.11)

where A1 = BKC, Bi = BKi , K = [K1 K2], i = 1, 2. The initial condition for
(9.10), (9.11) has the form of e(t0) = −Cx(t0 − η0) = −Cx0 and (9.5). We will
consider stability analysis of the discrete-time hybrid system (9.10), (9.11) under
TOD and RR protocols described next.

9.3.2 Scheduling Protocols

9.3.2.1 TOD Protocol

Let Q1 > 0, Q2 > 0 be some weighting matrices. At the sampling instant sk , the
weighted TOD protocol is a protocol for which the active output node is defined as
any index i∗k that satisfies

|√Qi∗k
ei∗k (t)|2 ≥ |√Qiei (t)|2, t ∈ [tk, tk+1), k ∈ Z

+, i = 1, 2. (9.12)

A possible choice of i∗k is given by

i∗k = min{arg max
i∈{1,2}

|√Qi

(
ŷi (sk−1) − yi (sk)

) |2}.
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9.3.2.2 RR Protocol

The active output node is chosen periodically:

i∗k = i∗k+2, for all k ∈ Z
+, i∗0 �= i∗1 . (9.13)

9.3.3 Stability Analysis of Discrete-Time Hybrid Delayed
System Under TOD and RR Protocols

Consider the LKF of the form:

Ve(t) = V (t) + tk+1 − t

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k ,

where

V (t) = Ṽ (t) + VQ(t),

VQ(t) = (τM − ηm)

t−1∑

s=tk−ηk

λt−s−1ζ T (s)Qζ(s),

Ṽ (t) = xT (t)Px(t) +
t−1∑

s=t−ηm

λt−s−1xT (s)S0x(s) +
t−ηm−1∑

s=t−τM

λt−s−1xT (s)S1x(s)

+ ηm

−1∑

j=−ηm

t−1∑

s=t+ j

λt−s−1ζ T (s)R0ζ(s)

+ (τM − ηm)

−ηm−1∑

j=−τM

t−1∑

s=t+ j

λt−s−1ζ T (s)R1ζ(s),

and

ζ(t + 1) = x(t + 1) − x(t), P > 0, Si > 0, Ri > 0, Q > 0, Q j > 0,
0 < λ < 1, i = 0, 1, j = 1, 2, t ∈ [tk, tk+1 − 1], t ∈ Z

+, k ∈ Z
+,

where we define x(t) = x0, t ≤ 0. Our objective is to guarantee that

Ve(t + 1) − λVe(t) ≤ 0, t ∈ [tk, tk+1 − 1], t ∈ Z
+ (9.14)

holds along (9.10), (9.11). The inequality (9.14) implies the following bound

V (t) ≤ Ve(t) ≤ λt−t0Ve(t0), t ≥ t0, t ∈ Z
+,

Ve(t0) ≤ V (t0) + min
i=1,2

{|√Qiei (t0)|2}, (9.15)
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for the solution of (9.10), (9.11) with the initial condition (9.5) and e(t0) ∈ R
ny . Here

we took into account that for the case of two sensor nodes

|√Qiei (t0)|2|i �=i∗k
= min

i=1,2
{|√Qiei (t0)|2}.

From (9.15), it follows that the system (9.10), (9.11) is exponentially stable with
respect to x . The novel term VQ(t) of the LKF is inserted to cope with the delays in
the reset conditions

VQ(tk+1) − λVQ(tk+1 − 1)

= (τM − ηm)[
tk+1−1∑

s=tk+1−ηk+1

λtk+1−s−1ζ T (s)Qζ(s)−
tk+1−2∑

s=tk−ηk

λtk+1−s−1ζ T (s)Qζ(s)]

≤ (τM − ηm)[ζ T (tk+1 − 1)Qζ(tk+1 − 1) − λτM

tk+1−ηk+1−1∑

s=tk−ηk

ζ T (s)Qζ(s)]

≤(τM − ηm)ζ T (tk+1 − 1)Qζ(tk+1 − 1)− λτM |√Q[x(tk+1 − ηk+1) − x(tk − ηk)]|2,

where we applied Jensen’s inequality (see e.g., [9]). The term
tk+1 − t

τM − ηm + 1
eTi (tk)

Qiei (tk) is inspired by the similar construction of the LKF for the sampled-data
systems [4]. We have

Ve(tk+1) − λVe(tk+1 − 1)

= Ṽ (tk+1) − λṼ (tk+1 − 1) + tk+2 − tk+1

τM − ηm + 1
eTi (tk+1)Qiei (tk+1)|i �=i∗k+1

− λ

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k + (τM − ηm)ζ T (tk+1 − 1)Qζ(tk+1 − 1)

− λτM |√Q[x(tk+1 − ηk+1) − x(tk − ηk)]|2.

Note that under TOD protocol for i∗k+1 = i∗k

eTi (tk+1)Qiei (tk+1)|i �=i∗k+1
≤ eTi∗k (tk+1)Qi∗k ei∗k (tk+1), (9.16)

whereas for i∗k+1 �= i∗k the latter relation holds with equality. Under RR protocol we
have i∗k+1 �= i∗k . Hence

tk+2 − tk+1

τM − ηm + 1
eTi (tk+1)Qiei (tk+1)|i �=i∗k+1

≤ eTi∗k (tk+1)Qiei∗k (tk+1)

= |
√
Qi∗k Ci∗k [x(tk+1 −ηk+1) −x(tk − ηk)]|2.

Assume that
λτM Q > CT

i QiCi , i = 1, 2. (9.17)
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Then for t = tk+1 − 1, we obtain

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

− λ

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k .

Furthermore, due to

− λ

τM − ηm + 1
= − 1

τM − ηm + 1
+ 1 − λ

τM − ηm + 1
≤ − 1

τM − ηm + 1
+ 1 − λ,

for t = tk+1 − 1, we arrive at

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

−[ 1

τM − ηm + 1
− (1 − λ)]eTi (tk)Qiei (tk)|i �=i∗k

Δ= Ψ (t).
(9.18)

For t ∈ [tk, tk+1 − 2], we have

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

+
[
tk+1 − t − 1

τM − ηm + 1
− λ

tk+1 − t

τM − ηm + 1

]
eTi (tk)Qiei (tk)|i �=i∗k .

Since

tk+1 − t − 1

τM − ηm + 1
− λ

tk+1 − t

τM − ηm + 1
= − 1

τM − ηm + 1
+ (1 − λ)

tk+1 − t

τM − ηm + 1

≤ − 1

τM − ηm + 1
+ 1 − λ,

we conclude that (9.18) is valid also for t ∈ [tk, tk+1 − 2]. Therefore, (9.14) holds if

Ψ (t) ≤ 0, t ∈ [tk, tk+1 − 1]. (9.19)

Note that i �= i∗k for i = 1, 2 is the same as i = 3 − i∗k . By using the standard
arguments for the delay-dependent analysis [20], we derive the following conditions
for (9.19) (and, thus for (9.15)):

Theorem 2 Given scalar 0 < λ < 1, positive integers 0 ≤ ηm ≤ ηM < τM , and
K1, K2, if there exist n × n matrices P > 0, Q > 0, S j > 0, R j > 0 ( j = 0, 1),
S12, ni × ni matrices Qi > 0 (i = 1, 2) such that (9.17) and

Ω =
[
R1 S12
∗ R1

]
≥ 0,

F̂ T
0 P F̂0 + Σ̂ + F̂ T

01W F̂01 − ληm FT
12R0F12 − λτM F̂TΩ F̂ < 0,
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are feasible, where

F̂0 = [A 0 A1 0 B3−i ],
F̂01 = [A − I 0 A1 0 B3−i ],
F̂ =

[
0 I −I 0 0
0 0 I −I 0

]
,

Σ̂ = diag{S0 − λP,−ληm (S0 − S1), 0,−λτM S1, ϕ},
ϕ = −[ 1

τM − ηm + 1
− (1 − λ)]Q3−i ,

W = η2
m R0 + (τM − ηm)2R1 + (τM − ηm)Q, i = 1, 2.

Then the solutions of the hybrid system (9.10), (9.11) satisfy the bound (9.15),
implying exponential stability of (9.10), (9.11) with respect to x. Moreover, if the
aforementioned inequalities are feasible with λ = 1, then the bound (9.15) holds
with λ = 1 − ε, where ε > 0 is small enough.

Remark 1 The inequality Ve(t) ≤ λt−t0Ve(t0), t ≥ t0, t ∈ Z
+ in (9.15) guarantees

that
tk+1 − tk

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k

is bounded, and it does not guarantee that e(tk) is bounded. That is why (9.15) implies
only partial stability with respect to x .

Remark 2 Note that for the stability analysis of discrete-time systems with time-
varying delay in the state, a switched system transformation approach can be used
in addition to a Lyapunov-Krasovskii method. See more details in [11].

Remark 3 Application of Schur complement leads the matrix inequalities of Theo-
rems 1 and 2 to LMIs that are affine in the system matrices. Therefore, for the case
of system matrices from the uncertain time-varying polytope

Θ̃ =
N∑

j=1

g̃ j (t)Θ̃ j , 0 ≤ g̃ j (t) ≤ 1,

N∑

j=1

g̃ j (t) = 1, Θ̃ j = [
A( j) B( j)

]
,

the LMIs need to be solved simultaneously for all N vertices Θ̃ j , using the same
decision matrices.

9.4 Example: Discrete-Time Cart-Pendulum

Consider the following linearized model of the inverted pendulum on a cart [15]:
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⎡

⎢⎢
⎣

ẋ(t)
ẍ(t)
θ̇(t)
θ̈(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0
−mg

M
0

0 0 0 1

0 0
(M + m)g

Ml
0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

x(t)
ẋ(t)
θ(t)
θ̇(t)

⎤

⎥⎥
⎦ +

⎡

⎢⎢⎢⎢
⎣

0
a

M
0

−a

Ml

⎤

⎥⎥⎥⎥
⎦
u(t), t ∈ R

+

withM = 3.9249 kg,m = 0.2047 kg, l = 0.2302m, g = 9.81N/kg, a = 25.3N/V.
In the model, x and θ represent cart position coordinate and pendulum angle from
vertical, respectively. Such a model discretized with a sampling time Ts = 0.001 s:

⎡

⎢
⎣

x(t + 1)
Δx(t + 1)
θ(t + 1)

Δθ(t + 1)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0.001 0 0
0 1 −0.0005 0
0 0 1.00 0.001
0 0 0.0448 1

⎤

⎥
⎦

⎡

⎢
⎣

x(t)
Δx(t)
θ(t)

Δθ(t)

⎤

⎥
⎦ +

⎡

⎢
⎣

0
0.0064

0
−0.0280

⎤

⎥
⎦ u(t), t ∈ Z

+.

The pendulum can be stabilized by a state feedback u(t) = K
[
x Δx θ Δθ

]T

with the gain K = [K1 K2]

K1 = [
5.825 5.883

]
, K2 = [

24.941 5.140
]
,

which leads to the closed-loop system eigenvalues {0.8997, 0.9980 + 0.0020i,
0.9980 − 0.0020i, 0.9980}. Suppose the variables θ,Δθ and x ,Δx are not accessible
simultaneously. We consider measurements yi (t) = Ci x(t), t ∈ Z

+, where

C1 =
[
1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 1 0
0 0 0 1

]
.

For the values ofηm given inTable9.1,we applyTheorem2withλ = 1 andfind the
maximum values of MATI that preserve the stability of hybrid system (9.10), (9.11)
with respect to x (seeTable9.1). FromTable9.1, it is observed that the presentedTOD
protocol, which possesses less decision variables in the LMI conditions, stabilizes
the system for larger MATI than the RR protocol in Theorem 1. Moreover, when
ηm > MATI (ηm ≥ 4), our method is still feasible (communication delays are larger
than the sampling intervals).

Table 9.1 Example: maximum values of MATI for different ηm = ηM

MATI \ηm = ηM 0 2 4 5 8 11 Decision
variables

Theorem 1 (RR) 4 3 3 2 1 Infeasible 146

Theorem 2
(TOD/RR)

4 4 3 3 2 1 82
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9.5 Conclusions

In this chapter, a time-delay approach has been developed for the stability analysis
of discrete-time NCSs under the RR or under a weighted TOD scheduling. Polytopic
uncertainties in the systemmodel can be easily included in the analysis. A numerical
example illustrated the efficiency of our method. It was assumed that no packet
dropouts will happen during the data transmission over the network. Note that the
time-delay approach has been developed for NCSs under stochastic protocols in [17],
where the network-induced delays are allowed to be larger than the sampling intervals
in the presence of collisions. For application of the presented approach in this chapter
to discrete-time NCSs under scheduling protocols and actuator constraints, see [14].

Acknowledgments This work was partially supported by the Knut and Alice Wallenberg Founda-
tion (grant no. Dnr KAW2009.088), the Swedish Research Council (grant no. VR 621- 2014-6282),
and the National Natural Science Foundation of China (grant no. 61503026, 61440058).

References

1. P. Antsaklis, J. Baillieul, Special issue on technology of networked control systems. Proc. IEEE
95(1), 5–8 (2007)

2. M.B.G. Cloosterman, L. Hetel, N. van deWouw,W.P.M.H. Heemels, J. Daafouz, H. Nijmeijer,
Controller synthesis for networked control systems. Automatica 46(10), 1584–1594 (2010)

3. M.C.F. Donkers,W.P.M.H. Heemels, N. van deWouw, L. Hetel, Stability analysis of networked
control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9),
2101–2115 (2011)

4. E. Fridman, A refined input delay approach to sampled-data control. Automatica 46(2),
421–427 (2010)

5. E. Fridman, U. Shaked, Delay-dependent stability and H∞ control: constant and time-varying
delays. Int. J. Control 76(1), 48–60 (2003)

6. E. Fridman, A. Seuret, J.-P. Richard, Robust sampled-data stabilization of linear systems: an
input delay approach. Automatica 40(8), 1441–1446 (2004)

7. H. Fujioka, A discrete-time approach to stability analysis of systems with aperiodic sample-
and-hold devices. IEEE Trans. Autom. Control 54(10), 2440–2445 (2009)

8. H. Gao, T. Chen, J. Lam, A new system approach to network-based control. Automatica 44(1),
39–52 (2008)

9. K. Gu, V. Kharitonov, J. Chen, Stability of Time-delay Systems (Birkhauser, Boston, 2003)
10. W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, D. Nesic, Networked control systems with

communication constraints: tradeoffs between transmission intervals, delays and performance.
IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)

11. L. Hetel, J. Daafouz, C. Iung, Equivalence between the Lyapunov-Krasovskii functionals
approach for discrete delay systems and that of the stability conditions for switched systems.
Nonlinear Anal. Hybrid Syst. 2(3), 697–705 (2008)

12. K. Liu, E. Fridman, Wirtinger’s inequality and Lyapunov-based sampled-data stabilization.
Automatica 48(1), 102–108 (2012)

13. K. Liu, E. Fridman, Delay-dependent methods and the first delay interval. Syst. Control Lett.
64, 57–63 (2014)

14. K. Liu, E. Fridman, Discrete-time network-based control under scheduling and actuator con-
straints. Int. J. Robust Nonlinear Control 25, 1816183 (2014)



9 Discrete-Time Networked Control Under Scheduling Protocols 165

15. K. Liu, E. Fridman, L. Hetel, Stability and L2-gain analysis of networked control systems
under Round-Robin scheduling: a time-delay approach. Syst. Control Lett. 61(5), 666–675

16. K. Liu, E. Fridman, L. Hetel, Network-based control via a novel analysis of hybrid systems
with time-varying delays, in IEEE Conference on Decision Control (CDC) (2012)

17. K. Liu, E. Fridman, K.H. Johansson, Networked control with a stochastic scheduling: a time-
delay approach, inWorld Congress of the IFAC (2014)

18. D.Nesic, D. Liberzon, A unified framework for design and analysis of networked and quantized
control systems. IEEE Trans. Autom. Control 54(4), 732–747 (2009)

19. D. Nesic, A.R. Teel, Input-output stability properties of networked control systems. IEEE
Trans. Autom. Control 49(10), 1650–1667 (2004)

20. P.G. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-
varying delays. Automatica 47(1), 235–238 (2011)

21. A. Seuret, A novel stability analysis of linear systems under asynchronous samplings. Auto-
matica 48(1), 177–182 (2012)

22. W. Zhang, M.S. Branicky, S.M. Phillips, Stability of networked control systems. IEEE Control
Syst. Mag. 21(1), 84–99 (2001)


	9 Discrete-Time Networked Control Under Scheduling Protocols
	9.1 Introduction
	9.2 Discrete-Time Networked Control Systems Under Round-Robin Scheduling: A Switched System Model
	9.2.1 Problem Formulation
	9.2.2 Stability Analysis of the Switched System Model

	9.3 Discrete-Time Networked Systems Under the Try-Once-Discard and Round-Robin Scheduling: A Hybrid Time-Delay Model
	9.3.1 Problem Formulation
	9.3.2 Scheduling Protocols
	9.3.3 Stability Analysis of Discrete-Time Hybrid Delayed System Under TOD and RR Protocols

	9.4 Example: Discrete-Time Cart-Pendulum
	9.5 Conclusions
	References


