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Abstract—In this article, we consider the problem of pri-
vacy preservation in the average consensus problem when
communication among nodes is quantized. More specifi-
cally, we consider a setting where nodes in the network can
be curious, while certain nodes in the network want to en-
sure that their initial states cannot be inferred exactly by
these curious nodes. Curious nodes are not malicious, i.e.,
they try to identify the initial states of other nodes based on
the data they receive during their operation (and some of
them might even collude) but do not interfere in the compu-
tation in any other way. Each node in the network (including
curious nodes) can opt to execute a privacy-preserving
algorithm (so as not to reveal the initial state it contributes
to the average calculation) or its underlying (plain) aver-
age consensus algorithm (if privacy is not a concern). We
propose two privacy-preserving event-triggered quantized
average consensus algorithms. Under certain topological
conditions, both the proposed algorithms allow the nodes
that adopt privacy-preserving protocols to preserve their
privacy and at the same time to obtain, after a finite num-
ber of steps, the exact average of the initial states while
processing and transmitting quantized information. We
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also present illustrative examples and comparisons of our
algorithms against other algorithms in the existing litera-
ture and discuss a motivating application in which smart
meters in a smart grid collect real-time demands in a
privacy-preserving manner.

Index Terms—Finite-time convergence, privacy-preserv-
ing average consensus, quantized communication.

I. INTRODUCTION

A PROBLEM of particular interest in distributed control
is the consensus problem, in which nodes communicate

locally with other nodes under constraints on connectivity [2]. In
distributed averaging (a special case of the consensus problem),
each node is initially endowed with a numerical state, which it
updates in an iterative fashion by sending/receiving information
to/from other neighboring nodes, so that it eventually computes
the average of all the initial states. Average consensus has
been studied extensively in settings, where each node processes
and transmits real-valued states with infinite precision; see, for
example, [3] and references therein.

The case where capacity-limited network links can only allow
the messages of certain length to be transmitted between nodes
has also received significant attention recently, as it effectively
extends techniques for average consensus toward quantized
consensus. Quantized processing and communication is better
suited to the available network resources (e.g., physical mem-
ories of finite capacity and digital communication channels of
limited data rate), while it also exhibits other advantages such
as amenability to security and privacy enhancements [4]. For
example, public-key cryptosystems require integer numbers to
operate with, since nonquantized consensus algorithms would
be subject to quantization errors in the final result [5], [6]. For
these reasons, several probabilistic and deterministic strategies
have been proposed for solving the quantized average consensus
problem [7]–[10].

Average consensus algorithms require each node to exchange
and disclose state information to its neighbors. This may be
undesirable in case the state of some nodes is private or contains
sensitive information. In addition, in many occasions, there
might be nodes in the network that are curious and aim to
extract private and/or sensitive information. In many emerging
applications (e.g., healthcare and opinion forming over social
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networks), preserving the privacy of participating components
is necessary for enabling cooperation between nodes without
requiring them to disclose sensitive information. There have
been different approaches for dealing with privacy preservation
in such systems. For example, Kefayati et al. [11] proposed a
method in which each node wishing to protect its privacy adds a
random offset value to its initial state, thus ensuring that its true
state will not be revealed to curious nodes that might be observ-
ing the exchange of data in the network. Kia et al. [12] calculate
the dynamic average of the initial states in a privacy-preserving
manner. They show that their algorithm tracks the average of the
dynamic inputs with some steady-state error (which vanishes for
special classes of input signals). Furthermore: 1) they analyze
the algorithm under time-varying interaction topologies; 2) they
present an extension that allows each node to control its own rate
of convergence; and 3) they characterize the privacy preservation
properties of the proposed algorithm. A related line of research
is based on differential privacy [13], [14], in which nodes inject
uncorrelated noise into the exchanged messages so that the
data associated with a particular node cannot be inferred by a
curious node during the execution of the algorithm. However, the
exact average state is not eventually obtained due to the induced
tradeoff between privacy and computational accuracy [14]. To
overcome this tradeoff and guarantee convergence to the exact
average, the injection of correlated noise at each time step and
for a finite period of time was proposed in [15], thus allowing a
node to avoid revealing its own initial state or the initial states of
other nodes. Once this period of time ends, each node ensures
that the accumulated sum of offsets it added in the iterative com-
putation is removed. In [16], the nodes asymptotically subtract
the initial offset values they added in the computation, while
in [17], each node masks its initial state with an offset such that
the sum of the offsets of each node is zero, thus guaranteeing
convergence to the average. Rezazadeh and Kia [18] discuss
the problem of calculating the average of the initial states over
a continuous-time and weight-balanced system via perturbation
signals (i.e., each node is adding admissible perturbation signals
to the local dynamics and the signals that are transmitted by the
agents). In [19], the average of the initial states over directed
graphs is calculated in a privacy-preserving manner by using
the consensus dynamics in order to embed privacy in random
coupling weights between connected nodes. In [20], the average
of the initial states is calculated in a privacy-preserving manner
via a state-decomposition-based approach, where each node
decomposes its state into two substates (whose mean is equal
to the original state). Then, one of the two substates is used
for computation and internode interactions, while the other
substate interacts only with the first substate of the same node.
Ridgley et al. [21] discuss the problem of calculating the dy-
namic average of the initial states in a privacy-preserving manner
under certain topological conditions (i.e., privacy is preserved
if each node has at least two out-neighbors and at least one
of them is not colluding with other nodes). Furthermore, this
strategy is hot pluggable, which means that the algorithm does
not need reinitialization when there is a change over the network
(e.g., when a node enters or leaves the network). Another ap-
proach that guarantees privacy preservation is via homomorphic
encryption [6]. However, this approach requires the existence of

trusted nodes and imposes heavier computational requirements
on the nodes.

A. Main Contributions

The main contributions of this article are as follows:
1) two novel distributed algorithms are proposed and shown to
achieve quantized average consensus under privacy constraints
and to converge after a finite number of time steps and 2) the
application of these algorithms to power requests in smart grids
under privacy-preserving requirements is demonstrated.

During its operation, each node that would like to protect
its privacy from other curious (but not malicious) nodes follows
one of the two finite-time event-triggered quantized average con-
sensus protocols. The privacy-preserving algorithms essentially
involve adding and subtracting offsets to each node’s state in
two different ways.

1) The first algorithm injects offsets according to an event-
based strategy for a predefined number of steps. Specif-
ically, when the token that triggers action arrives at a
specific node for the first time, the node adds a substantial
negative quantized offset to its initial state. This initial
offset is determined by the node at the first triggering and
is gradually removed at later triggerings (when certain
conditions are satisfied) ensuring that the total accumu-
lated sum of injected offsets is canceled out.

2) The second algorithm injects offsets only during the
initialization procedure. Specifically, each node injects
a quantized offset to the states of its out-neighboring
nodes only during the initialization procedure. Then,
the node injects to its own state a (possibly) nonzero
offset (in addition to any offsets injected by its in-
neighbors) such that the accumulated sum of the injected
offsets is equal to zero and proceeds with executing a
finite-time event-triggered quantized average consensus
protocol.

We show that both algorithms converge after a finite number
of time steps. We also present the topological conditions that
ensure privacy for the nodes that follow the proposed protocols.
Note that the operation of our algorithms relies on the zero-
sum offset strategy, but the main challenges in this article are
the following: 1) communication-efficient operation; 2) finite-
time convergence; 3) enhancing the speed of convergence; and
4) improving the topological conditions for privacy preservation.
In order to address these challenges, our algorithms need to
operate with quantized information, while they converge in finite
time with no quantization error.

Unlike other privacy-preserving protocols proposed in the
literature (see, e.g., [11], [15], and [16]), the proposed algorithms
take advantage of their finite-time operation since the added
offsets are integers. As a result, consensus to the exact average
of the initial states is achieved after a finite number of steps,
while the error, introduced from the offset, vanishes completely.

A motivating application for our proposed algorithms is dis-
cussed in Appendix A. In this application, a neighborhood of
interconnected households is able to request the total demanded
power from a smart meter over a network of next-generation
power systems [22] in a privacy-preserving manner.
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B. Organization

The rest of this article is organized as follows. In Section II,
we review necessary notation and background, while in Sec-
tion III, we provide the problem formulation. In Sections IV
and V, we present our first and second privacy strategies, re-
spectively, along with the corresponding distributed algorithms.
Furthermore, we analyze their convergence and present suffi-
cient topological conditions that ensure privacy preservation.
In Section V, we present our second privacy strategy and the
corresponding distributed algorithm, analyze its convergence,
and present sufficient topological conditions that ensure privacy
preservation. In Section VI, we demonstrate our strategies via
illustrative examples and compare their operation against other
algorithms in the current literature. Finally, Section VII conclude
this article.

II. NOTATION AND PRELIMINARIES

Notation: The sets of real and integer numbers are denoted
by R and Z, respectively. The symbols Z≥0 (Z>0) and Z≤0
(Z<0) denote the sets of non-negative (positive) and nonpositive
(negative) integers, respectively. Vectors are denoted by small
letters, whereas matrices are denoted by capital letters. The
transpose of a matrix A is denoted by AT . For A ∈ Rn×n,
Aij denotes the entry at row i and column j. By 1, we denote
the all-ones vector, and by I , we denote the identity matrix (of
appropriate dimensions).

A. Graph Theory

Consider a network of n (n ≥ 2) nodes communicating only
with their immediate neighbors. The communication topology
can be captured by a directed graph (digraph), called commu-
nication digraph. A digraph is defined as Gd = (V, E), where
V = {v1, v2, . . . , vn} with cardinality n = |V| ≥ 2 is the set of
nodes and E ⊆ V × V \ {(vj , vj) | vj ∈ V} is the set of edges
(self-edges excluded) whose cardinality is denoted by m = |E|.
A directed edge from node vi to node vj is denoted by mji �
(vj , vi) ∈ E and captures the fact that node vj can receive infor-
mation from node vi (but not the other way around). We assume
that the given digraph Gd = (V, E) is strongly connected (i.e.,
for each pair of nodes vj , vi ∈ V , vj �= vi, there exists a directed
path1 from vi to vj). The subset of nodes that can directly trans-
mit information to node vj is called the set of in-neighbors of vj
and is represented by N−j = {vi ∈ V | (vj , vi) ∈ E}, while the
subset of nodes that can directly receive information from node
vj is called the set of out-neighbors of vj and is represented by
N+

j = {vl ∈ V | (vl, vj) ∈ E}. The cardinality ofN−j is called
the in-degree of vj and is denoted by D−j (i.e., D−j = |N−j |),
while the cardinality ofN+

j is called the out-degree of vj and is
denoted by D+

j (i.e., D+
j = |N+

j |).

B. Node Operation

With respect to the quantization of information flow, we have
that at time step k ∈ Z≥0, each node vj ∈ V maintains the state

1A directed path from vi to vj exists if we can find a sequence of nodes vi ≡
vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ ) ∈ E for τ = 0, 1, . . . , t− 1.

variables ysj [k], z
s
j [k], and qsj [k], where ysj [k] ∈ Z, zsj [k] ∈ Z>0,

and qsj [k] = ysj [k]/z
s
j [k], and the mass variables yj [k] and zj [k],

where yj [k] ∈ Z and zj [k] ∈ Z≥0. Note here that qs is a memo-
ryless function of the states ys and zs (which would make it an
output and not a state). We assume that each node is aware of
its out-neighbors and can directly transmit messages to each of
them. However, it cannot necessarily receive messages (at least
not directly) from them. In the proposed distributed protocols,
each node vj assigns a unique order in the set{0, 1, . . .,D+

j − 1}
to each of its outgoing edges mlj , where vl ∈ N+

j . More specif-
ically, the order of link (vl, vj) for node vj is denoted by Plj

(such that {Plj | vl ∈ N+
j } = {0, 1, . . .,D+

j − 1}). This unique
predetermined order is used during the execution of the proposed
distributed algorithm as a way of allowing node vj to transmit
messages to its out-neighbors in a round-robin2 fashion.

C. Quantized Averaging via Deterministic Mass
Summation

Quantized average consensus algorithms allow nodes to pro-
cess and transmit quantized information, so that they have short
communication packages and eventually obtain a fraction qs that
is equal to the exact average of the initial quantized states of the
nodes, after a finite number of steps. Note that the calculation
of the exact average of the initial values without any error is due
to the quantized nature of the initial states.

Following [10], we assume that each node vj in the network
has a quantized initial state yj [0] ∈ Z. At each time step k, each
node vj ∈ V maintains its mass variables yj [k] ∈ Z and zj [k] ∈
Z≥0 and its state variables ysj [k] ∈ Z, zsj [k] ∈ Z>0, and qsj [k] =
ysj [k]/z

s
j [k]. It updates the values of the mass variables as

yj [k + 1] = yj [k] +
∑

vi∈N−j

1ji[k]yi[k] (1a)

zj [k + 1] = zj [k] +
∑

vi∈N−j

1ji[k]zi[k] (1b)

where 1ji[k] = 0 if no message is received at node vj from its
in neighbor vi at iteration k (else 1ji[k] = 1). If either of the
following event-triggered conditions:

(C1): zj [k + 1] > zsj [k]
(C2): zj [k + 1] = zsj [k] and yj [k + 1] ≥ ysj [k]

is satisfied, node vj updates its state variables as follows:

zsj [k + 1] = zj [k + 1] (2a)

ysj [k + 1] = yj [k + 1] (2b)

qsj [k + 1] =
ysj [k + 1]

zsj [k + 1]
. (2c)

Then, it transmits yj [k + 1] and zj [k + 1] to an out-neighbor
vl ∈ N+

j (chosen according to the unique order in Section II-B)
and sets yj [k + 1] = 0 and zj [k + 1] = 0.

2When executing the protocol, each node vj transmits to its out-neighbors,
one at a time, by following the predetermined order. The next time it transmits
to an out-neighbor, it continues from the outgoing edge it stopped the previous
time and cycles through the edges in a round-robin fashion.
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Fig. 1. Example of a digraph with different types of nodes in the
network, where Vc = {v2, v3} and Vp = {v2, v3, v4}.

Definition 1: Quantized average consensus is achieved if there
exists k0 so that for every k ≥ k0, we have

qsj [k] =

∑n
l=1 yl[0]

n
=: y (3)

for every vj ∈ V .
The following result from [10] provides a worst-case upper

bound regarding the number of time steps required for quantized
averaging to be achieved. Note here that the operation of the
algorithm in [10] guarantees finite-time convergence, but due to
the equalities in the event-triggered conditions in (C1) and (C2),
some nodes may keep communicating even after consensus has
been achieved [10].

Theorem 1 (see [10]): The system (1), (2) reaches quantized
average consensus after a finite number of steps St ≤ nm2,
where n is the number of nodes and m is the number of edges
in the network.

III. PROBLEM FORMULATION

Consider a strongly connected digraph Gd = (V, E), where
|V| ≥ 3. Each node vj ∈ V has an initial quantized state yj [0]
(for simplicity, we take yj [0] ∈ Z). Nodes require to calculate

y =

∑n
l=1 yl[0]

n
(4)

in a distributed way, exclusively through local exchange of in-
formation. The information exchange takes place only between
nodes that are neighbors with respect to Gd, which represents the
system communication topology. Any node in the set V could
be curious, which means that it tries to identify the initial states
y[0] of all or a subset of nodes in the network. The set V is
partitioned in two ways: 1) a subset of nodes Vp ⊆ V that wish
to preserve their privacy, i.e., node vj ∈ Vp, does not want to
reveal its initial state yj [0] to other nodes (the remaining nodes
in the set Vn = V \ Vp are indifferent about their privacy); and
2) a subset of nodes Vc ⊂ V are curious and collude among
themselves in order to identify the initial values of other nodes
(nodes in V \ Vc could also be curious but do not collude among
themselves). Note here that nodes in Vc are assumed not to care
about their privacy (since they may have to share their initial
states with other nodes in Vc). An example is shown in Fig. 1.

The concept of privacy is typically defined as the ability of an
individual node to seclude itself or hide information about itself
and thereby express itself selectively. In our case, we consider
that the information of interest for each node is its initial state
yj [0]. The notion of privacy that we adopt aims to ensure that
the state yj [0] cannot be inferred exactly by curious nodes and

relates to notions of possible innocence in theoretical computer
science [23], [24] in the sense that there is some uncertainty
about yj [0].

Definition 2: A node vj ∈ Vp \ Vc is said to preserve the
privacy of its initial state yj [0] ∈ Z if the value yj [0] cannot
be inferred by any curious node in V \ {vj} (or even by the
colluding nodes in Vc) at any point during the operation of the
protocol, i.e., the curious nodes can only determine a range
[α, β], α < β, for which they can ensure that the values yj [0]
lie in, and vj can make α ∈ R arbitrarily small and/or β ∈ R

arbitrarily large.
The problem we consider in this article is to develop a strategy

for nodes vj ∈ Vp \ Vc that wish to preserve their privacy (i.e.,
not reveal their initial states yj [0] to other nodes) when they
exchange quantized information with neighboring nodes while
calculating y in (4). Note that this strategy should allow nodes
to operate seamlessly along with those that use the underlying
average consensus algorithm described in Section II-B that is
not privacy preserving. As aforementioned, any node could be
curious and try to identify the initial states of other nodes, but
no node interferes in the computation in any other way (i.e.,
each node either executes a privacy-preserving strategy or the
underlying (plain) average consensus algorithm in Section II-B).
Curious nodes are aware of the predefined algorithm followed by
nodes that would like to preserve their privacy, and the topology
of the network, but not the actual parameters chosen by the nodes
vj ∈ Vp\Vc that want to preserve their privacy. We also assume
that curious nodes in the subset Vc may collaborate arbitrarily.
Finally, we assume that nodes in the set V\Vp simply execute
the underlying average consensus algorithm described in [10]
and reviewed in Section II-B.

Remark 1: Definition 2 implies that if one looks at the set of
variables that are a priori unknown to the curious nodes (e.g., the
initial states of nodes, offsets chosen by other nodes, etc.), then
one can find different sets of values for these variables that match
the observations that become available to the curious nodes
(including the eventual knowledge of the average of the initial
states of the nodes), such that the node that wants to preserve its
privacy exhibits different initial states in these two sets.

IV. EVENT-BASED PRIVACY-PRESERVING STRATEGY

A. Initialization for Quantized Privacy-Preserving
Strategy

The primary objective in our system is to calculate y in (4)
while preserving the privacy of at least the nodes following
the protocol. Our strategy is based on the event-triggered de-
terministic algorithm (1), (2) with some modifications (since
the event-triggered deterministic algorithm (1), (2) is not privacy
preserving). The main difference is that a mechanism is deployed
that incorporates an offset to the mass variable of each node vj ∈
Vp, effectively preserving the privacy of its initial state yj [0].

In previous works (see, e.g., [11], [15], [16], and references
therein), node vj sets its initial state to ỹj [0] = yj [0] + uj ,
where uj ∈ R. However, in this case, we require that the initial
offset uj is a negative integer number, i.e., uj ∈ Z<0, so that
the event-triggered conditions (C1) and (C2) are guaranteed
to lead to the calculation of the initial average after a finite
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number of time steps. Furthermore, each node vj maintains
the privacy values uj [k] ∈ Z≥0, the offset adding steps Lj ∈
Z>0, the offset adding counter lj ∈ Z>0, and its transmission
counter cj ∈ Z>0. The absolute value of the initial offset uj

and the number of offset adding steps Lj need to be chosen to
be greater than the number of out-neighbors D+

j of node vj .
Specifically, at initialization, each node vj chooses the number
of steps Lj and the offsets uj ∈ Z<0, and uj [lj ] ∈ Z≥0 for all
lj ∈ {0, 1, 2, . . ., Lj}, to satisfy

Lj ≥ D+
j (5a)

uj = −
Lj∑

lj=0

uj [lj ] (5b)

uj [lj ] ≥ 0 ∀ lj ∈ [0, Lj ] (5c)

uj [lj ] = 0 ∀ lj /∈ [0, Lj ]. (5d)

Constraints (5a)–(5d) are explicitly analyzed below.
1) In (5a), the offset adding stepsLj of every node vj need to

be greater than or equal to node vj’s out-degree so that ev-
ery out-neighbor vi ∈ N+

j will receive at least one value
of uj [lj ] from node vj . As discussed in Section IV-D, this
is motivated by the privacy preservation guarantees.

2) Equation (5b) means that the accumulated offset infused
in the computation by node vj is equal to zero, and the
exact quantized average of the nodes’ initial states can be
calculated eventually without any error.

3) In (5c), the offset uj [lj ] that is injected to the network
by each node vj each time its event-triggered conditions
hold (i.e., for events lj ∈ [0, Lj ]) needs to be non-negative
so that: a) the event-triggered conditions (C1) and (C2)
hold for every node after a finite number of steps and b)
the exact quantized average of the initial states can be
eventually calculated.

4) Equation (5d) means that node vj stops injecting nonzero
offsets in the network so that the exact quantized average
of the initial states can be calculated without any error.

The above choices imply that the initial offset uj every node
vj injects in the network needs to be chosen so that it is negative
and satisfies uj ≤ −D+

j . This is important to ensure that, during
the operation of the proposed algorithm, the event-triggered
conditions (C1) and (C2) hold for every node after a finite
number of steps. If uj ≥ 0, the event-triggered conditions (C1)
and (C2) may not hold, and the proposed protocol may fail to
calculate the average of the initial states.

B. Algorithm Description

The proposed algorithm is a quantized value transfer process,
in which every node in a strongly connected digraphGd = (V, E)
performs operations and transmissions according to a set of
event-triggered conditions. The intuition behind the algorithm
is as follows. Each node vj ∈ Vp that would like to preserve its
privacy performs the following steps.

1) It initializes a counter lj to zero (i.e., lj = 0) and chooses
the total number of offset adding steps Lj such that Lj ≥
D+

j and the set of (Lj + 1) positive offsets uj [lj ] > 0,

where lj ∈ {0, 1, . . . , Lj}. Finally, it sets the initial neg-
ative offset uj that it injects to its initial state yj [0] to uj =

−∑Lj

lj=0 uj [lj ]. For example, suppose that node vj has
four out-neighbors. This means that it can choose Lj = 6
and then (randomly) set uj [0] = 1, uj [1] = 3, uj [2] = 2,
uj [3] = 4, uj [4] = 1, and uj [5] = 2, uj [6] = 5; finally, it
sets uj = −18.

2) It chooses an out-neighbor vl ∈ N+
j according to the

unique order Plj (initially, it chooses vl ∈ N+
j such

that Plj = 0) and transmits zj [0] and ỹj [0] = yj [0] +
uj + uj [0] to this out-neighbor. Then, it sets ỹj [0] = 0,
zj [0] = 0, and lj = lj + 1.

3) During the execution of the algorithm, at every step k,
node vj may receive a set of mass variables ỹi[k] and zi[k]
from each in-neighbor vi ∈ N−j . Then, node vj updates
its mass variables according to (1a) and (1b) (where in
the sum of (1a), we use ỹj [k]) and checks if either of
its event-triggered conditions (C1) and (C2) holds. If so,
it injects an offset uj [lj ] to yj [k + 1] and increases its
offset increasing counter lj by 1. Then, a) it sets its state
variables ysj [k + 1] and zsj [k + 1] equal respectively to
ỹj [k + 1] and zj [k + 1] [i.e., it updates them according to
(2)]; and b) it transmits ỹj [k + 1] and zj [k + 1] to an out-
neighbor according to the predetermined order. If none
of the conditions (C1) and (C2) holds, node vj stores
yj [k + 1] and zj [k + 1]. If no message is received from
any of the in-neighbors and no transmission takes place,
the mass variables remain the same.

Remark 2: It is important to note that during the operation of
Algorithm 1, each node vj chooses the values uj [k], in a way
that ensures that curious nodes can only determine a range [α, β],
α < β, for which they can ensure that the values yj [0] lie in, and
vj can make α ∈ R arbitrarily small and/or β ∈ R arbitrarily
large.

The proposed algorithm is summarized in Algorithm 1. Note
here that curious nodes that try to identify the initial states of
other nodes follow either Algorithm 1 or the underlying (plain)
average consensus algorithm in Section II-B.

Remark 3: Unlike other privacy-preserving protocols pro-
posed in the literature (see, e.g., [11], [15], and [16]), the pro-
posed strategy takes full advantage of the algorithm’s finite-time
nature, which means that consensus to the average of the initial
states is reached after a finite number of iterations, while the
error, introduced via the offset initially infused in the network
by the nodes following the protocol, vanishes.

C. Convergence Analysis

For the development of the necessary results regarding the
operation of Algorithm 1, let us consider the following setup,
the analysis of which for the non-privacy-preserving case can
be found in [10].

Setup: Consider a strongly connected digraph Gd = (V, E)
with n = |V| nodes and m = |E| edges. During the execution of
Algorithm 1, at time step k0, there is at least one node vj′ ∈ V ,
for which

zj′ [k0] ≥ zi[k0] ∀vi ∈ V. (6)
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Algorithm 1: Privacy-Preserving Event-Triggered Quan-
tized Average Consensus With Event-Based Offset.

Input: A strongly connected digraph Gd = (V, E) with
n = |V| nodes and m = |E| edges. Each node vj ∈ V
has an initial state yj [0] ∈ Z.

Initialization: Each node vj ∈ Vp does the following:
1) It assigns a unique order Plj in the set
{0, 1, . . .,D+

j − 1} to each of its out-neighbors
vl ∈ N+

j .
2) It sets counter cj to 0 and priority index ej to cj .
3) It sets counter lj to 0, chooses Lj ∈ Z>0, where
Lj ≥ D+

j , and uj [k] ≥ 0 for k ∈ {0, 1, . . . , Lj}, and

uj [k
′] = 0 for k′ > Lj . It also sets uj = −

∑Lj

lj=0 uj [lj ].
4) It sets ỹj [0] = yj [0] + uj , zj [0] = 1, zsj [0] = 1 and
ysj [0] = ỹj [0] (which means that qsj [0] = ỹj [0]/1).

5) It selects out-neighbor vl ∈ N+
j such that Plj = ej

and transmits zj [0] and ỹj [0] + uj [0] to this
out-neighbor. Then, it sets ỹj [0] = 0, zj [0] = 0,
lj = lj + 1.

6) It sets cj = cj + 1 and ej = cj mod D+
j .

Iteration: For k = 0, 1, 2, . . . , each node vj ∈ Vp does
the following:
• if it receives ỹi[k], zi[k] from at least one in-neighbor
vi ∈ N−j then it updates its values according to (1a) and
(1b).
◦ if either of the conditions (C1) and (C2) hold then
- it sets ỹj [k + 1] = uj [lj ] + yj [k + 1] and lj ← lj + 1;
- it sets zsj [k + 1] = zj [k + 1], ysj [k + 1] = ỹj [k + 1] and
qsj [k + 1] = ỹj [k + 1]/zsj [k + 1];

- it transmits zj [k + 1] and ỹj [k + 1] to out-neighbor
vλ ∈ N+

j for which Pλj = ej and it sets ỹj [k + 1] = 0,
yj [k + 1] = 0 and zj [k + 1] = 0;

- it sets cj = cj + 1 and ej = cj mod D+
j .

◦ else it stores yj [k + 1] and zj [k + 1].
Output: qsj [k], for every vj ∈ V .

Then, among the nodes vj′ for which (6) holds, there is at least
one node vj for which

ỹj [k0] ≥ ỹj′ [k0], vj , vj′ ∈ {vi ∈ V | (6) holds}. (7)

For notational convenience, we will call the mass variables of
node vj for which (6) and (7) hold as the “leading mass” (or
“leading masses”). Now, we present the following two lemmas,
which are helpful in the development of our results.

Lemma 1 (see [10]): The “leading mass” or “leading masses”
at time step k will always fulfill the “event-triggered conditions”
(C1) and (C2). This means that the mass variables of node vj
for which (6) and (7) hold at time step k0 will be transmitted (at
time step k0) by vj to an out-neighbor vl ∈ N+

j .
Lemma 2: If the event-triggered conditions of node vj ∈ Vp

are fulfilled in at least (Lj + 1) instances, then, from (5a)–(5d),
we have that the accumulated amount of offset injected by node
vj to the network becomes equal to zero.

Proof: Each node vj ∈ Vp at time step k adds the offset
uj [lj ] to its mass variable yj [k] if and only if either of the

event-triggered conditions (C1) and (C2) holds. As a result, if the
event-triggered conditions of vj are fulfilled for at least (Lj + 1)
instances, then the accumulated amount of offset node vj has
injected in the computation becomes equal to zero. �

The following theorem states that the proposed algorithm
allows all the nodes to reach quantized average consensus after
a finite number of steps, for which we provide an upper bound.

Theorem 2: Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges. The execution
of Algorithm 1 allows each node vj ∈ V to reach quantized
average consensus after a finite number of steps, St, bounded by
St ≤ m2(Lmax + 1 + n), where n is the number of nodes, m is
the number of edges in the network, and Lmax = maxvj∈V Lj

is the maximum value of offset adding steps chosen by nodes in
the network.

Proof: See the proof of [1, Th. 2]. �
Remark 4: Theorem 2 relies on the fact that if the proposed

distributed protocol is executed for a finite number of time steps
equal to m2Lmax, then every node in the network will receive a
set of nonzero mass variables that are equal to the leading mass
for at least Lmax instances. This means that the event-triggered
conditions will be fulfilled for each node in the network for
at least Lmax instances, and from Lemma 2, the accumulated
amount of offset injected in the network from each node is equal
to zero. As a result, by executing the proposed protocol for an
additional number of time steps equal to nm2, we have that
every nonzero mass in the network will merge to one leading
mass (or multiple equally valued leading masses) that is (are)
equal to the average of the initial states, and subsequently, this
(these) leading mass (masses) will update the state variables of
each node in the network, setting them equal to the average of
the initial states.

D. Topological Conditions for Privacy Preservation

Proposition 1: Consider a fixed strongly connected digraph
Gd = (V, E) with n = |V| nodes, where |V| ≥ 3. Assume that
a subset of nodes Vp follows the predefined privacy-preserving
protocol, as described in Algorithm 1, with node vj ∈ Vp wish-
ing to preserve its privacy by choosing offsets as in (5a)–(5d).
Any arbitrary subset of colluding curious nodes Vc ⊆ V \ {vj}
(including any individual curious node vc ∈ V \ {vj}), will not
be able to identify the initial state yj [0] of vj , as long as vj has:

1) at least one in- or out-neighbor v� ∈ Vp \ (Vc ∪ {vj})
connected to it, and there is a message exchange between
vj and v�, while both are implementing the privacy-
preserving mechanism (i.e., before vj and v� have injected
all the strictly positive valuesuj [lj ],u�[l�] in the network);

2) has an in-neighbor vi ∈ V \ (Vc ∪ {vj}), which first
transmits to node vj at initialization.

Proof: The proof follows the proof of [1, Proposition 1].
However, the main difference with [1] is the following: In
Algorithm 1, let us assume that at time step k′, nodes vj and
v� are executing the privacy mechanism (i.e.,

∑∞
lj=k′ uj [lj ] > 0

and
∑∞

l�=k′ u�[l�] > 0) and node vj transmits a message to its
out-neighbor v� (the case where v� ∈ N−j can be proven identi-
cally). Node vj will injectuj [lj ] to the value sent to v�, anduj [lj ]
is only known tovj and (perhaps) v�. Then, v� will inject an offset
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u�[l�] to the received message at time step k′ + 1 (or at a future
time step) and will transmit it. The transmitted message depends
on the sum of offsetsuj [lj ] + u�[l�]. Since both vj , v� ∈ Vp \ Vc,
the curious nodes may be able to determine uj [lj ] + u�[l�], but
not the individual valuesuj [lj ] andu�[l�]. As a result, the privacy
of both node vj and node v� is preserved. �

Note here that a set of curious nodes could also attempt to
“estimate” the initial states of some other nodes (e.g., by taking
into account any available statistics about the initial states,uj and
Lj). However, in our analysis in this article, we are interested in
whether the curious nodes can exactly infer the state of another
node (see Definition 2).

V. INITIAL OFFSET PRIVACY-PRESERVING STRATEGY

In this section, we present and analyze another privacy-preser-
ving algorithm, in which offsets are introduced only at the
initialization stage. The main difference with the approach in
Section IV is that the proposed mechanism incorporates an offset
to the mass variable of each node only during the initialization
steps, in order to effectively preserve the privacy of its initial
state.

A. Initialization for Quantized Privacy Strategy

We have that each node maintains the variables uj ∈ Z and

u
(l)
j ∈ Z for every vl ∈ N+

j and its transmission counter cj ∈
Z>0. Then, during initialization, it chooses the variables u

(l)
j

and uj to satisfy the following constraints:

u
(l)
j ∈ Z, ∀vl ∈ N+

j (8a)

uj = −
∑

vl∈N+
j

u
(l)
j . (8b)

Constraints (8a) and (8b) are explicitly analyzed as follows.
1) In (8a), an integer offset for out-neighbor vl ∈ N+

j is
selected in order to be infused to the initial state that node
vj transmits to that out-neighbor vl ∈ N+

j . The selection
of a set of integer offsets, each one corresponding to an
out-neighbor vl ∈ N+

j , has to do with privacy preserva-
tion guarantees, as discussed in Section V-D.

2) Equation (8b) means that the accumulated offset infused
in the network during the initialization steps by node vj
is equal to zero, and the exact quantized average of the
initial states can be calculated without any error.

B. Algorithm Description

The proposed algorithm is a quantized value transfer process,
in which each node in a strongly connected digraph Gd = (V, E)
performs operations and transmissions according to a set of
event-triggered conditions. The intuition behind the algorithm
is as follows. Each node vj ∈ Vp that would like to preserve its
privacy performs the following steps.

1) It selects a set of integer offsets u
(l)
j , one for each out-

neighbor vl ∈ N+
j . It transmits the values u

(l)
j to every

out-neighbor vl ∈ N+
j , while it receives the values u

(j)
i

from its in-neighbors vi ∈ N−j . Then, it sets its initial

state

ỹj [0] = yj [0] + uj +
∑

vi∈N−j

u
(j)
i (9)

where the initial offset uj is equal to uj = −
∑

vl∈N+
j

u
(l)
j . For example, suppose that vj has four out-neighbors

(D+
j = 4), three in-neighbors (D−j = 3), and initial state

yj [0] = 6. This means that it can choose u(0)
j = 3, u(1)

j =

−2, u(2)
j = 5, and u

(3)
j = −3, while it sets uj = −3. It

transmits each of the valuesu(0)
j ,u(1)

j ,u(2)
j , andu(3)

j to the
corresponding out-neighbor, while it receives the values,
say, 8, 3, and 6, from its in-neighbors. Then, from (9),
it sets its initial state equal to ỹj [0] = 20. Note that (9)
is essential not only for preserving the privacy of every
node’s initial quantized state but also for preserving the
sum of the initial states, i.e.,

∑
vj∈V yj [0] =

∑
vj∈V ỹj [0],

as it will be seen later.
2) It chooses an out-neighbor vl ∈ N+

j according to the
unique order Plj (initially, it chooses vl ∈ N+

j such
that Plj = 0) and transmits ỹj [0] and zj [0] to this out-
neighbor. Then, it sets ỹj [0] = 0 and zj [0] = 0.

3) During the execution of the algorithm, at every step k,
node vj may receive a set of mass variables ỹi[k] and
zi[k] from each in-neighbor vi ∈ N−j . Then, node vj
updates its mass variables according to (1a) and (1b)
(where in (1a), we use ỹj [k]) and checks if either of its
event-triggered conditions (C1) and (C2) holds. If so, a)
it sets its state variables ysj [k + 1] and zsj [k + 1] equal,
respectively, to ỹj [k + 1] and zj [k + 1] [i.e., it updates
them according to (2)]; and b) it transmits ỹj [k + 1] and
zj [k + 1] to an out-neighbor according to the predeter-
mined order. If none of the conditions (C1) and (C2) holds,
then node vj stores ỹj [k + 1] and zj [k + 1]. Note that if
no message is received from any of the in-neighbors, the
mass variables remain the same.

Remark 5: During the operation of Algorithm 2, each node
vj is able to choose the values of u(l)

j , for every vl ∈ N+
j , in a

way that ensures that each curious node in V \ {vj} (or a set of
colluding nodes in Vc ⊆ V) can only determine a range [α, β],
α < β, for which they can ensure that the values yj [0] lie in, and
vj can make α ∈ R arbitrarily small and/or β ∈ R arbitrarily
large.

The proposed algorithm is summarized in Algorithm 2. Cu-
rious nodes that try to identify the initial states of other nodes
follow either Algorithm 2 or the underlying average consensus
algorithm in Section II-B.

C. Deterministic Convergence Analysis

Theorem 3: Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges. The execution
of Algorithm 2 allows each node vj ∈ V to reach quantized
average consensus after a finite number of steps, St, bounded by
St ≤ m2n, where n is the number of nodes and m is the number
of edges in the network.

Proof: See Appendix B. �
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Algorithm 2: Privacy-Preserving Event-Triggered Quan-
tized Average Consensus With Zero-Sum Initial Offsets.

Input: A strongly connected digraph Gd = (V, E) with
n = |V| nodes and m = |E| edges. Each node vj ∈ V
has an initial state yj [0] ∈ Z.

Initialization: Each node vj ∈ Vp does the following:
1) It assigns a unique order Plj in the set
{0, 1, . . .,D+

j − 1} to each of its out-neighbors
vl ∈ N+

j .
2) It sets counter cj to 0 and priority index ej to cj .

3) It chooses u(l)
j ∈ Z, for every vl ∈ N+

j . Then, it sets

uj = −
∑

vl∈N+
j
u
(l)
j .

4) It transmits u(l)
j to each vl ∈ N+

j .

5) It sets ỹj [0] = yj [0] + uj +
∑

vi∈N−j u
(j)
i , zj [0] = 1,

ysj [0] = ỹj [0], and zsj [0] = zj [0] (which means that
qsj [0] = ỹj [0]/z

s
j [0]).

6) It selects out-neighbor vl ∈ N+
j such that Plj = ej

and transmits ỹj [0] and zj [0] to this out-neighbor. Then,
it sets ỹj [0] = 0 and zj [0] = 0.

7) It sets cj = cj + 1 and ej = cj mod D+
j .

Iteration: For k = 0, 1, 2, . . . , each node vj ∈ Vp does
the following:
• if it receives ỹi[k] and zi[k] from at least one
in-neighbor vi ∈ N−j then it updates ỹj [k + 1] and
zj [k + 1] according to (1a) and (1b).
◦ if either of the conditions (C1) and (C2) hold then
- it sets ysj [k + 1] = ỹj [k + 1], zsj [k + 1] = zj [k + 1],
and qsj [k + 1] = ysj [k + 1]/zsj [k + 1];

- it transmits ỹj [k + 1] and zj [k + 1] to out-neighbor
vλ ∈ N+

j for which Pλj = ej and it sets ỹj [k + 1] = 0
and zj [k + 1] = 0;

- it sets cj = cj + 1 and ej = cj mod D+
j .

◦ else it stores ỹj [k + 1] and zj [k + 1].
Output: qsj [k], for every vj ∈ V .

D. Topological Conditions for Privacy Preservation

Proposition 2: Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes, where |V| ≥ 3. Assume that a subset
of nodes Vp follows the predefined privacy-preserving protocol,
as described in Algorithm 2, with offsets chosen as in (8a) and
(8b). Any arbitrary subset Vc of curious nodes Vc ⊆ V \ {vj}
including individually operating curious nodes (i.e., |Vc| = 1)
will not be able to identify the initial state yj [0] of vj , vj ∈
Vp \ Vc, as long as vj has at least two out-neighbors vl, vl′ ∈ N+

j

and at least one out-neighbor vl ∈ N+
j does not collude with

nodes in Vc (i.e., vl /∈ Vc). In particular, any single curious node
will not be able to identify the initial state yj [0] of node vj as
long as it is not the sole out-neighbor of node vj .

Proof: See Appendix C. �
Remark 6: Note that the topological requirements for Al-

gorithm 2 are relaxed with respect to those of Algorithm 1.
While the topological conditions of Algorithm 1 require two
connected nodes to follow the privacy-preserving protocol or

an in-neighbor to explicitly transmit to the privacy-preserving
node during its initialization, the topological conditions of Algo-
rithm 2 do not necessarily need a node that follows the protocol
or has side information. In addition, apart from improving
the topological conditions that ensure privacy for the nodes
following the proposed protocol, Algorithm 2 also exhibits
increased convergence speed (see the subsequent discussion in
Section VI), since the injection of the zero-valued offset requires
only one time step during the initialization procedure.

VI. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
behavior of our proposed distributed protocols. Specifically, we
analyze the cases of:

1) a randomly generated digraph of 20 nodes with the av-
erage of the initial states of the nodes turning out to be
equal to q = 181/20 = 9.05;

2) 1000 randomly generated digraphs of 20 nodes each,
where, for convenience in plotting the results, the initial
quantized state of each node remained the same (for each
one of the 1000 randomly generated digraphs); this means
that the average of the nodes’ initial quantized states also
remained equal to q = 185/20 = 9.25.

For each of the above cases, we analyze the scenarios where
each node vj ∈ V does the following: Case (i) executes the
privacy protocol described in Algorithm 1 and initially infuses
in the network a randomly chosen offset uj ∈ [−100,−50] with
randomly chosen offset adding steps Lj ∈ [20, 40], Case (ii)
executes the privacy protocol described in Algorithm 2 and
initially infuses in the network the randomly chosen offset
uj ∈ [−100, 100], the randomly chosen offsetsu(l)

j ∈ [−20, 20],
for every vl ∈ N+

j , and uj chosen according to (8b), and Case
(iii) initially does not infuse any offset in the network, i.e.,
uj = 0 andu(l)

j = 0 for every vl ∈ N+
j , which means that it does

not attempt to preserve the privacy of its initial state. Note that the
digraphs were randomly generated by creating, independently
for each ordered pair (vj , vi) of two nodes vj and vi (vj �= vi), a
directed edge from node vi to node vj with probability p = 0.3.

Execution over a random digraph of 20 nodes: In Fig. 2, we
illustrate Algorithms 1 and 2 over a random digraph of 20 nodes,
where the average of the initial states of the nodes is equal to
q = 181/20 = 9.05. We analyze the operation of our algorithms
for the following scenarios: Case (i) executes Algorithm 1
and initially infuses in the network an offset uj ∈ [−100,−50]
with offset adding steps Lj ∈ [20, 40] (see top of Fig. 2); Case
(ii) executes Algorithm 2 and initially infuses in the network
the randomly chosen offset uj ∈ [−100, 100] and the offsets

u
(l)
j ∈ [−20, 20], for every vl ∈ N+

j (see middle of Fig. 2); and
Case (iii) initially does not infuse any offset in the network
uj = 0, u(l)

j = 0, for every vl ∈ N+
j (see bottom of Fig. 2).

We observe that for Case (iii), each node is able to calculate the
average of the initial states after 100 time steps. However, for
the case where each node vj wants to preserve the privacy of
its initial state, we observe that Algorithm 1 converges after
450 time steps, while Algorithm 2 converges after 105 time
steps. Furthermore, we observe that for Case (iii), we have
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Fig. 2. Execution of Algorithms 1 and 2 for a random digraph of 20
nodes. Top: Node state variables with privacy preservation of Algo-
rithm 1 plotted against the number of iterations where the dashed line
is the average of the initial states. Middle: Node state variables with
privacy preservation of Algorithm 2 plotted against the number of itera-
tions. Bottom: Node state variables without privacy preservation plotted
against the number of iterations.

yj [0] ∈ [3, 19] for every vj ∈ V; for the case where every node
executes Algorithm 1, we have ỹj [0] ∈ [−40,−80] for every
vj ∈ V; and for the case where every node executes Algorithm 2,
we have ỹj [0] ∈ [−80, 90] for every vj ∈ V . Note here that both
the algorithms are able to calculate the exact average of the
initial states of the nodes without introducing any error due to
the utilized privacy-preserving strategy.

Execution averaged over 1000 random digraphs of 20 nodes:
In Fig. 3, we present the same cases as in Fig. 2 with the
difference being that they are averaged over 1000 randomly gen-
erated digraphs of 20 nodes. Note that for generating the random
digraphs, we used the Erdős–Rényi model. The initial quantized
state of each node remained the same for each one of the 1000
randomly generated digraphs (in particular, the average of the
initial states of the nodes is equal to q = 185/20 = 9.25). For
every node vj , the initial offset uj ∈ [−100,−50] and the offset
adding steps Lj ∈ [20, 40] during the execution of Algorithm 1,
as well as the initial offset uj ∈ [−100, 100] and the offsets

u
(l)
j ∈ [−20, 20], for every vl ∈ N+

j , during the execution of
Algorithm 2, were randomly chosen for each digraph according
to a uniform distribution. We can see that the main results
resemble those in Fig. 2, and Algorithm 1 converges after 450
time steps, while Algorithm 2 converges after 170 time steps.
For Case (iii), we have yj [0] ∈ [4, 19] for every vj ∈ V , whereas
for the case where every node executes Algorithm 1, we have
ỹj [0] ∈ [−40,−70] for every vj ∈ V , and for the case where
every node executes Algorithm 2, we have ỹj [0] ∈ [3, 20] for
every vj ∈ V . This means that, for Case (iii), the states yj [0]

Fig. 3. Execution of Algorithms 1 and 2 averaged over 1000 random
digraphs of 20 nodes. Top: Average values of node state variables
with privacy preservation of Algorithm 1 plotted against the number of
iterations (averaged over 1000 random digraphs of 20 nodes), where the
dashed line is the average of the initial states. Middle: Average values
of node state variables with privacy preservation of Algorithm 2 plotted
against the number of iterations (averaged over 1000 random digraphs
of 20 nodes). Bottom: Average values of node state variables without
privacy preservation plotted against the number of iterations (averaged
over 1000 random digraphs of 20 nodes).

Fig. 4. Comparison between Algorithms 1 and 2, and Algorithms
in [15], [16], and [20]. The error (e[k]) is plotted against the number of
iterations (averaged over 1000 random digraphs of eight nodes).

of every vj ∈ V are almost equal to the states ỹj [0] for the
case where every node executes Algorithm 2, since the off-
sets uj ∈ [−100, 100] and u

(l)
j ∈ [−20, 20] for every vl ∈ N+

j

were randomly chosen for each digraph according to a uniform
distribution.

Comparison with the existing literature: In Fig. 4, we com-
pare the performance of Algorithms 1 and 2 against [15], [16],
and [20]. We show the error, defined by e[k] := (

∑
vj∈V |qj [k]−

y|)/|V|,plotted against the number of iterations for 1000 random
digraphs for the case where the average of the initial states of
the nodes is equal to 23.66. Each of the 1000 random digraphs
was generated via the Erdős–Rényi model, and the initial state
of each node remained the same (thus, the average of the initial
states remained the same), but the parameters were randomly
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Fig. 5. Example of a digraph representing a smart grid consisting
of a neighborhood with eight households b1–b8, a smart meter vsm, a
substation vSub, and a power generator vPGen.

Fig. 6. Execution of Algorithms 1 and 2 for the neighborhood of eight
households shown in Fig. 5. Top: Requested power per household
with privacy preservation of Algorithm 1 plotted against the number of
iterations for day = 1, where the dashed line is the average of the initial
states. Middle: Requested power per household with privacy preserva-
tion of Algorithm 2 plotted against the number of iterations for day = 1.
Bottom: Requested power per household without privacy preservation
plotted against the number of iterations for day = 1.

chosen (which is seen from the difference in the initial condi-
tions of every algorithm in Fig. 4). From Fig. 4, we have that
1) algorithms in [15] and [16] have the fastest convergence
speed; 2) Algorithm 2 and the algorithm [20] require identical
number of time steps for convergence; and 3) Algorithm 1 re-
quires the largest amount of time steps due to its event-triggered
conditions. However, note that Algorithms 1 and 2 operate solely
with quantized values and converge to the exact solution after a
finite number of time steps, while algorithms in [15], [16], and
[20] exhibit asymptotic convergence.

Remark 7: In Figs. 2 and 3, we can see that both the algorithms
are able to calculate the exact average of the initial states of
the nodes without introducing any error due to the utilized
privacy-preserving strategies. This makes Algorithms 1 and 2 the
first algorithms in the literature that calculate the exact average
of the initial states of the nodes in finite time without intro-
ducing any error in a privacy-preserving manner. Furthermore,
the privacy strategy presented in Algorithm 2 requires fewer
time steps for convergence than the strategy in Algorithm 1

since the injection of the zero-valued offset is done during
the initialization procedure and requires only one time step. In
addition, the topological conditions required by Algorithm 2
are relaxed compared to those required by Algorithm 1. The
main operational difference is that in Algorithm 1, the privacy-
preserving protocol is executed in the Iteration procedure, while
in Algorithm 2, the privacy-preserving protocol is incorporated
in the Initialization procedure. However, Algorithm 1 allows
for more efficient usage of the available network resources
(e.g., communication bandwidth) since each node is required
to transmit to at most one out-neighbor at each time step k.

VII. CONCLUSION

In this article, we proposed two event-triggered quantized
privacy-preserving strategies, which allow the nodes of a mul-
tiagent system to calculate the average of their initial states
using quantized states and after a finite number of time steps
without revealing their initial state to other nodes. They take full
advantage of the algorithm’s finite-time nature, which means that
consensus to the exact average of the initial states is achieved
after a finite number of iterations that we explicitly calculated,
while the error, introduced from the offset initially infused
in the network by the nodes following the protocol, vanishes
completely. The point-to-point communication protocol and the
quantized nature of the packets used in the proposed algorithms
facilitate the use of cryptographic primitives for setting up
secure channels and preventing eavesdropping, while harvesting
the benefits of event-triggered and finite-time operation of the
distributed privacy-preserving protocol proposed. Finally, we
have demonstrated the performance of our proposed protocols
via illustrative examples and presented an application in smart
grids.

We plan to extend the operation of our algorithms to be hot
pluggable (i.e., to be able to operate despite network changes or
errors in communication or computation) [21].

APPENDIX A
APPLICATION: POWER REQUEST IN SMART GRIDS UNDER

PRIVACY-PRESERVING GUARANTEES

In this application, a neighborhood of interconnected house-
holds is able to request the total demanded (or offered) power
from a smart meter in a privacy-preserving manner. One of the
main characteristics of smart grids is that the power generator
produces electricity based on consumer requests (or offers),
which are generated in real time and collected by smart me-
ters. Real-time power demand/offer data may contain patterns
from daily/weekly life schedule. Since potential leakage of this
sensitive information may lead to malicious situations against
the residents of specific households (e.g., thieves may learn time
periods when the household is vacant), it is essential to preserve
the privacy of the data sent to smart meters (which contains each
household’s daily requested or offered power).

During the operation, we have the following sequence of
actions: 1) the smart meter collects the daily demands (or of-
fers, e.g., due to photovoltaic systems that are installed at the
rooftops), from each household and transmits them to the power
generator; 2) having received the demands/offers, the power
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generator produces and delivers the demanded electricity to each
substation in the corresponding region; and 3) the electricity is
claimed from the substation to the households without any other
entities having access to this transaction. The charging of the de-
manded electricity (or reimbursement for offered electricity) can
be communicated at the end of the month from the substations.

As an example, let us consider in Fig. 5 a neighborhood with
eight households denoted B = {b1, b2, . . ., b8}, a smart meter
vsm, a substation vSub, and a power generator vPGen. During
the operation, vsm collects (through say b1) the state variable
of household b1, which is equal to the average of the daily
demanded/offered power from all households in the neighbor-
hood. Then, it multiplies it with the number of houses in the
neighborhood in order to calculate the total demanded/offered
power and transmit it to the power generator.

By applying either Algorithm 1 or Algorithm 2 in the network
shown in Fig. 5, we compute distributively and in a privacy-
preserving manner the total power requested/offered within a
certain time period by a set of interconnected nodes (be it house-
holds, electric cars, etc.) in a neighborhood. To formally define
the privacy-preserving total power request/offer of a set of inter-
connected nodes in a neighborhood, letB = {b1, b2, . . . , bn} de-
note the set ofn interconnected nodes in neighborhoodB, and let
Cday = {cday

1 , cday
2 , . . . , cday

n } denote the set of requested/offered
powers per household at each day within a month, where day
refers to the day of the month. This means that for node bj , the
amount of requested/offered power at the third day of a month
is denoted as c3j . For simplicity of exposition, we show how our
algorithms work within a single day, so, hereafter, we drop the
index day.

Both the algorithms initially use as input the requested/offered
power of each node bj ∈ B for a specific day cj and create
a distorted version c̃j . Let C̃ = {c̃1, c̃2, . . . , c̃n}, be the set of
distorted amounts of requested power from every household in
the neighborhood at each day within a month. Eventually, the
smart meter collects the calculated average demand of the neigh-
borhood, in order to multiply it with the number of participating
nodes (there exist algorithms for computing the total number of
nodes, in case it can vary, e.g., due to the presence of excess
electric vehicles) and calculate the total demanded power. The
operation of both the algorithms is as follows.

1) During the operation of Algorithm 1, a set of offset adding
steps Lj is chosen from each node bj . Then, each node
injects a set of positive offsets for a number of Lmax =
maxbj∈B Lj steps, which will guarantee the preservation
of the privacy of the people living in this household.

2) During the operation of Algorithm 2, each node bj trans-
mits nonzero offsets to its out-neighbors. Then, for each
day, the initial states c̃j of every household bj are cal-
culated (note that it holds

∑n
j=1 c̃j =

∑n
j=1 cj). This

means that the privacy of the data containing the daily
requested/offered power of each household is preserved.

For the households in Fig. 5, let us consider the set
C = {30, 35, 28, 34, 27, 37, 29, 32}, which denotes the amount
of requested power at a certain day from each household (i.e.,
household b1 requests 30, b2 requests 35, etc.) with the average
demand being cday = 31.5. Here, we assume that each household

1) has a daily demand above a certain threshold due to daily
power consumption, regardless of whether the residents are in
the house or not (e.g., fridge consumption and security systems)
and 2) may have installed photovoltaic systems, which allow
it to produce electricity in order to consume it or sell it (this
means that this household may request negative power from the
smart meter). During the execution of Algorithm 1, we have
C̃ = {15, 16, 15, 17, 15, 17, 15, 16}, while during the execution
of Algorithm 2, we have C̃ = {28, 30, 25, 32, 36, 34, 33, 34}.
Note here that the daily demands C̃day for Algorithm 1 are
different than the daily demands C̃day for Algorithm 2, due to
the choice of uday

j and ul
j ∀vl ∈ N+

j , respectively. In Fig. 6, we
can see that this choice affects the convergence rate of both the
algorithms with Algorithm 2 generally requiring less time steps
to converge compared to Algorithm 1 (as already discussed in
Section VI).

APPENDIX B
PROOF OF THEOREM 3

In this proof, we focus on showing that the Initialization
procedure of Algorithm 2 changes the initial states of each node
in such a way that their sum remains the same (which means
that the initial average also remains the same).

During the Initialization steps of Algorithm 2, we have that
each node vj ∈ Vp sets its initial state as ỹj [0] = yj [0] + uj +∑

vi∈N−j u
(j)
i and proceeds with executing the protocol described

in Section II-C. Focusing on ỹj [0], we have that

∑
vj∈V

ỹj [0] =
∑
vj∈V

⎛
⎝yj [0] + uj +

∑
vi∈N−j

u
(j)
i

⎞
⎠

=
∑
vj∈V

yj [0] +
∑
vj∈V

uj +
∑
vj∈V

⎛
⎝ ∑

vi∈N−j

u
(j)
i

⎞
⎠ .

(10)

Analyzing the second part of (10), from (8a) and (8b), we have

∑
vj∈V

uj = −
∑
vj∈V

⎛
⎝ ∑

vi∈N−j

u
(j)
i

⎞
⎠ (11)

so that
∑
vj∈V

⎛
⎝yj [0] + uj +

∑
vi∈N−j

u
(j)
i

⎞
⎠ =

∑
vj∈V

yj [0]. (12)

From (10) and (12), we have
∑

vj∈V ỹj [0] =
∑

vj∈V yj [0],which
means that the Initialization steps of Algorithm 2 preserves the
sum of the initial states. Then, each node executes the algorithm
described in Section II-C, whose convergence proof can be seen
in [10]. �

APPENDIX C
PROOF OF PROPOSITION 2

We show that the transmitted values of each vj ∈ Vp \ Vc
during the Initialization of Algorithm 2 allow it to preserve the
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privacy of its initial state for the case where it has at least two
out-neighbors, and at least one of its out-neighbors does not
collude with the others (regardless of whether the out-neighbor
follows the protocol or not).

As was the case with Algorithm 1, the topological conditions
will be extracted from simple scenarios, which constitute the
building blocks of the directed network.

1) It is easy to observe that if all the in- and out-neighbors of
node vj are curious and they collude with each other,
it is not possible for this node to keep its privacy. At
initialization, the curious nodes will know the values node
vj transmitted to its out-neighbors, i.e., u(l)

j to every vl ∈
N+

j . In addition, the curious nodes will know the values

vj received during the initialization, i.e., u(j)
i from every

vi ∈ N−j . Hence, after the Initialization of Algorithm 2,
the curious nodes will be able to compute the initial offset
uj of node vj , since the initial offset satisfies (8b); hence,
privacy of vj’s initial state will not be preserved. As a
result, at least one neighbor that is not curious is needed.

2) We consider the case where vj has at least two out-
neighbors vl, vl′ ∈ N+

j and at least one out-neighbor vl
is not colluding with nodes in Vc (node vl may or may
not follow the privacy-preserving protocol). During the
Initialization of Algorithm 2, vl will receive the value
u
(l)
j from vj and will sum it with its own initial state in

order to calculate ỹl[0]. Since it is not colluding with other
curious nodes, the other curious nodes will not be able to
directly determine the value of u(l)

j . Similarly, node vj
will calculate ỹj [0]. We argue below that the privacy of
both nodes vj and vl is preserved. (Note that a similar
argument can be used to establish that node vj preserves
its privacy if one of its in-neighbors vi ∈ Vp \ Vc follows
the privacy-preserving protocol and does not collude with
other nodes.)

Note that everything that is done after the initialization is a
function of ỹj [0] for all vj . Therefore, the curious nodes observe
values that are functions of ỹj [0] and can, at best, estimate these

values. However, we have that ỹj [0] = yj [0]− u
(l)
j + δ and

ỹl[0] = yl[0] + u
(l)
j + θ, where δ, θ ∈ Z are some other offsets.

Observe that even if ỹj [0], ỹl[0], δ, and θ become known, one
can only estimate the sum yj [0] + yl[0] but not the exact values
yj [0] and yl[0] (which can be arbitrary depending on the value

of u(l)
j , which is known only to nodes vj and vl). Note that in

such cases, the initial states of both nodes are protected (though
the sum of these states may be exposed). As a result, the initial
state of the node that follows the protocol can be bounded in an
interval [α, β], which according to Definition 2 implies that its
privacy is preserved. �
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