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Abstract—In this article, we develop a layered networked
spread model for a susceptible-infected-susceptible patho-
gen-borne disease spreading over a human contact net-
work and an infrastructure network, and refer to it as a
layered networked susceptible-infected-water-susceptible
model (SIWS). The “W” in SIWS represents any infrastruc-
ture network contamination, not necessarily restricted to a
water distribution network. We identify sufficient conditions
for the existence, uniqueness, and stability of various equi-
libria of the aforementioned model. Further, we study an
observability problem, where, assuming that the measure-
ments of the pathogen levels in the infrastructure network
are available, we provide a necessary and sufficient condi-
tion for estimation of the sickness levels of the nodes in the
human contact network. Our results are illustrated through
an in-depth set of simulations.

Index Terms—Epidemic processes, infrastructure net-
works, stability, observability.

I. INTRODUCTION

THE SPREAD of diseases has been a prominent feature
of human civilization. The devastation that epidemics can

bring worldwide, both from loss of life, and, less importantly,
from hindrance to economic activity, has been brought into stark
relief by the ongoing Covid-19 crisis. Consequently, understand-
ing the causes of spread of diseases, and, as a result, possibly
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mitigating (or eradicating) the spread have been questions of
longstanding interest for the scientific community. The earliest
work in this area can be traced back to [1]. In recent times,
modeling and analysis of spreading processes has attracted the
attention of researchers across a wide spectrum ranging from
mathematical epidemiology [1], [2] and physics [3] to the social
sciences [4].

Various models have been proposed in the literature for study-
ing spreading processes, and, in particular, epidemics. Neverthe-
less, a vast majority of such models factors in only person-to-
person interaction. However, diseases can spread also through
other mediums, such as water [5], [6], [7] (or infected surfaces,
e.g., in hospitals [8], public transit vehicles [9], etc.). Water-
borne pathogens could spread through infrastructure networks
and water distribution systems (e.g., rivers, groundwater, and
reservoirs) [10]. Moreover, while water quality issues are very
prevalent in developing countries with a less advanced plumbing
and sewage infrastructure, such issues occasionally affect more
prosperous countries as well. Notably, Sweden has had a number
of water contamination incidents, which have affected thousands
of residents. For example, in Östersund in Northern Sweden,
approximately 27 000 people (∼45% of the population) became
ill and had a boil-water order for over two months as the result
of Cryptosporidium contamination of the drinking water [11].
Thus, there is a need for epidemic models that also account
for the spread of diseases as a consequence of contamination
of shared infrastructure resources.1 Observe that representing
the entire network as a single layer (which, in context, means
that the population nodes and resource nodes are treated on an
equal footing) could possibly lead to erroneous conclusions [12].
Therefore, in order to better capture the coupled dynamical
processes involved, it is prudent to devise an epidemic model
that has two layers (one representing the interaction between
the human population, and another representing the interaction
between the infrastructure resources), referred to as multilayer
networks [13], [14].

This article relies on the susceptible-infected-susceptible
(SIS) model. In an SIS model, an agent (respectively, node),
which can be interpreted as either an individual or, equivalently,
a community, is either in the infected state or in the susceptible
state. Assuming there is a nontrivial disease-spread in a popula-
tion, an agent that is in the susceptible state, as a consequence of

1A node in an infrastructure network is referred to as resource.
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interactions with its neighbors, and depending on its infection
rate, transitions to the infected state; an agent that is in the
infected state recovers from the infections based on its healing
rate. SIS networked models have been studied extensively in the
literature [3], [15], [16], [17], [18], [19].

More recently, in order to account for the spread of diseases
through infrastructure resources, such as water distribution net-
works, a variant of the SIS model called the susceptible-infected-
water-susceptible (SIWS) model has been developed in [20], and
a multivirus single resource SIWS model in [21]; an analogous
model, inspired from the susceptible-infected-recovered (SIR)
framework, had been proposed in [22], [23], [24]. Liu et al. [20]
provided sufficient conditions for global asymptotic stability
(GAS) of the healthy state [20, Theorem 1], but it does not
provide any theoretical guarantees regarding endemic behavior.
More recently, sufficient conditions for GAS of the healthy state,
and also for the existence, uniqueness, and GAS of the endemic
state have been provided in [21]; [21, Theorem 2], and [21,
Theorem 3], respectively. However, both [20] and [21] consider
only the presence of a single resource. Notice that if there are
multiple water resources being accessed by the population, then
the spread of virus could be due to not only: 1) interaction
between an individual in a population node and another indi-
vidual in (possibly) another population node and 2) interaction
between an individual in a population node and a resource node
in the infrastructure network, but also due to interaction between
two resource nodes in the infrastructure network. This article
aims to develop such a model (called the layered networked
SIWS model), and provides an in-depth analysis of its various
equilibria viz. existence, uniqueness, and stability. Based on the
aforementioned analysis, we would also focus on understanding
the effect on the endemic level of the population nodes in the
presence of shared resource(s) as opposed to the absence of the
same.

While the discussion insofar has been centered around mod-
eling and analysis, another pressing challenge that health ad-
ministration officials face is to estimate the sickness levels of
the population. In particular, for large-scale modern societies, it
is not economically viable to install sensors in each and every
household for measuring the respective household’s infection
levels. Given that the pathogen levels of infrastructure networks
could be measured more easily, the following problem is of
interest: under what conditions can we estimate the infection
levels of individuals in the population by only measuring the
pathogen levels in the infrastructure network? In fact, this
problem has been of strong interest in the context of several
epidemics such as Ebola [25], Zika [26], Covid [6], [7], [27],
etc. It turns out that by employing system-theoretic notions such
as observability,2 the aforementioned problem can be addressed
by deploying as few sensors as possible. One of the earliest
works in this direction is [28], where the problem of which
subset of nodes in a network should be measured so as to im-
prove observability of a SIS network is addressed; the condition
therein involves checking the determinant of the inverse of the

2A system has the property of observability, if, given a series of output
measurements, the initial state of the system can be uniquely determined.

observability Grammian. The key theoretical tool that we would
be using is the notion of local weak observability of nonlinear
systems.3

Article Contributions: For the layered networked SIWS
model that accounts for the presence of multiple resources, our
main contributions are as follows.

1) We identify conditions such that regardless of whether
or not a population node (respectively, infrastructure re-
source) is
infected or healthy, the model converges to the healthy
state, i.e., conditions for GAS of the healthy state
(see Theorem 1).

2) We provide conditions that guarantee the existence,
uniqueness, and GAS of the endemic equilibrium
(see Theorem 2).

3) We show that the endemic equilibrium in the population
nodes for the layered networked SIWS model is greater
than or equal to the endemic equilibrium of the population
nodes in the networked SIS model, with at least one of the
population nodes in the former having a strictly greater
endemic level than in the latter (see Proposition 5).

4) Given knowledge of the pathogen levels in the infras-
tructure network, we provide a necessary and sufficient
condition for estimating the sickness levels in the human
contact network (see Theorem 3).

In addition, we also have the following auxiliary contribu-
tions: a necessary and sufficient condition for the healthy state
to be the unique equilibrium of the model (see Corollary 1), a
sufficient (but not necessary) condition for local weak observ-
ability of the layered networked SIWS model, and, based off of
this sufficient condition, we present a design of the observability
matrix that results in the layered networked SIWS model being
locally weakly observable (see Proposition 6 and Corollary 2,
respectively).

A preliminary version of this article appeared in [30]. This
article involves a more comprehensive treatment by provid-
ing theoretical guarantees for the endemic behavior, studying
a different observability problem, providing novel sufficient
conditions for local weak observability, complete proofs of all
assertions, and, finally, an in-depth set of simulations.

Article Organization: The rest of this article is organized as
follows. We conclude the present section by collecting all the
notations used in the rest of this article. The layered networked
SIWS model is developed in Section II, where we subsequently
also state the problems of interest. The analysis of the various
equilibria of the model, namely, stability of the healthy state
and existence, uniqueness, and stability of the endemic state,
is given in Section III. The observability problem is studied
in Section IV. Simulations illustrating our theoretical findings
are provided in Section V. Finally, Section VI concludes this
article.

Notation: For any positive integer n, we use [n] to denote the
set {1, 2, . . . , n}. The ith entry of a vector x will be denoted

3We say that two initial states are indistinguishable if the corresponding
outputs are equal for all time instants. A system is locally weakly observable if
one can instantaneously distinguish each initial state from its neighbors [29].
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Fig. 1. Multilayered SIWS model: The disease (depicted in red)
spreads between household nodes (squares) and the pathogen (green)
spreads through infrastructure network nodes (circles). Blue indicates
healthy. The model permits transmission from the infrastructure network
to the human contact network, vice versa, and not necessarily symmet-
rically. We use the terms “infrastructure network” and “water network”
interchangeably.

by xi. We use 0 and 1 to denote the vectors, whose entries all
equal 0 and 1, respectively, and use I to denote the identity
matrix. For any vector x ∈ IRn, we use diag(x) to denote the
n× n diagonal matrix whose ith diagonal entry equals xi. For
any two setsA andB, we useA \ B to denote the set of elements
in A but not in B. For any two real vectors a, b ∈ IRn, we write
a ≥ b if ai ≥ bi for all i ∈ [n], a > b if a ≥ b and a �= b, and
a � b if ai > bi for all i ∈ [n]. For a square matrix M , we use
σ(M) to denote the spectrum of M , use ρ(M) to denote the
spectral radius of M , and s(M) to denote the largest real part
among the eigenvalues of M , i.e., s(M) = max{Re(λ) : λ ∈
σ(M)}. Given a matrixA,A ≺ 0 (respectively,A � 0) indicates
that A is negative definite (respectively, negative semidefinite),
whereas A � 0 (respectively, A � 0) indicates that A is positive
definite (respectively, positive semidefinite).

II. MODEL

In this section, we develop a distributed continuous-time
pathogen model. This model will be hereafter referred to as the
layered networked SIWS model (see Fig. 1).

A. Layered Networked SIWS Model

Consider a pathogen spreading over a two-layer network
consisting of n > 1 groups of individuals and m > 1 infras-
tructure resources. The individuals in a group could become
contaminated as a consequence of their interactions with other
infected individuals and/or as a consequence of their interactions
with infected infrastructure resources.

We denote by Ii(t) and Si(t), the number of infected and
susceptible individuals, respectively, in group i at time t ≥ 0. We
denote by Ni the total number of individuals in group i, and as-
sume thatNi does not change over time, i.e.,Si(t) + Ii(t) = Ni

for all i ∈ [n] and t ≥ 0, This assumption implies that the birth
and death rates for each group are equal. Thus, it simplifies
the model. The healing rate of each group i is denoted by γi,
the birth rate by μi, the death rate by μ̄i (which equals μi), the

person-to-person infection rates by aij and the infrastructure-to-
person infection rates by awij . We denote by wj(t) the pathogen
concentration in the jth infrastructure resource, with δwj denot-
ing the corresponding decay rate of the pathogen, ζwjk denoting
the person-infrastructure contact rate of group k to infrastructure
node j, and αkj representing the flow of the pathogen from node
k to node j in the infrastructure network. In the rest of this article,
we will assume that all of the aforementioned parameters are
non-negative. We assume that the individuals are susceptible at
birth regardless of whether (or not) their parents are infected. The
evolution of the numbers of infected and susceptible individuals
in each group i is consistent with the ideas in [22], [31] as
follows:

Ṡi(t) = μiNi − μ̄iSi(t) + γiIi(t)−
n∑

j=1

aij
Si(t)
Ni

Ij(t)

−
m∑
j=1

awijwj(t)Si(t)

= (μi + γi)Ii(t)−
n∑

j=1

aij
Si(t)
Ni

Ij(t)

−
m∑
j=1

awijwj(t)Si(t), (1)

İi(t) = − γiIi(t)− μ̄iIi(t) +
n∑

j=1

aij
Si(t)
Ni

Ij(t)

+
m∑
j=1

αw
ijwj(t)Si(t)

= (−γi − μi)Ii(t) +
n∑

j=1

aij
Si(t)
Ni

Ij(t)

+
m∑
j=1

awijwj(t)Si(t), (2)

ẇj = − δwj wj +
n∑

k=1

ζwjkIk +
m∑

k=1

αkjwk

− wj

m∑
k=1

αjk. (3)

It is clear from (1) and (2), that Ṡi(t) + İi(t) = 0, which is
consistent with our assumption that Ni is a constant.

We simplify the model further by defining the fraction of
infected individuals in each group i as

xi(t) =
Ii(t)

Ni
.

By defining the following parameters:

δi = γi + μi, βij = aij
Nj

Ni
, βw

ij = Nia
w
ij , cwjk = ζwjk/Nk

and from (1), (2), and (3), it follows that:

ẋi = −δixi + (1− xi)

(
n∑

j=1

βijxj +
m∑
j=1

βw
ijwj

)
(4)

ẇj=−δwj wj+
m∑

k=1

αkjwk − wj

m∑
k=1

αjk+
n∑

k=1

cwjkxk. (5)
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Note that we also allow for the healing rate of an infrastructure
resource j, δwj , to be zero.

The model from (4) to (5) in vector form becomes

ẋ = (B −XB −D)x+ (I −X)Bww (6)

ẇ = −Dww +Aww + Cwx (7)

where B = [βij ]n×n, X = diag(x), Bw = [βw
ij ]n×m, Aw has

off-diagonal entries equal to αkj and diagonal entries equal to
−∑k αkj , and Cw = [cwjk]m×n. Therefore, the columns of Aw

sum to zero.
System (6)–(7) could be written more compactly using

z(t) :=

[
x(t)

w(t)

]
, X(z(t)) :=

[
diag(x(t)) 0

0 0

]

Bf :=

[
B Bw

Cw Aw − diag(Aw)

]
, and

Df :=

[
D 0

0 Dw − diag(Aw)

]
. (8)

With the new notations in place, (6)–(7) can be rewritten as

ż =
(−Df + (I −X(z))Bf

)
z. (9)

Remark 1: We highlight how the model considered in this
article is connected with similar models in the existing literature

1) Ifm = 1, (9) coincides with the model in [20] and with the
multivirus model in [21], when the latter is particularized
for the single-virus case.

2) Ifwj(t) = 0 for all t and all j ∈ [m] or, equivalently, there
is no coupled infrastructure network, (9) reduces to the
regular networked SIS model in [32].

The spread of viruses over infrastructure networks has been
studied in [33], but the model therein only accounts for spread
between the nodes in the infrastructure network; the coupling
with a human population network is not considered. Note that in
contrast to [33], the model in (9) admits three media for spread,
namely: 1) population–population; 2) population–resource; and
3) resource–resource.

B. Problem Statements

In the sequel, for the model in (9), we will be interested in
addressing the following problems:

1) Identify a condition such that z(t) converges asymptoti-
cally to the healthy state, i.e., z = 0.

2) Under what conditions does there exist an endemic equi-
librium ẑ > 0, and under such conditions, does the system
converge asymptotically to ẑ from any nonzero initial
condition?

3) Let z̃ =
[
x̃	 w̃	

]	
, where x̃ (respectively, w̃) denotes

the endemic equilibrium of the population nodes (respec-
tively, the shared resources). Let x̂ denote the unique
endemic equilibrium of the SIS model without a shared
resource. What is the relation between x̂ and x̃?

4) Identify a necessary and sufficient condition such that
x(0) can be uniquely recovered given z(t).

C. Positivity Assumptions

We impose the following assumptions on the parameters.
Assumption 1: Suppose that δi > 0 for all i ∈ [n], δwj +∑
k αjk > 0 for all j ∈ [m], βij ≥ 0 for all i, j ∈ [n], and

βij > 0 whenever group j is a neighbor of group i.
Assumption 1 says, among other things, that the healing and

infection rate of each population group is strictly positive.
Since each xi represents the fraction of infected individuals

in group i, it is immediate that the initial value of xi is in [0,1],
because otherwise the value of xi will lack physical meaning for
the epidemic model considered here. Similarly, it is also natural
to assume that the initial value of wj (measured, for instance, in
milligrams per litre) is nonnegative. Hence, we can restrict our
analysis to the set

D := {y(t) : x(t) ∈ [0, 1]n, w(t) ∈ [0,∞)m}. (10)

The following lemma establishes that, under Assumption 1, the
set D is positively invariant.

Lemma 1 Suppose that Assumption 1: holds. Suppose that
xi(0) ∈ [0, 1] for all i ∈ [n] andwj(0) ≥ 0 for all j ∈ [m]. Then,
xi(t) ∈ [0, 1] for all i ∈ [n] and wj(t) ≥ 0 for all j ∈ [m], for
all t ≥ 0.

Proof: Suppose that at some time τ , xi(τ) ∈ [0, 1] for all
i ∈ [n] and wj(τ) ≥ 0 for all j ∈ [m]. First consider any in-
dex j ∈ [m]. If wj(τ) = 0, then from (5) and Assumption 1,
ẇj(τ) ≥ 0. Therefore, wj(t) ≥ 0 for all t ≥ τ .

Now, consider any index i ∈ [n]. If xi(τ) = 0, then from (4)
and Assumption 1, ẋi(τ) ≥ 0. If xi(τ) = 1, then again from (4)
and Assumption 1, ẋi(τ) < 0. Therefore, xi(t) will be in [0,1]
for all times t ≥ τ .

Since the above arguments hold for any i ∈ [n] and any j ∈
[m], we have that xi(t) ∈ [0, 1] for all i ∈ [n] and wj(t) ≥ 0
for all j ∈ [m], t ≥ τ . Since it is assumed that xi(0) ∈ [0, 1] for
all i ∈ [n] and wj(0) ≥ 0 for all j ∈ [m], the lemma follows by
setting τ = 0. �

III. STABILITY ANALYSIS OF THE EQUILIBRIA

In this section, we analyze the equilibria of the proposed
model and their stability both locally and globally.

A. Local Stability of the Healthy State

Consider (x̃, w̃), an equilibrium of (6)–(7). The Jacobian
matrix of the equilibrium, denoted by J(x̃, w̃), is

J(x̃, w̃) =

[
B − X̃B −D − F1 − F2 (I − X̃)Bw

Cw −Dw +Aw

]
(11)

where X̃, F1, F2 are diagonal matrices given by

X̃ = diag (x̃1, x̃2, . . . , x̃n) (12)

F1 = diag

(
n∑

j=1

β1j x̃j ,
n∑

j=1

β2j x̃j , . . . ,
n∑

j=1

βnj x̃j

)
(13)

F2 = diag

(
n∑

j=1

βw
1jw̃j ,

n∑
j=1

βw
2jw̃j , . . . ,

n∑
j=1

βw
njw̃j

)
. (14)
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In the case, when x̃ = 0 and w̃ = 0, i.e., at the healthy state
(also referred to as the disease-free equilibrium)

J(0,0) =

[
B −D Bw

Cw Aw −Dw

]
= Bf −Df .

If either Bw = 0 or Cw = 0, i.e., the pathogen does not affect
the population or humans can not contaminate the infrastructure
network by using it, we have the following result.

Proposition 1: If s(B −D) < 0, s(Aw −Dw) < 0, and
Bw = 0 or Cw = 0, then the healthy state (0,0) of (6)–(7) is
locally exponentially stable.

Proof: If Bw = 0 or Cw = 0 then J(0,0) is a triangular ma-
trix (lower or upper, respectively), and therefore the spectrum of
the matrix is equal to the union of the spectrum of the two block
matrices on the diagonal. Consequently, if s1(B −D) < 0 and
s1(Aw −Dw) < 0 then J(0,0) is Hurwitz and by Lyapunov’s
indirect method [34] the healthy state (0,0) of (6)–(7) is locally
exponentially stable. �

For nonzero Bw and Cw, we have the following result.
Proposition 2: Let Assumption 1 hold. If ρ(D−1

f Bf ) < 1
and Bf is irreducible, then the healthy state (0,0) of (6)–(7) is
locally exponentially stable.

Proof: See Appendix. �

B. Global Stability of the Healthy State

To state our first main result, we need the following con-
cept. Consider an autonomous system ẋ(t) = f(x(t)), where
f : D → IRn is a locally Lipschitz map from a domainD ⊂ IRn

into IRn. Let x̃ be an equilibrium of the system and E ⊂ D be a
domain containing x̃. The equilibrium x̃ is called asymptotically
stable with the domain of attraction E if for any x(0) ∈ E , there
holds limt→∞ x(t) = x̃.

The global stability of the healthy state is characterized by the
following theorem.

Theorem 1: Let Assumption 1 hold. If ρ(D−1
f Bf ) ≤ 1 and

Bf is irreducible, then the healthy state of (6)–(7) is asymp-
totically stable with the domain of attraction D, with D given
in (10).

Proof: See Appendix. �
Theorem 1 addresses Question 1 in Section II-B.

C. Reproduction Number

In epidemiology the reproduction number, R0, is the aver-
age number of people that become infected from one infected
individual. If R0 > 1 the disease will lead to an outbreak; if
R0 ≤ 1 the disease will die out. For the networked SIS model
with no water resources, it has been shown that ρ(D−1B) is
the reproduction number, and that if ρ(D−1B) ≤ 1, the model
will asymptotically converge to the healthy state for all initial
conditions, and if ρ(D−1B) > 1, the model will asymptotically
converge to a unique epidemic state for all initial conditions
except for the healthy state [31].

For the layered networked SIWS model (6)–(7), Theorem 1
implies that when ρ(D−1

f Bf ) ≤ 1, the model will asymptot-
ically converge to the healthy state for all initial conditions,

which implies that the healthy state is the unique equilibrium.
We call ρ(D−1

f Bf ) the basic reproduction number of the layered
networked SIWS model (6)–(7), and compare its value with that
of the networked SIS model, ρ(D−1B), to illustrate the effect
of the water distribution network. Note that

D−1
f Bf =

[
D−1 0

0 (Dw − diag(Aw))
−1

]

×
[
B Bw

Cw Aw − diag(Aw)

]

=

⎡
⎢⎣ D−1B D−1Bw

(Dw−diag(Aw))
−1Cw (Dw−diag(Aw))

−1

×Aw−diag(Aw)

⎤
⎥⎦ .

We need the following lemma.
Lemma 2 [35], Lemma 2.6]: Suppose thatN is an irreducible

nonnegative matrix. If M is a principal square submatrix of N ,
then ρ(M) < ρ(N).

Since D−1
f Bf is an irreducible nonnegative matrix by As-

sumption 1, and since D−1B is a principal square submatrix of
D−1

f Bf , from Lemma 2 it follows that ρ(D−1
f Bf ) > ρ(D−1B).

Therefore, we have the following result.
Proposition 3: Suppose that Assumption 1 holds. Then, the

basic reproduction number of the layered networked SIWS
model (6)–(7) is greater than that of the networked SIS model.

Proposition 3 implies that eradication of the disease in the
population in itself does not guarantee that the system is disease-
free. That is, the presence of infrastructure network makes the
system more vulnerable to SIS-type diseases than otherwise.

D. Analysis of the Endemic Behavior

It turns out that the condition in Proposition 1 being violated
results in the instability of the healthy state (0,0) of (6)–(7), as
we show in the following proposition.

Proposition 4: Suppose that Bw = 0 or Cw = 0. If s(B −
D) > 0 or s(Aw −Dw) > 0, then the healthy state (0,0) of
(6)–(7) is unstable.

Proof: Since by assumption, Bw = 0 (respectively, Cw = 0),
it follows that the Jacobian matrix of the equilibrium evaluated
at the healthy state, i.e., J(0,0), is a block lower triangular
(respectively, upper triangular) matrix. Hence, the eigenvalues
of J(0,0) are same as those of matrices B −D and Aw −Dw.
Consequently, if s(B −D) > 0 and/or s(Aw −Dw) > 0, then
s(J(0,0)) > 0. Hence, the healthy state (0,0) of (6)–(7) is
unstable. �

Simulations indicate the existence of an endemic state (also
referred to as the endemic equilibrium) when the eigenvalue
condition in Theorem 1 is violated (see Fig. 5 in Section V),
a rigorous result, however, remains missing. Therefore, we
consider the following variant of Assumption 1.

Assumption 2: Assume that δi > 0, δwj > 0, βij ≥ 0, βw
ij ≥

0, and that, for j �= k, αjk ≥ 0, with αjj = −∑m
k �=j αjk.

Assumption 2 states that the system parameters, with the
exception of the rate of flow of pathogen within a resource node,
are nonnegative. It is easy to show that Assumption 2 implies
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Assumption 1, and, is, thus, more restrictive. Hence, we only
need Assumption 2 in the sequel.

Theorem 2: Consider (9) under Assumption 2. Suppose that
Bf is irreducible and ρ(D−1

f Bf ) > 1. Then, there exists a
unique endemic equilibrium z̃ � 0. Furthermore, z̃ is asymp-
totically stable with the domain of attraction D \ {0}, with D
given in (10).

Proof: See Appendix. �
Theorem 2 says that as long as the reproduction number of the

layered SIWS network is greater than one, then, assuming that
there is at least one node (population or infrastructure) that is
infected initially, the spreading process converges to a unique
proportion in each population node, and a unique infection
level in each infrastructure node. Thus, Theorem 2 addresses
Question 2 in Section II-B. Note that Theorem 2 improves
upon [21, Theorem 3], since it also accounts for multiple shared
resources.

Combining Theorems 1 and 2 yields a necessary, and suffi-
cient, condition for the healthy state to be the unique equilibrium
of (6)–(7). Hence, we have the following result:

Corollary 1: Consider the layered networked SIWS model
in (6)-(7) under Assumption 2. Suppose that Bf is irreducible.
Then, the healthy state is the unique equilibrium in the domain
D if, and only if, ρ(D−1

f Bf ) ≤ 1.
Rewriting the condition in Corollary 1 in view of [19, Propo-

sition 1] tells us that insofar the linearized state matrix of
system (9) (linearized around the healthy state) is Hurwitz, the
healthy state is the only equilibrium of system (9).

Remark 2: Assuming that ρ(D−1
f Bf ) ≤ 1, if the weights

on the multilayer network increase or if new edges are added
to the multilayer network, then the entries in the Bf matrix
increase. Consequently, since D−1

f Bf is irreducible nonnega-
tive, from [19, Lemma 5, 4] it follows that if the weights are
increased sufficiently well, then ρ(D−1

f Bf ) > 1. Hence, the
system transitions from the healthy to endemic state due to
the changes in the structure of the multilayer network.

A very pertinent question that could arise at this point is as
follows: focusing solely on the population, is there a relation
between the endemic equilibrium of the layered networked
SIWS model, and that of the networked SIS model. In order
to answer this, we recall the latter

ẋ = (B −XB −D)x. (15)

In order to ensure that the model in (15) is well-defined, we need
to particularize Assumption 2, for the setting without shared
resource(s). This is given as follows:

Assumption 3: Suppose that δi > 0 and βij ≥ 0 for all i, j ∈
[n].

Let x̂denote the unique endemic equilibrium of (15) and recall
that z̃ = [x̃	 w̃	]	 denotes the unique endemic equilibrium
of (9). With this notation and Assumption 3 in place, we present
the following result.

Proposition 5: Consider (9) under Assumption 2, and (15)
under Assumption 3. Suppose that Bf and B are irreducible,
and that ρ(D−1

f Bf ) > 1, and ρ(D−1B) > 1. Then x̃ > x̂.
Proof: See Appendix. �

Proposition 5 says that the endemic level in each of the
population nodes for the layered networked SIWS model is
greater than or equal to the endemic level of the population
nodes in the absence of shared resource(s). As such, it addresses
Question 3 in Section II-B.

IV. OBSERVABILITY PROBLEM

In this section, we aim to address the following question:
Assuming there are not enough tests available to measure the
sickness levels of the population, can measurements of the
pathogen levels in the water network, be used to estimate the
sickness levels of the population, or the source of the outbreak
(the initial states of the system)? We introduce the following
notation:

y = Gw (16)

where G ∈ Rq×m is a measurement matrix, with q ∈ Z+ de-
noting the number of measurements. The problem posed in
Question 4 could be rewritten as follows: Given B, D, Aw,
Bw, Cw, Dw, G, and measurements y, find conditions for when
x(0) can be recovered.

We derive conditions such that given measurements of
pathogen levels in the water network, it is possible to uniquely
recover the initial state of population network. Toward this end,
we appeal to the rank of the Jacobian of the Lie derivatives, and
apply the results from [29]. Consequently, the Lie derivative
calculations are as follows:

y = Gw

ẏ = Gẇ = GCwx+G (Aw −Dw)︸ ︷︷ ︸
Ǎw

w

ÿ=Gẅ = GCw

⎛
⎜⎝(B −XB −D)︸ ︷︷ ︸

Fx

x+ (I −X)Bw︸ ︷︷ ︸
Fw

w

⎞
⎟⎠

+GǍwCwx+GǍ2
ww

y(3) = Gw(3) = G
(
Cwẍ+ ǍwCwẋ+ Ǎ2

wCwx+ Ǎ3
ww
)

=G
(
Ǎ3

ww+Ǎ2
wCwx+CwF

2
xx+ǍwCwFxx

+ǍwCwFww + CwFwCwx+ CwFxFww

+ CwFwǍww − CwẊ(Bx+Bww)
)

...

y(m+n) = Gw(m+n) = G

(
Ǎm+n

w w + Ǎm+n−1
w Cwx

+ CwF
(m+n−1)
x x+ · · ·

)
where ẋ and ẇ are defined in (6) and (7), respectively, and Ẋ =
diag(ẋ).

We explore the case when we assume that all nodes in the
human contact network are initially healthy, that is, x(0) = 0.
This case is especially interesting because the early part of an
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outbreak is when tests are the scarcest and, therefore, using water
sensors could be of most utility. Thus, we explore the Jacobian
of the above Lie derivatives evaluated at x(0) = 0, called O,
where O =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G

GCw GǍw

GCw(Fx0
−B̌w︸ ︷︷ ︸
Xx

) G(Ǎ2
w+CwBw)

G(Ǎ2
wCw+ǍwCwXx G(Ǎ3

w+ǍwCwBw+Cw(BwFw0

+Cw(X
2
x−B̌wB−B̌)) +XxBw−B̌wBw))

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
with Fx0

= (B −D), Fw0
= (Aw −Dw), B̌w = diag(Bww)

and B̌ = diag(BBww +BwFw0
w). Note, O has q(n+m)

rows and n+m columns.
Therefore, from [29, Theorems 3.1 and 3.12], and since the

system is analytic, we have the following theorem.
Theorem 3: The layered networked SIWS model in (6)–(7)

with measurements in (16) is locally weakly observable at
x(0) = 0 if and only if O, as defined in (17), has full rank.

Observe that Theorem 3 provides a necessary and sufficient
condition for checking whether (or not) the layered networked
SIWS model is locally weakly observable at x(0) = 0, and thus
answers Question 4 in Section II-B. However, the condition
therein involves checking the rank of theOmatrix, which in turn,
involves too many computations, since O has q(n+m) rows.
This drawback motivates us to seek a simpler, easier to check,
sufficient condition for the layered networked SIWS model to
be locally weakly observable at x(0) = 0, and is presented next.

Proposition 6: Suppose that the matrices G and GCw have
full column rank. Then, the layered networked SIWS model in
(6)–(7) with measurements in (16) is locally weakly observable
at x(0) = 0.

Proof: Define the matrices

G :=

[
0 G

GCw GǍw

]
and F :=

[
G 0

GǍw GCw

]
. (18)

Observe that since F is just a permutation of the block
columns of G, rank(F) = rank(G). Since F is a block lower
triangular matrix, rank(F) ≥ rank(G) + rank(GCw). By as-
sumption, matrices G and GCw have full column rank, which
implies that rank(F) ≥ n+m. Observe also that the total
number of columns inF equalsn+m. Therefore, it follows that
rank(F) ≤ n+m. Hence, rank(F) = n+m, i.e., F has full
column rank. Now note that F is a submatrix of O, that has the
same number of columns as O. Also, observe that adding more
rows to F does not lead to matrix F becoming rank deficient.
This implies that matrix O has full column rank, and therefore,
from Theorem 3, we conclude that the layered networked SIWS
model in (6)–(7) with measurements in (16) is locally weakly
observable at x(0) = 0. �

Given that both Proposition 6 and Theorem 3 provide suf-
ficient conditions for local weak observability, it is natural to

Fig. 2. Contact network of population and resource nodes used for
simulations, represented by squares and circles, respectively.

ask how the two conditions are related. The following remark
addresses this question.

Remark 3: Proposition 6 implies Theorem 3. The converse,
however, is not true. To see this, consider the following example:
Let n = 2,m = 2. With G = I , D = I , Dw = I

B =

[
1 1

1 2

]
, Bw =

[
1 0

1 0

]

Cw =

[
1 1

1 1

]
, Aw =

[
1 1

1 1

]

it is clear that GBw does not have full column rank, so the
conditions for Proposition 6 are not met. However, allowing
w = (w1, w2) to be free, we obtain

GWw =

[
1− 2w1 1

2− 2w1 1

]
.

Therefore, independent of the value of w, the rightmost column
of O is linearly independent of the other three columns of O,
that is,O has full column rank. Thus, the condition in Theorem 3
is met. �

We now highlight an interesting consequence of Proposi-
tion 6.

Corollary 2: Let n ≥ m. If G = Im×m and Cw has full
column rank, then the layered networked SIWS model in (6)–(7)
with measurements in (16) is locally weakly observable at
x(0) = 0.

Proof: Suppose that, by assumption, G = Im×m. Conse-
quently, rank(G) = m. Moreover, GCw = Cw, and hence
rank(GCw) = rank(Cw). Since, by assumption, rank(Cw) =
n, it follows that the conditions in Proposition 6 are satisfied,
and hence the result follows. �

Observe that the result in Corollary 2 could potentially in-
form sensor placement (in the infrastructure network) strategies
for detecting infection levels of the population in the layered
networked SIWS model.

V. SIMULATIONS

For all simulations, we consider a network of 10 population
nodes and 15 resource nodes. This network is depicted in
Fig. 2, with population nodes as squares and resource nodes
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Fig. 3. D = 5I, Dw = 5I, and the matrices B, Bw, and Cw are binary.
Since ρ(D−1

f
Bf ) < 1, the virus gets eradicated.

Fig. 4. D = 2I, Dw = 2I, and the matrices B, Bw, and Cw are binary.
Since ρ(D−1

f
Bf ) > 1, the virus becomes endemic.

Fig. 5. Simulation only employing Assumption 1. We choose D = 4I,
while the matrices B, Bw, and Cw are binary. We choose [Dw]ij = 100
if i = j = 15; [Dw]ij = 0, otherwise. Observe that, in contrast to the
system in Fig. 4, for this simulation we allow some of the resource nodes
to not be able to heal itself. Nonetheless, even this system converges to
some endemic equilibrium, thus indicating that the claim in Theorem 2
could possibly be established under less restrictive assumptions on the
healing rate.

as circles. We denote the average infection proportion of the
virus across the population nodes by x̄(t), and the average
contamination across the resource nodes by w̄(t). The terms
βij , βw

ij , and αij are all binary, i.e. equal to one whenever
nodes i and j are neighbors, for all simulations. For the sim-
ulations in Figs. 3–5, we set cwij to be binary which results in
the network being irreducible. By choosing D = 5I , Dw = 5I ,
we see that ρ(D−1

f Bf ) < 1. Consequently, consistent with the
result in Theorem 1, the virus is asymptotically eradicated
across the network; see Fig. 3. Choosing D = 2I , Dw = 2I
results in ρ(D−1

f Bf ) > 1. Therefore, consistent with the result
in Theorem 2, the virus becomes endemic across all population
and resource nodes, asymptotically approaching some positive
equilibrium; see Fig. 4. ChoosingD = 4I andDw equal to a zero
matrix, except for one diagonal entry equal to 100, Assumption 1
is fulfilled but Assumption 2 is violated. Therefore Theorem 2
does not apply, despiteρ(D−1

f Bf ) > 1, yet the virus still appears
to converge to some positive equilibrium; see Fig. 5.

For the simulations depicted in Fig. 6 we chose D = 3I ,
Dw = 0.2I . SinceDw is a positive diagonal matrix, the resource
network requires some nonzero cwij to sustain a positive level
of contamination. Choosing cwij = 0 for all i, j ensures that

Fig. 6. Simulations without and with population-to-resource contact.
On the left, Cw = 0, so the contamination of the resource nodes decays
to zero. On the right, Cw is nonzero; thus the virus becomes endemic in
the resource nodes as well.

Fig. 7. Matrices B, Bw, and Cw are binary and the healing rates are
equal and vary. We see how the equilibria of the system change as a
function of the healing rate (left) and ρ(D−1

f
Bf ) (right).

the contamination across all resource nodes decays to zero;
see the blue curve in the left of Fig. 6. However, B is an
irreducible matrix, and we still have ρ(D−1B) > 1. Therefore,
the infection levels in the population network converge to an
endemic equilibrium, consistent with the results in [19], [31];
see the red curve in the left of Fig. 6. Setting cwij to be binary
as before results in the contamination of the resource network
converging to a positive equilibrium; see the blue curve in the
right of Fig. 6. Consistent with the result in Proposition 5, it can
be seen that in the absence of contamination in the resources,
the endemic state in the population is smaller, whereas if the
resources are also contaminated then the endemic state in the
population is larger; see the red curves in the left of and the right
of Fig. 6, respectively.

Finally, for the simulation in Fig. 7 we set matrices B,Bw,
and Cw to be binary. The healing rates for each node in the
population and the resource are set to the same value and varied.
Fig. 7 illustrates how the equilibrium of the system changes
as a function of the healing rate (left) and the spectral radius
ρ(D−1

f Bf ) (right).

VI. CONCLUSION

In this article, we have developed a multi-network-dependent,
continuous-time SIWS epidemic model, also referred to as a
layered networked SIWS model. This model captures a net-
worked system, which can be interpreted as individual people
or multiple groups of individuals, coupled with an infrastructure
network, which can be understood as a contaminated water
(or some other utility) distribution network. We have analyzed
the stability of the healthy state, both locally and globally. We
compared the basic reproduction number of the model with
the standard networked SIS model without a pathogen. We
have established conditions for the existence, uniqueness, and
stability of an endemic equilibrium. We have also provided a
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necessary and sufficient condition for the healthy state to be
the only equilibrium of this model. Finally, we have established
conditions under which the initial infection levels of the shared
resources could be recovered based on the measurements of the
infection levels of the population.

One line of future investigation could focus on understanding
the spread of diseases in infrastructure networks with time-
varying topologies. Another problem of interest would be to de-
velop control algorithms that exploit the topology of the infras-
tructure network for virus mitigation. Still on the topic of control
of epidemics, it would be interesting to mitigate (respectively,
eradicate) epidemics subject to constraints on the availability of
healing resources. Likewise, as mentioned previously, studying
local weak observability under partial measurements remains a
very interesting and challenging problem.

APPENDIX

Proof of Prosition 2

To prove Proposition 2, we need the following lemma.
Lemma 3 [19, Proposition 1]: Suppose that N is an irre-

ducible nonnegative matrix in IRn×n andΛ is a negative diagonal
matrix in IRn×n. Let M = N + Λ. Then, s(M) < 0 if and only
if ρ(−Λ−1N) < 1, s(M) = 0 if and only if ρ(−Λ−1N) = 1,
and s(M) > 0 if and only if ρ(−Λ−1N) > 1.

Proof of Proposition 2: By Assumption 1, δwj +
∑

k αkj > 0
for all j ∈ [m], Df is invertible. From Lemma 3, the condition
ρ(D−1

f Bf ) < 1 is equivalent to s(Bf −Df ) < 0, which im-
plies that J(0,0) is a continuous-time stable matrix. Thus, by
Lyapunov’s indirect method the healthy state (0,0) of (6)-(7) is
locally exponentially stable. �

Proof of Theorem 1

To prove the claim in Theorem 1, we need the following
lemmas.

Lemma 4 [35, Lemma 2.3]: Suppose thatM is an irreducible
Metzler matrix. Then, s(M) is a simple eigenvalue of M and
there exists a unique (up to scalar multiple) vector x � 0 such
that Mx = s(M)x.

Lemma 5 [36, Proposition 2]: Suppose that M is an irre-
ducible Metzler matrix such that s(M) < 0. Then, there exists
a positive diagonal matrix P such that M	P + PM ≺ 0.

Lemma 6 [18, Lemma A.1]: Suppose thatM is an irreducible
Metzler matrix such that s(M) = 0. Then, there exists a positive
diagonal matrix P such that M	P + PM � 0.

Lemma 7 [34]: Let x̃ be an equilibrium of ẋ(t) = f(x(t))
and E ⊂ D be a bounded domain containing x̃. Let V : E → IR
be a continuously differentiable function such that V (x̃) = 0,
V (x) > 0 in E \ {x̃}, V̇ (x̃) = 0, and V̇ (x) < 0 in E \ {x̃}. If
E is an invariant set, then the equilibrium x̃ is asymptotically
stable with the domain of attraction E .

Proof of Theorem 1: Recalling the notation in (8), we first con-
sider the case when ρ(D−1

f Bf ) < 1. By Lemma 3, in this case,
s(Bf −Df ) < 0. Since (Bf −Df ) is an irreducible Metzler
matrix, by Lemma 5, there exists a positive diagonal matrix P
such that (Bf −Df )

	P + P (Bf −Df ) is negative definite.

Consider the Lyapunov function V (z(t)) = z(t)	Pz(t). Then,
from (6)–(9), when z(t) �= 0, we have

V̇ (z(t)) = 2z(t)	P ż(t)

= 2z(t)	P (Bf −Df )z(t)

+ 2z(t)	P
[−X(t)B −X(t)Bw

0 0

]
z(t)

< −2z(t)	P
[
X(t)B X(t)Bw

0 0

]
z(t)

≤ 0

where the strict inequality holds by Lemma 5, since
2z(t)	P (Bf −Df )z(t) = z(t)	(Bf −Df )

	P + P (Bf −
Df )z(t). Thus, in this case, V̇ (z(t)) < 0 if z(t) �= 0. From
Lemma 1 and Lemma 7, the healthy state is asymptotically
stable with domain of attraction D, with D given in (10).

Next we consider the case when ρ(D−1
f Bf ) = 1. By

Lemma 3, s(Bf −Df ) = 0. Since (Bf −Df ) is an irreducible
Metzler matrix, by Lemma 6, there exists a positive diagonal
matrix Q such that (Bf −Df )

	Q+Q(Bf −Df ) is nega-
tive semidefinite. Consider the Lyapunov function V (z(t)) =
z(t)	Qz(t). Then, from (6)–(9), we have

V̇ (z(t)) = 2z(t)	Q(Bf −Df )z(t)

+ 2z(t)	Q
[−X(t)B −X(t)Bw

0 0

]
z(t)

≤ −2z(t)	Q
[
X(t)B X(t)Bw

0 0

]
z(t)

= −2z(t)	
[
Q1 0
0 Q2

] [
X(t)B X(t)Bw

0 0

]
z(t)

= −2
(
x(t)	Q1X(t)Bx(t) + x(t)	Q1X(t)Bww(t)

)
≤ 0

where Q1 is the nth principal subarray of Q, which is an n× n
positive diagonal matrix, andQ2 is them×m positive diagonal
matrix that is composed of the rest of the block diagonal entries
of Q. We claim that V̇ (z(t)) < 0 if z(t) �= 0. To establish this
claim, we first consider the case when z(t) � 0. Since Bf is
irreducible and non-negative we have Bfz(t) � 0. As such,
Bx(t) +Bww(t) � 0, and due to Q1 being a positive diagonal
matrix, it follows that x(t)	Q1X(t)(Bx(t) +Bww(t)) > 0.
Thus, V̇ (z(t)) < 0.

Next, we consider the case when z(t) > 0 and z(t) has at
least one zero entry. If (Bf −Df )

	Q+Q(Bf −Df ) does not
have an eigenvalue at zero, then (Bf −Df )

	Q+Q(Bf −Df )
is negative definite, which implies that z(t)	((Bf −Df )

	Q+
Q(Bf −Df ))z(t) < 0 when z(t) > 0 and, thus, in this case

V̇ (z(t)) = 2z(t)	Q(Bf −Df )z(t)

+ 2z(t)	Q
[−X(t)B −X(t)Bw

0 0

]
z(t)

≤ 2z(t)	Q(Bf −Df )z(t) < 0.
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Now, suppose that (Bf −Df )
	Q+Q(Bf −Df ) has an eigen-

value at zero. Since (Bf −Df ) is an irreducible Metzler ma-
trix and Q is a positive diagonal matrix, (Bf −Df )

	Q+
Q(Bf −Df ) is a symmetric irreducible Metzler matrix.
Since (Bf −Df )

	Q+Q(Bf −Df ) is negative semidefinite,
s((Bf −Df )

	Q+Q(Bf −Df )) = 0. By Lemma 4, zero is
a simple eigenvalue of (Bf −Df )

	Q+Q(Bf −Df ) and it
has a unique (up to scalar multiple) strictly positive eigenvec-
tor corresponding to the eigenvalue zero. Thus, z(t)	((Bf −
Df )

	Q+Q(Bf −Df ))z(t) < 0 when z(t) > 0 and z(t) has
at least one zero entry (because the only vector for which
it equals zero is the strictly positive eigenvector). Therefore,
V̇ (z(t)) < 0 if z(t) �= 0. From Lemmas 1 and 7, the healthy
state is asymptotically stable with domain of attraction D, with
D given in (10). �

Proof of Theorem 2

To prove the claim in Theorem 2, we will be making use
of the following variant of the Perron–Frobenius theorem for
irreducible matrices.

Lemma 8 [37, Chap. 8.3] [35, Theorem 2.7]: Suppose that
N is an irreducible nonnegative matrix. Then,

1) r = ρ(N) is a simple eigenvalue of N .
2) There is an eigenvector ζ � 0 corresponding to the eigen-

value r.
3) x > 0 is an eigenvector only if Nx = rx and x � 0.

Proof of Theorem 2: The proof is split in three parts: First, we
show existence of an endemic equilibrium provided the condi-
tions in Theorem 2 are satisfied. Subsequently, we show that this
equilibrium is unique, and that for all nonzero initial conditions
the dynamics converge asymptotically to this equilibrium.

Part 1 -Proof of existence
Note that if z ≥ 0, diag(D−1

f Bfz) is a nonnegative diagonal
matrix, and therefore the inverse of (I + diag(D−1

f Bfz)) exists.

Define a map T (z) : Rn+m
+ → Rn+m

+ such that

T (z) = (I + diag(D−1
f Bfz))

−1

×
(
D−1

f Bfz + diag(D−1
f Bfz)

[
0

w

])
.

Observe that the components of T (y) are

Ti(z) =
(D−1

f Bfz)i

1 + (D−1
f Bfz)i

, for i ∈ [n]

Tj(z) =
(D−1

f Bfz)jzj + (D−1
f Bfz)j

1 + (D−1
f Bfz)j

, for j ∈ [n+m]\[n].

Note that the scalar function s/(1 + s) is increasing in s, and
that D−1

f Bf is a nonnegative matrix. Therefore, v ≥ z implies
T (v) ≥ T (z). Notice that a fixed point of T (z) fulfills

z = (I + diag(D−1
f Bfz))

−1

×
(
D−1

f Bfz + diag(D−1
f Bfz)

[
0

w

])
. (19)

Multiplying (19) by (I + diag(D−1
f Bfz)) gives us

D−1
f Bfz + diag(D−1

f Bfz)

[
0

w

]
= (I + diag(D−1

f Bfz))z.

(20)
Using the identity diag(u)v = diag(v)u, (20) is equivalent to

D−1
f Bfz + diag

([
0

w

])
D−1

f Bfz = (I + diag(z)D−1
f Bf )z.

(21)
Recall that the definition of X(z) means that subtracting

diag

([
0

w

])
D−1

f Bfz

from (21) yields

D−1
f Bfz = (I +X(z)D−1

f Bf )z. (22)

Since X(z) and D−1
f are diagonal matrices, they commute.

Furthermore, by premultiplying (22) with Df , and suitably
rearranging terms, we obtain

(−Df + (I −X(z))Bf )z = 0. (23)

A solution of equation (23) is clearly an equilibrium of (9). As
such, it suffices to show that T (z) has a fixed point z̃ � 0. We
will now show that at least one such fixed point exists.

We have ρ(D−1
f Bf ) > 1. Note that D−1

f Bf is an irreducible
nonnegative matrix. Hence, by Lemma 4, λ∗ = ρ(D−1

f Bf ) is
a simple eigenvalue of D−1

f Bf and the eigenspace of λ∗ is
spanned by a vector z∗ � 0. Then, since λ∗ > 1, there ex-
ists some ε > 0 such that, for all i ∈ [n+m], we have εz∗i ≤
(λ∗ − 1)/λ∗, which implies that 1 ≤ λ∗/(1 + λ∗εz∗i ). Hence,
εz∗i ≤ λ∗εz∗i /(1 + λ∗εz∗i ), and thus

εz∗i ≤ (D−1
f Bf εz

∗)i
1 + (D−1

f Bf εz∗)i
, for all i ∈ [n]. (24)

Noting that (D−1
f Bf εz

∗)jεz∗j > 0 for all j ∈ [n+m]\[n], we
also have

εz∗j ≤ (D−1
f Bf εz

∗)jεz∗j + (D−1
f Bf εz

∗)j
1 + (D−1

f Bf εz∗)j
(25)

for all j ∈ [n+m]\[n]. Due to the inequalities (24) and (25), we
haveT (εz∗) ≥ εz∗. Since z ≥ r impliesT (z) ≥ T (r), it follows
that for any z ≥ εz∗ we have T (z) ≥ εz∗. Define the vector

z :=

[
1

w

]

where w := −(Aw −Dw)
−1Cw1. Note that (Aw −Dw) is

invertible because of it being diagonally dominant.
Consider Ti(z) for i ∈ [n] while noting that s/(1 + s) is

bounded from above by 1 for any positive s. Then

Ti(z) =
(D−1

f Bfz)i

1 + (D−1
f Bfz)i

≤ 1, for all i ∈ [n]. (26)
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Before considering Tj(z) for j ∈ [n+m]\[n], first note that

(Dw − diag(Aw))
−1
[
Cw Aw − diag(Aw)

] [1
w

]

= (Dw − diag(Aw))
−1Cw1− (Dw − diag(Aw))

−1

× (Aw − diag(Aw))(Aw −Dw)
−1Cw1

=(Dw−diag(Aw))
−1(I−(Aw−diag(Aw))(Aw−Dw)

−1)

× Cw1

= (Dw − diag(Aw))
−1((Aw −Dw)− (Aw − diag(Aw)))

× (Aw −Dw)
−1Cw1

=−(Dw−diag(Aw))
−1(Dw−diag(Aw))(Aw−Dw)

−1Cw1

= −(Aw −Dw)
−1Cw1

= w.

Hence,

Tj(z) =
zj(1 + zj)

1 + zj
= zj , for all j ∈ [n+m]\[n]. (27)

Due to (26) and (27), we have T (z) ≤ z. Since v ≥ w implies
T (v) ≥ T (w), it follows that T (z) ≤ z if z ≤ z. By Brouwer’s
fixed-point theorem, there is at least one fixed point of T (z) in
the domain {z : εz∗ ≤ z ≤ z}. In conclusion, the map T (z) has
at least one fixed point in the domain {z : εz∗ ≤ z � z}, and
therefore (9) has at least one equilibrium z̃ � 0. �

Part 2 – Proof of uniqueness
We will now prove that the endemic equilibrium is unique.

Suppose that there are two endemic equilibria, z̃ and z̃. Note that,
by similar arguments as in [21, Lemma 6], z̃ � 0 and z̃ � 0.
Let κ = maxi∈[n+m] z̃i/z̃i. It turns out that κ is given by

κ = max
i∈[n]

z̃i/z̃i. (28)

To see this, assume by way of contradiction thatκ = z̃n+j/z̃n+j

for some j ∈ [m], and thus κ > z̃i/z̃i, for all i ∈ [n]. Since both
z̃ and z̃ are equilibria of system (9), it follows that, for each
j ∈ [m]

z̃n+j =
n∑
i

cjix̃i +
m∑

k,k �=j

αkjw̃k

z̃n+j =
n∑
i

cjix̃i +
m∑

k,k �=j

αkjw̃k. (29)

Since we have that κ > z̃i/z̃i, for all i ∈ [n], then κz̃i > z̃i, for
all i ∈ [n]. Since by assumption κ = z̃n+j/z̃n+j for some j ∈
[m], it follows that, for each k ∈ [m], z̃n+k ≤ κz̃n+k. Then, (29)
yields

z̃n+j =
n∑
i

cwjix̃i +
m∑

k,k �=j

αkjw̃k

< κ
n∑
i

cwjix̃i +
m∑

k,k �=j

αkjw̃k

= κz̃n+j .

Hence, for all j ∈ [m], κ > z̃n+j/z̃n+j , which contradicts the
assumption that κ = z̃n+j/z̃n+j , for some j ∈ [m]. Therefore,
κ must be given by (28). Now, by (28), we know that z̃ ≤ κz̃.
For some j ∈ [n] we have z̃j = κz̃j . Assume, by way of con-
tradiction, that κ > 1. Then, since an equilibrium of (9) also
constitutes a fixed point of T (z), we have

z̃j = (D−1
f Bf z̃)j/(1 + (D−1

f Bf z̃)j)

≤ (D−1
f Bfκz̃)j/(1 + (D−1

f Bfκz̃)j) (30)

< κ(D−1
f Bf z̃)j/(1 + (D−1

f Bwz̃)j) (31)

= κz̃j (32)

= z̃j (33)

where (30) follows from z̃ ≤ κz̃ and that T (v) ≥ T (w) when-
ever v ≥ w, (31) follows from the assumption κ > 1, and (32)
follows from the fact that z̃ is an equilibrium of (9). Note that (33)
is a contradiction, following from our assumption that κ > 1.
Hence, κ ≤ 1, meaning that z̃ ≤ z̃. Switching the roles of z̃ and
z̃, we see that z̃ ≤ z̃. Therefore, z̃ = z̃, and thus the equilibrium
is unique.

Part 3– Proof of asymptotic convergence: The proof of asymp-
totic convergence is quite similar to that of [21, Theorem 3, part
3], and is, in the interest of space, omitted here. For details,
please see proof of [38, Theorem 2]. �

Proof of Proposition 5

We need the following result to proceed ahead.
Lemma 9: Consider system (15) under Assumption 3. If

ρ(D−1B) > 1, then there exists a unique endemic equilibrium
x̂ such that 0 � x̂ � 1.

Proof: The result follows by particularizing [21, Theorem 3]
for the networked SIS model. �

Proof of Proposition 5: By assumption, the matricesBf andB
are irreducible. Moreover, ρ(D−1

f Bf ) > 1, and ρ(D−1B) > 1.
Therefore, from Theorem 2, and from Lemma 9, we know that

there exists a unique endemic equilibrium z̃ = [
x̃
w̃
] for (9), and a

unique endemic equilibrium x̂ for (15), respectively. Moreover,
0 � x̂ � 1.

Note that since x̂ is an equilibrium of (15), we have

(I − X̂)D−1Bx̂ = x̂. (34)

Consider a solution z(t) = (x(t), w(t)) to (9) for t ≥ 0, with
xi(0) ∈ [0, 1] and wj(0) ≥ 0 for all i ∈ [n], j ∈ [m]. By
Lemma 1 we have xi(t) ∈ [0, 1] and wj(t) ≥ 0 for all i ∈ [n],
j ∈ [m] and t ≥ 0. Suppose that, for some t ≥ 0, x(t) ≥ x̂, with
xi(t) = x̂i for some i ∈ [n]. Then

ẋi(t) = (1− xi(t))(D
−1
f Bfz(t))i − xi(t)

= (1− x̂i)(D
−1Bx(t) +D−1Bww(t))i − x̂i

≥ (1− x̂i)(D
−1Bx̂)i − x̂i (35)

= 0 (36)

where (35) follows from D−1Bww(t) ≥ 0, and (36) follows
from (34). Since the same argument holds for any t and i ∈ [n]

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 10:33:48 UTC from IEEE Xplore.  Restrictions apply. 



306 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

we have x(t) ≥ x̂ for all t ≥ 0 if x(0) ≥ x̂. Furthermore, due to
(a): x̂ � 1, and (b): ẑ being the unique equilibrium of (9) with
a region of attraction including {z = (x,w) : 1 ≥ x ≥ x̂}, we
must have x̃ ≥ x̂. In order to show x̃ �= x̂, assume by way of
contradiction that x̃ = x̂. Note that

x̃ = (I − X̃)(D−1Bx̃+D−1Bww̃). (37)

With the assumption that x̃ = x̂, (37) is equivalent to

x̂ = (I − X̂)(D−1Bx̂+D−1Bww̃)

< (I − X̂)D−1Bx̂ (38)

= x̂ (39)

where (38) is due to the following: 1): D−1
f Bf is an irre-

ducible Metzler matrix, 2): w̃ � 0, and 3): x̂ � 1, so we
have (I − X̂)D−1Bww̃ > 0. Moreover, (39) follows from (34).
Clearly, (39) is a contradiction, and therefore x̃ > x̂. �
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[18] A. Khanafer, T. Başar, and B. Gharesifard, “Stability of epidemic models
over directed graphs: A positive systems approach,” Automatica, vol. 74,
pp. 126–134, 2016.
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