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Peer-to-Peer Gradient Topologies in Networks
With Churn
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Abstract—We investigate the network topology conver-
gence in a peer-to-peer (P2P) network system, where the
goal of the system is to maximize live-streaming perfor-
mance. The P2P system constructs a gradient overlay topol-
ogy, characterized by a directed graph, where each node
prefers neighbors containing higher utility values such that
paths of increasing utilities emerge in the network topology.
The gradient overlay network is built using gossiping and a
preference function that samples nodes from a uniform ran-
dom peer sampling service. Conditions for convergence to
a gradient topology is derived, including the expected con-
vergence time, and a threshold on the churn rate is provided
for a gradient topology to emerge. Finally, a live-streaming
video distribution experiment illustrates the benefits of con-
structing and utilizing the gradient topology for information
dissemination in P2P systems.

Index Terms—Network, overlay topology, peer to peer
(P2P), video distribution.

I. INTRODUCTION

THE Internet has penetrated our daily lives as the single
most important information exchange system, and is used

for sending messages, reading news, and watching television.
The annual global IP traffic was expected to reach 1 ZB (1021 B)
in 2016, and is expected to double until 2019. A majority of the
Internet traffic consists of video delivery, constituting 64% of all
consumer Internet traffic in 2014 and expecting to grow to 80%
by 2019 [1]. Put into perspective, by 2019, a million minutes
of video content will cross the Internet every second. This huge
demand for network bandwidth is creating a lot of pressure
toward efficient content distribution strategies.

Peer-to-peer (P2P) networking is a computer network
architecture, where the nodes or peers both supply and consume
resources. Thus, compared to a classical client–server architec-
ture, in a peer-to-peer (P2P) network, peers are both clients and
servers at the same time. Surveys of P2P networks have been
carried out for content distribution technologies [2], search
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methods [3], resource discovery [4], and video-streaming
systems [5], [6].

An important utility service while designing P2P architec-
tures is the peer sampling services, which provides uniformly
random samples of peers from the network. Gossip-based peer
sampling systems have been developed in [7] and [8], ex-
tended to handle NAT traversal [9], and corrected for bias in
networks with churn [10]. Randomized gossiping algorithms
have also been used as tools for building distributed systems,
in particular, in the areas of overlay networks, sensor net-
works, and cloud computing storage services [11], [12]. Conver-
gence properties of gossip-based aggregation algorithms have
been studied for fixed topologies [13] and accelerated methods
for regular graphs, where each node has the same number of
neighbors [14].

Research in gossiping has also focused on using the pref-
erential connectivity model [15] to construct overlay network
topologies, where nodes initially connected in a random graph
use a preferential connection function to break the symmetry
of the random graph, and build a topology that contains useful
global information. Barabási [16] first described how a pref-
erential attachment function in a growing network can build a
scale-free network topology from a random graph. Barabási’s
preferential attachment functions are based on the global state,
but in overlay networks, nodes only have a relatively small par-
tial view of the system. Thus, the preference functions can only
be based on the local state and the state of the node’s neigh-
bors. Examples of overlay networks that construct their topolo-
gies using gossiping and preference functions include Spotify,
which preferentially connects nodes with similar music playlists
[17], Sepidar, which preferentially connects P2P live-streaming
nodes with similar upload bandwidth capacity [18], and T-Man,
a framework that provides a generic preference function for
building such overlays [19].

A fundamental property of P2P networks is user churn,
i.e., that peers can join and leave the network at any time.
Stutzbach and Rejaie [20] worked on characterizing churn mod-
els, whereas resilience against churn was considered in [21], [22]
and [23], and Wang et al. [24] chose to identify stable peers in
P2P services.

In this paper, we investigate a P2P network for efficient live-
streaming television, inspired by gradienTv [25] and Sepidar
[18]. The goal of this application is to distribute a data stream
from a small set of seed nodes to every other node in the network,
and the problem is to design distributed algorithms for creating
an efficient overlay network topology. In particular, this paper
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provides a novel analytical characterization of the topology con-
vergence problem, in which the network graph converges to a
complete gradient overlay network, where most previous works
have focused on experimental evaluations [7], [26], [27]. The
gradient topologies are fundamental in self-organizing systems,
and generalize the rooted trees topologies. The contribution of
this paper is the convergence analysis of the given algorithm,
including convergence rate estimates, and the derivation of a
threshold on the churn rate for a gradient topology to emerge.
This is an extension of our previous work [28] to include the
global convergence rate and churn models.

The outline of this paper is as follows: In Section II, we in-
troduce the network model and topology convergence problem,
and in Section III, we give necessary and sufficient conditions
for convergence. In Section IV, we study the convergence rate
for the system, and in Section V, we study convergence prop-
erties when the network is subject to churn. In Section VI, we
simulate the construction of a gradient topology using the model
in Section II, and in Section VII, we evaluate the live-streaming
performance in a real P2P application using the gradient overlay
topology. Finally, Section VIII concludes this paper.

II. GRADIENT TOPOLOGY PROBLEM

An overlay network is a virtual network built on top of another
network. Here, it denotes the P2P network topology built for
television streaming over the Internet. The gradient topology
belongs to the class of gossip-generated overlay networks that
are built from a random overlay network through symmetry
breaking using a preference function. Thus, we are given a node
set V = {1, . . . , N}, and need to select directed edges E to
construct our network G(V, E).

In the live-streaming application, the idea is to utilize the
nodes in the P2P network to aid in the content distribution,
but since the peers are heterogeneous, not all peers will be
equally useful. Thus, we classify each node i ∈ V with its utility
value ui ∈ R, which captures, for example, the node’s upload
capacity, latency, and reliability for the P2P network. The initial
sources for the live-streaming video feed would have the highest
utility value in the network.

A gradient topology is an overlay network satisfying that,
for any two nodes v1 and v2 with utility values uv1 and uv2 , if
uv1 ≥ uv2 , then dist (v1 , v�) ≤ dist (v2 , v�), where v� is a node
with highest utility in the system and dist (·, ·) is the length
of the shortest path between the nodes in the network [29].
In other words, nodes with a higher utility value should be
closer to the seed nodes compared to nodes with a lower utility
value, so that gradient paths of increasing utilities emerge in
the system (see Fig. 1).

In constructing the gradient overlay, the nodes i ∈ V build two
sets of neighbors: a similar view N s

i and a random view N r
i . For

the similar view, nodes prefer neighbors with close but slightly
higher utility values, whereas the random view is used to sample
new nodes with uniform probability for possible inclusion in the
similar view. Thus, node is neighbors are Ni = N s

i ∪N r
i .

Each node i defines a preference function >i over its neigh-
bors, where node i is said to prefer node a over node b (denoted

Fig. 1. Gradient network is described as a directed graph. The nodes
are labeled with their respective utility value, and the edges from the
similar neighbor sets are shown. In the gradient topology, paths of in-
creasing utilities emerge. (a) Initial random overlay network. (b) Network
after converging to a complete gradient topology

Algorithm 1: Topology Dynamics.
1: for each node i ∈ V do
2: for every t = 1, 2, 3, . . . do
3: Let N r

i (t) = {j}, where j ∈ V is a randomly
selected node with uniform probability pt , 0 < Npt <
1. Otherwise N r

i (t) = ∅.
4: Choose k ∈ N s

i (t − 1) such that �v ∈ N s
i (t − 1),

v �= k and k >i v.
5: if N r

i (t) �= ∅ and j /∈ N s
i (t − 1) and j >i k

then
6: N s

i (t) = N s
i (t − 1) ∪ {j} \ {k}

7: else
8: N s

i (t) = N s
i (t − 1)

9: end if
10: end for
11: end for

by a >i b) if

ua ≥ ui > ub or if

|ua − ui | < |ub − ui | when ua , ub > ui or ua , ub < ui.

For any given initial overlay network, the topology is evolving
through each node i at each time t updating its own neigh-
bor set Ni(t) independently of the other nodes according to
Algorithm 1. The algorithm can be summarized as repeatedly
sampling random nodes from the network and evaluating their
utility value. If the random node is preferred over the least pre-
ferred node in the similar set, then those two neighbors are
exchanged.

It is assumed that the node out-degree di(t)
.= |N s

i (t)| = di

stays constant throughout the algorithm. Note that the sampling
probabilities pt are time dependent and govern whether the ran-
dom neighbor set N r

i (t) is empty (with probability 1 − Npt).
The reason for this is that a node can adapt its sampling



TERELIUS AND JOHANSSON: PEER-TO-PEER GRADIENT TOPOLOGIES IN NETWORKS WITH CHURN 2087

frequency to minimize the network overhead for building a gra-
dient topology, and typically samples more frequently just after
joining the network to improve its neighbor sets, and then lower-
ing its sampling rate when the neighbors have stabilized. Notice
also that Algorithm 1 can be run asynchronously on the nodes.

Remark: Note that no constraint is enforced on the in-degree
of the nodes. However, in Section VII, the gradient topology is
used for sampling nodes for a second auction algorithm, which
limits the in-degree for the information dissemination network.

The preference function >i induced a partial order on the
nodes V . In order to study the network topology convergence to
a gradient topology with the proposed algorithm, we let Λi to
denote the set of optimal similar neighbor sets for node i, i.e.,
∀ ̂N ∈ Λi , if there are no nodes j ∈ ̂N and k ∈ V\ ̂N such that
k >i j. Notice that there could be multiple optimal neighbor
sets.

For every node i ∈ V , we define Xi(t) as a counter for the
number of nonoptimal neighbors in is similar neighbor set

Xi(t)
.= di − max

̂N ∈Λ i

∣

∣

∣N s
i (t) ∩ ̂N

∣

∣

∣ .

Notice that Xi(t) is monotonically decreasing under
Algorithm 1 since an optimal neighbor will never be removed
from the similar neighbor set N s

i (t).
Let G(t) be the graphs generated by Algorithm 1. Then, we

give the definition of gradient topology convergence as follows
(see Fig. 1).

Definition 2.1: G(t) is said to converge to a complete gra-
dient topology if

lim
t→∞Xi(t) = 0

for all nodes i ∈ V .
Remark: Connectivity of the final network is not always

guaranteed. There exist some variations to the definition of the
preference function and, for example, using a preference func-
tion, which prefers neighbors with strictly larger utility value
would guarantee that for every finite network, the gradient topol-
ogy will connect every node to the set of initial seeds.

Remark: In this paper, the utility value is assumed to be
a global property. An interesting extension is to consider local
utility values, which could, for example, capture differences in
pairwise latency between the nodes.

III. CONVERGENCE ANALYSIS

Since each node updates its neighbor set independently, the
analysis can be carried out separately for each Xi(t). We there-
fore simplify the notations in the following discussion, and let
X(t) represents Xi(t) for an arbitrary node i ∈ V .

Denote the maximum degree D = maxi{di}, then X(0) =
D would be the worst possible initial condition. Furthermore,
X(t) decreases precisely when the randomly sampled node is a
new optimal neighbor, and the probability of this event occurring
is minimal when the optimal solution is unique, and then the
probability is equal to

P [X(t + 1) = k − 1 | X(t) = k ] = kpt , k = 1, . . . , D
(1)

Fig. 2. Markov chain for the state evolution of a single node.

where k is the number of nonoptimal neighbors.
In the following theorem, we propose a necessary and suffi-

cient condition for the probabilities pt for almost sure conver-
gence of Algorithm 1.

Theorem 3.1: The graph generated by Algorithm 1 con-
verges to a gradient topology (X(t) = 0) with probability 1 if
and only if

lim
T →∞

T
∏

t=0

(1 − pt) = 0.

Before proving Theorem 3.1, let us take a closer look at
Algorithm 1, and notice especially that the stochastic process in
(1) for X(t) has the Markov property, hence we can describe it
as a simple Markov chain (see Fig. 2).

Let π(t) denote the row vector of probabilities for the states
X(t), i.e.,

πi(t) = P [X(t) = D − i] .

Remark: In this paper, we are using a zero-based indexing
for π, i.e., π = [π0 , . . . , πD ] for notational simplicity.

The evolution of π(t) can be written in matrix form as

π(t + 1) = π(t)Pt (2)

where Pt is the transition matrix at time t

Pt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − Dpt Dpt 0 · · · 0
0 1 − (D − 1)pt (D − 1)pt · · · 0
0 0 1 − (D − 2)pt · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Since Pt is a triangular matrix, the eigenvalues are given by
the diagonal elements, i.e., the eigenvalues of Pt are λi(t) =
1 − (D − i)pt , i = 0, . . . , D. Notice that there is a single unit
eigenvalue λD (t) = 1, and all other eigenvalues are strictly less
than 1. Furthermore, all eigenvalues are distinct, hence the eigen-
vectors form a basis for RD+1 . In the following lemma, we
characterize the eigenvectors.

Lemma 3.2: The left-eigenvector ξi(t) corresponding to
eigenvalue λi(t) is independent of pt �= 0, for i = 0, . . . , D.

Proof: The left eigenvectors of Pt satisfy λi(t)ξi(t) =
ξi(t)Pt . Let ξi

j (t) denote the jth component of ξi(t), then, by
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inspection of the matrix Pt , we have the system of equations

(1 − (D − i)pt) ξi
0(t) = (1 − Dpt) ξi

0(t)

(1 − (D − i)pt) ξi
j (t) = (1 − (D − j)pt) ξi

j (t)

+ (D − j + 1)ptξ
i
j−1(t) j = 1, . . . , D

which is equivalent to

iξi
0(t) = 0

(i − j)ξi
j (t) = (D − j + 1)ξi

j−1(t) j = 1, . . . , D

or further

ξi
j (t) = 0 if j < i

ξi
j (t)

i − j

D − j + 1
= ξi

j−1(t) if j > i (3)

where ξi
i (t) can be chosen as an arbitrary nonzero value, as a

scaling factor for the eigenvector. From (3), it is evident that the
eigenvectors are independent of pt . �

An important consequence of Lemma 3.2 is that all Pt , inde-
pendent of t, have the same eigenvectors, and are thus simulta-
neously diagonalizable. Hence, we can simplify the notation by
dropping the parameter t from the eigenvectors ξi .

Let us now return to the initial probability distribution π(0),
and decompose it into the eigenvector basis as

π(0) =
D
∑

i=0

αiξ
i (4)

for some real numbers αi .
Lemma 3.3: In the decomposition of the initial proba-

bility distribution π(0) into the eigenvector basis, we have
αD ξD = eD , where ei is the standard basis ei = [0, . . . , 0,
1
︸︷︷︸

ith

, 0, . . . , 0].

Proof: Let us consider ξi11 for i = 0, . . . , D − 1. By (3)

ξi11 =
D
∑

j=0

ξi
j =

D
∑

j=i

ξi
j =

D−i
∑

j=0

ξi
i+j .

We will show by induction that

k
∑

j=0

ξi
i+j =

D − i − k

D − i
ξi
i+k . (5)

The case when k = 0 is clearly true. Thus, assume that (5) holds
for k and consider the case k + 1

k+1
∑

j=0

ξi
i+j =

k
∑

j=0

ξi
i+j + ξi

i+k+1

=
D − i − k

D − i
ξi
i+k + ξi

i+k+1

=
D − i − k

D − i

−(k + 1)
D − i − k

ξi
i+k+1 + ξi

i+k+1

=
D − i − (k + 1)

D − i
ξi
i+k+1 .

Using (5) implies that ξi11 = 0, i = 0, . . . , D − 1, and thus,
π(0)11 = αD ξD 11. Now, since π(0) is a probability distribu-
tion, we know that π(0)11 = 1, but (3) tells us that only the last
component of ξD is nonzero, hence the lemma follows. �

We are now ready to prove the main theorem.
Proof of Theorem 3.1: The almost sure convergence to a

gradient topology, by Definition 2.1, can be expressed as

lim
T →∞

P [X(T ) = 0] = 1

or, equivalently for the probability vector

lim
T →∞

π(T ) = eD .

Equations (2) and (4) give us

π(T ) = π(0)
T −1
∏

t=0

Pt

=
D
∑

i=0

αiξ
i

T −1
∏

t=0

Pt

=
D
∑

i=0

αiξ
i

T −1
∏

t=0

λi(t)

=
D−1
∑

i=0

αiξ
i

T −1
∏

t=0

λi(t) + eD . (6)

Consider the limit

lim
T →∞

|π(T ) − eD | = lim
T →∞

∣

∣

∣

∣

∣

D−1
∑

i=0

αiξ
i

T −1
∏

t=0

λi(t)

∣

∣

∣

∣

∣

≤
D−1
∑

i=0

∣

∣αiξ
i
∣

∣ · lim
T →∞

T −1
∏

t=0

(1 − pt).

Clearly, the right-hand side vanishes if limT →∞
∏T

t=0(1 −
pt) = 0. This proves the sufficiency part of the theorem.

Furthermore, for the necessity part, note that the set of initial
probability distributions spawns RD+1 . Thus, an initial proba-
bility distribution π(0) exists such that αD−1 �= 0. Assume that
the limit limT →∞

∏T
t=0(1 − pt) = c > 0 is strictly positive (the

limit exists since it is a monotone bounded sequence), then

lim
T →∞

|π(T ) − eD |

=

∣

∣

∣

∣

∣

D−2
∑

i=0

αiξ
i

(

lim
T →∞

T −1
∏

t=0

λi(t)

)

+ cαD−1ξ
D−1

∣

∣

∣

∣

∣

> 0 (7)

since the eigenvectors are linearly independent. Thus, we have
proven the theorem. �

Corollary 3.1: The graph generated by Algorithm 1
converges to a gradient topology with probability 1 if and
only if

lim
T →∞

T
∑

t=0

pt = ∞.
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Proof: This follows directly from Theorem 3.1, and the
relation

lim
T →∞

T
∏

t=0

(1 − pt) = 0 ⇔ lim
T →∞

T
∑

t=0

pt = ∞

for 0 < pt < 1 (from the Borel–Cantelli lemma [30]). �
Remark: Corollary 3.1 can be interpreted such that the net-

work converges to a gradient topology if and only if each node
continues searching for its optimal neighbors for an expected
infinite number of times.

IV. CONVERGENCE RATE ESTIMATION

We will now investigate the convergence rate of X(t), with
a constant sampling probability pt = p. Define the stochastic
variable Ti as the time when X(t) reaches 0, when starting at
X(0) = i,

Ti = inf
t

[X(t) = 0 | X(0) = i].

Further, let Mi = E [Ti ] denote the expected convergence
time when starting at X(0) = i. Clearly, M0 = 0, and for i =
1, . . . , D, we have the recursion

Mi = 1 + P [X(t + 1) = i − 1 | X(t) = i ] · Mi−1

+ P [X(t + 1) = i | X(t) = i ] · Mi

= 1 + ipMi−1 + (1 − ip)Mi

which can be further simplified to

Mi =
1 + ipMi−1

ip
=

1
ip

+ Mi−1 .

By continuing with induction, we can sum up the expected
convergence time as

Mi =
1
p

i
∑

d=1

1
d
.

The worst initial case is when X(0) = D, where the expected
convergence time is

MD =
1
p

D
∑

d=1

1
d
≤ 1 + ln(D)

p
. (8)

Remark: MD is the expected time for an individual node’s
neighbor set to converge, not the expected time for all nodes to
converge to a gradient topology. As such, it provides a lower
bound on the convergence time. In Section IV-A, we will con-
sider the global network convergence problem.

A. Global Convergence Rate

In this section, we will analyze the asymptotic convergence
rate for the entire network to a gradient topology, in contrast to
the analysis of a single node in Section III. We continue assum-
ing a constant sampling probability (pt = p, Pt = P ), thus the
probability distribution for a single node in (6) is simplified to

π(t) = π(0)P t =
D−1
∑

i=0

αiξ
iλt

i + eD

where λi = 1 − (D − i)p, i = 0, . . . , D. The probability distri-
bution for a single node approaches the gradient topology state
eD asymptotically as 1 −O (λt

D−1

)

, where λD−1 = 1 − p is
the second largest eigenvalue of P .

Here, we will study how the entire network convergence is
affected by the network size N , and to this end, we consider
a continuous-time approximation with a system for which the
probability of being in the target state is 1 − λt at time t (where
λ = 1 − p).

Theorem 4.1: The expected global convergence time to a
gradient topology for N nodes is

− 1
log (λ)

N
∑

n=1

1
n

where the nodes are modeled by i.i.d. (independent identically
distributed) processes, whose individual probability distribution
is given by 1 − λt .

Proof: The probability for the entire system of N i.i.d. pro-
cesses to be in the target state at time t is φ

.= (1 − λt)N . Notice
that the probability for the system to reach the target state at time
t is given by the derivative dφ

dt = −N(1 − λt)N −1λt log (λ). The
expected convergence time, i.e., the time to reach the gradient
topology, is computed by

∫ ∞

0
t · dφ

dt
dt = −N log (λ)

∫ ∞

0
t(1 − λt)N −1λt dt.

Using a variable substitution x = λt , this integral can be
rewritten as
∫ ∞

0
t(1 − λt)N −1λt dt = − 1

log (λ)2

∫ 1

0
log (x) (1 − x)N −1dx.

Recall that this integral is equal to [31]

∫ 1

0
log (x) (1 − x)N −1 dx = − 1

N

N
∑

n=1

1
n

.

Hence, the expected convergence time is

∫ ∞

0
t · dφ

dt
dt = − 1

log (λ)

N
∑

n=1

1
n

. (9)

�
Remark: Notice that − 1

log (λ) = − 1
log (1−p) ≈ 1

p for small
p, thus this is in agreement with the upper bound in (8).

Remark: The convergence time scales asymptoti-
cally as O (log (N)) for large network sizes N since
∑N

n=1
1
n < 1 + log(N).

V. CONVERGENCE RATE WITH NETWORK CHURN

In this section, we consider the topology convergence to a
gradient topology when the system is subject to churn, i.e.,
the nodes are changing over time. We model the churn as a
probability ε > 0 that a node will be replaced with a new node
that is starting from state X = D. The corresponding Markov
chain for a single node is illustrated in Fig. 3.
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Fig. 3. Markov chain for the state evolution of a single node with churn.

The corresponding transition matrix P for the Markov chain
π(t + 1) = π(t)P is

P =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − Dp Dp 0 · · · 0
ε 1 − (D − 1)p − ε (D − 1)p · · · 0
ε 0 1 − (D − 2)p − ε · · · 0
...

...
...

. . .
...

ε 0 0 · · · 1 − ε

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Assuming that 0 < ε, and also 0 < Dp < 1 and (D − 1)p +
ε < 1, we have the following theorem characterizing the sta-
tionary distribution.

Theorem 5.1: The Markov chain in Fig. 3, describing the
stochastic node process with churn, has a unique stationary
distribution π, which satisfies

π0 =
ε

Dp + ε

and

πi =
(D − i + 1)p
(D − i)p + ε

πi−1 i = 1, . . . , D.

Proof: Notice that the Markov chain is finite (D + 1 states),
irreducible (every state can be reached from any other state),
and aperiodic (because of the self-loops), thus it has a unique
stationary distribution corresponding to the eigenvalue 1.

Consider now, the stationary distribution π satisfying π =
πP , and especially for column i = 1, . . . , D we have

πi = (1 − (D − i)p − ε)πi + (D − i + 1)pπi−1

that is

πi =
(D − i + 1)p
(D − i)p + ε

πi−1 .

Next, let us show the following property for the partial sum
πd + · · · + πD through induction:

D
∑

i=d

πi = (D − d + 1)
p

ε
πd−1 d = 1, . . . D.

The case d = D follows directly from the previous recursion.
Let us continue with the following induction step:

D
∑

i=d

πi = πd +
D
∑

i=d+1

πi = πd + (D − d)
p

ε
πd

=
(D − d)p + ε

ε
πd =

(D − d)p + ε

ε

(D − d + 1)p
(D − d)p + ε

πd−1

= (D − d + 1)
p

ε
πd−1 .

First, we use this to validate that the eigenvector satisfies
π = πP for the first column

π0 = (1 − Dp)π0 + ε
D
∑

d=1

= (1 − Dp)π0 + εD
p

ε
π0 = π0 .

Second, the stationary probability distribution should be nor-
malized such that

D
∑

i=0

πi = 1.

Thus

D
∑

i=0

πi = π0

D
∑

i=1

πi = π0 + D
p

ε
π0 =

Dp + ε

ε
π0

or

π0 =
ε

Dp + ε

which proves the theorem. �
Remark: Theorem 5.1 shows that if p = ε, then the station-

ary distribution is uniform with πi = 1
D+1 , i = 0, . . . , D; thus,

a node is equally likely to be in any state. When p > ε, the
nodes are more likely to be in the later states, i.e., closer to a
gradient topology, and when p < ε, the nodes are more likely to
be in the earlier states, i.e., having a random neighbor set. Thus,
we conclude that for a gradient topology to appear, it is neces-
sary for the sampling probability p to be greater than the churn
rate ε.

Next, the convergence speed will be considered through
analyzing the second largest eigenvalue of the transition
matrix P .

Lemma 5.2: The asymptotic convergence time for the entire
network with churn is

log (N)
1

p + ε
.

Proof: It is straightforward to verify that the remaining
eigenvalues of P (less than 1) are

λi = 1 − (D − i)p − ε
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Fig. 4. State trajectories for a network with 100 nodes and degree
D = 10. Each line represents a single node, and a constant sampling
probability Npt = 1/2 is used. The network converges to a gradient
topology.

for i = 0, . . . , D − 1, with the corresponding eigenvectors

ξi =

[

0, . . . , 0
︸ ︷︷ ︸

i

, (−1)0
(

D − i

0

)

, (−1)1
(

D − i

1

)

,

. . . , (−1)D−i

(

D − i

D − i

)

]

.

Hence, the second largest eigenvalue of P is λD−1 = 1 − p − ε.
Using Theorem 4.1, with λ = 1 − p − ε, and the approxi-

mations
∑N

n=1
1
n ≈ log (N) and − 1

log(λ) = − 1
log(1−p−ε) ≈ 1

p+ε
proves this lemma. �

Remark: A larger ε will yield a faster convergence rate,
but to a steady-state solution further from the complete gradient
topology.

VI. CONVERGENCE SIMULATION

Here, we examine the convergence rate of Algorithm 1 using
numerical simulations, and compare the outcome with our the-
oretical results. We start with a network consisting of N = 100
nodes, where the degree of each node is D = di = 10. The sim-
ilar view N s

i (0) is initialized with D nodes uniformly chosen
among all nodes in the network, and the sampling probability
pt is held at a constant value of 1

2N . Hence, for each node and at
each iteration of the algorithm, the random view is empty with
50% probability. The state trajectories for all nodes are shown
in Fig. 4, and the convergence times ranges from 193 to 1116
iterations, with an average convergence time of 554 iterations.
The convergence time can be compared to the expected conver-
gence time given by (8) for a single node, i.e., 585 iterations, and
the global convergence rate given by (9), i.e., 1035 iterations.
A corresponding heat map of the states are shown in Fig. 5.
The system converges to a gradient topology, as guaranteed by
Theorem 3.1.

In the second simulation, we change the sampling probabil-
ity into a decaying probability pt = 1

N
1

(1+t/100)2 . Notice that
∑∞

t=0 Npt < 101, hence, by Corollary 3.1, there is a positive
probability that the algorithm does not converge to a gradient

Fig. 5. State heat map for a network with 100 nodes, degree D = 10,
and constant sampling probability Npt = 1/2. Brighter colors indicate
more likely states.

Fig. 6. State trajectories for a network with 100 nodes and degree
D = 10. Each line represents a single node, and a decaying sampling
probability Npt = 1

(1+ t/100)2 is used. The network does not converge

to a gradient topology.

Fig. 7. State heat map for a network with 100 nodes, degree D = 10,
and a decaying sampling probability Npt = 1

(1+ t/100)2 . Brighter colors

indicate more likely states. The network does not converge to a gradient
topology.

topology. This is also confirmed by the simulation trajectories
in Fig. 6 and the corresponding state heat map in Fig. 7.

In the third simulation, we return to the constant sampling
probability 1

2N , but consider a network with N = 500 nodes
and a node degree of D = 50. The expected state heat map is
shown in Fig. 8, and the convergence time can be compared to
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Fig. 8. State heat map for a network with 500 nodes, degree D = 50,
and constant sampling probability Npt = 1/2. Brighter colors indicate
more likely states.

Fig. 9. State heat map for a network with churn, consisting of 100
nodes, degree D = 10, and a constant sampling probability Npt = 1/2.
Brighter colors indicate more likely states. The churn probability is ε =
1
2 pt , thus the network converges to a steady state close to a gradient
topology.

the expected convergence time of 4499 iterations for a single
node and 6789 iterations for the entire network.

Finally, we simulate the influence of churn on the network.
Consider a network consisting of N = 100 nodes, with node
degree D = 10 and a constant sampling probability pt = 1

2N .
In Fig. 9, the churn rate is ε = 1

2 pt , and we see that nodes tend
to favor states closer to a gradient topology, as predicted by
Theorem 5.1. In fact, 27% of the nodes are in their optimal state
X(t) = 0, with another 14% are in state X(t) = 1. In Fig. 10,
the churn rate is increased to ε = pt , and all states are equally
likely in the steady-state solution, whereas in Fig. 11, the churn
rate is further increased to ε = 2pt and nodes tend to have a
more random neighborhood, with 17% of the nodes having a
completely random neighborhood X(t) = D.

VII. EVALUATING LIVE STREAMING USING THE GRADIENT

TOPOLOGY

Now, we turn to an evaluation of the effect of sampling nodes
from the gradient overlay network compared to a random over-
lay network when building a P2P live-streaming application,
called GLive. GLive is based on nodes cooperating to share a
media stream supplied by a source node, and uses an approx-
imate auction algorithm to match nodes that are willing and

Fig. 10. State heat map for a network with churn, consisting of 100
nodes, degree D = 10, and a constant sampling probability Npt = 1/2.
Brighter colors indicate more likely states. The churn probability is ε = pt ,
thus the network converges to a steady state where every state is equally
likely.

Fig. 11. State heat map for a network with churn, consisting of 100
nodes, degree D = 10, and a constant sampling probability Npt = 1/2.
Brighter colors indicate more likely states. The churn probability is
ε = 2pt , thus the network converges to a steady state where the ini-
tial random neighborhood is more likely, and the gradient topology is
missing.

able to share the stream with one another. GLive extends the
tree-based live streaming, gradienTv [25] and Sepidar [18], to
mesh-based live streaming.

Nodes want to establish connections to other nodes that are
as close as possible to the source. They bid for connections
to the best neighbors using their own upload bandwidth, and
nodes share their bounded number of connections with the nodes
that bid the highest (contribute the most upload bandwidth).
Auctions are continuous and restarted on failures or free riding.
The desired effect of the auction algorithm is that the source will
upload to the nodes that contribute the most upload bandwidth,
which will, in turn, upload to the nodes that contribute the next
highest amount of bandwidth, and so on until the topology is
fully constructed.

One of the main problems with the lack of global informa-
tion about nodes’ upload bandwidths is that it affects the rate
of convergence of the auction algorithm. Nodes would ideally
like to bid for connections to other nodes that they can afford
to connect to, rather than win a connection to a better node and
later be removed because a better bid was received. The tradi-
tional way to discover nodes to bid on is using a uniform random
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peer-sampling service [8]. Instead, we use the gradient overlay
to sample nodes, where a node’s utility value is the upload band-
width it contributes to the system. As such, the gradient should
provide other nodes with references to nodes that have well-
matched upload bandwidths. Payberah et al. [18] showed that
using the gradient overlay network reduced the rate of parent
switching for tree-based live streaming by 20% compared to ran-
dom peer sampling. Here, we show for GLive, the effect of sam-
pling neighbors using random peer sampling (GLive/Random)
versus sampling from the gradient overlay (GLive/Gradient).

GLive is implemented using Kompics’ discrete-event simu-
lator [27] that provides several bandwidth, latency, and churn
models. In our experimental setup, we set the streaming rate
to 512 kb/s, which is divided into blocks of 16 kB. Nodes start
playing the media after buffering it for 5 s. The size of the similar
view in GLive is 15 nodes, and in the auction algorithm, nodes
have 8 download connections. To model the upload bandwidth,
we assume that each upload connection has an available band-
width of 64 kb/s and that the number of upload connections for
the nodes is set to 2i, where i is picked randomly from the range
1 to 10. This means that nodes have an upload bandwidth ca-
pacity between 128 kb/s and 1.25 Mb/s. As the average upload
bandwidth of 704 kb/s is not much higher than the streaming
rate of 512 kb/s, nodes need to find good parents to achieve the
streaming performance. The media source is a single node with
40 upload connections, providing 5 times the upload bandwidth
of the stream rate. We assume 11 utility levels, such that nodes
contributing the same amount of upload bandwidth are located
at the same utility level. Latencies between nodes are modeled
using a latency map based on the King dataset [32]. We assume
that the size of the sliding window for downloading is 32 blocks,
such that the first 16 blocks are considered as the in-order set
and the next 16 blocks are the blocks in the rare set. A block is
chosen for download from the in-order set with 90% probability,
and from the rare set with 10% probability. In the experiments,
we measure the following metrics.

1) Playback continuity: The percentage of blocks that a node
received before their playback time. We consider the case
where nodes have a playback continuity greater than 99%.

2) Playback latency: the difference in seconds between the
playback point of a node and the playback point at the
media source.

We compare the playback continuity and playback latency
of GLive/Gradient and GLive/Random in the following three
scenarios.

1) Churn: In total, 500 nodes join the system following a
Poisson distribution, with an average interarrival time of
100 ms. Then, until the end of the simulation, nodes join
and fail continuously following the same distribution with
an average interarrival time of 1000 ms.

2) Flash crowd: In total, 100 nodes join the system following
a Poisson distribution with an average interarrival time of
100 ms. After 150 s, 1000 nodes join following the same
distribution with a shortened average interarrival time of
10 ms.

3) Catastrophic failure: In total, 1000 nodes join the system
following a Poisson distribution with an average interar-

Fig. 12. Playback continuity of the GLive/Gradient and GLive/Random
systems in the churn, flash crowd, and catastrophic failure scenarios.
(a) Churn. (b) Flash crowd. (c) Catastrophic failure.

rival time of 100 ms. After 150 s, 500 existing nodes fail
following a Poisson distribution with an average inter-
failure time of 10 ms.

Fig. 12 shows the percentage of the nodes that have a play-
back continuity of at least 99%. We see that all the nodes in
GLive/Gradient receive at least 99% of all the blocks very
quickly in all scenarios, whereas it takes slightly more time for
GLive/Random. This is because nodes in GLive/Gradient find
a good set of matches faster than nodes in GLive/Random by
running the auction algorithm against nodes with similar upload
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Fig. 13. Playback latency of the GLive/Gradient and GLive/Random
systems in the churn, flash crowd, and catastrophic failure scenarios.
(a) Churn. (b) Flash crowd. (c) Catastrophic failure.

bandwidth. One point to note is that the 5 s of buffering cause
the spike in playback continuity at the start, which then drops
off as nodes are joining the system. To summarize, using the
gradient overlay instead of random sampling produces better
performance when the system is undergoing large changes—
such as a large numbers of nodes joining or failing over a short
period of time.

Fig. 13 shows the playback latency of the systems in the
different scenarios. As we can see, although there is only a
small difference between the systems, GLive/Gradient con-
sistently maintains relatively shorter playback latency than

GLive/Random for all experiments. The playback latency in-
cludes both the 5 s buffering time and the time required to pull
the blocks over the live-streaming overlay constructed using the
auction algorithm.

VIII. CONCLUSION

In this paper, we studied the network topology convergence
problem for the gossip-generated gradient overlay network. A
necessary and sufficient condition for convergence to a com-
plete gradient topology was shown in terms of the neighbor
sampling probabilities. Further, the expected convergence time
was characterized for a single node, and extended to an asymp-
totic convergence rate estimate for the entire network. Finally,
networks with churn were considered, and a threshold on the
churn rate was derived for a gradient topology to emerge.

Live-streaming experiments showed the potential advantages
of network topologies built using preference functions. We
showed how nodes can use implicit information, captured in the
gradient topology, to efficiently find suitable neighbors com-
pared to using random sampling. As such, this paper on proving
convergence properties of the gradient topology could have sig-
nificance for other future information-carrying topologies.
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