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Abstract— Fluid flow models have turned out to be instru-
mental for analysis and synthesis of primal/dual congestion
control algorithms which rely on aggregated information
from a network path. In particular stability has been analyzed
using such models. Departing from the theory of modeling
for control, we refine the fluid flow model by augmenting
the customary model of transport latencies, link price and
source control with estimator dynamics and sampling prop-
erties. The impact of cross traffic and changes in network
configuration is incorporated as well. As a demonstration,
the modeling framework is applied to FAST TCP for which a
fluid flow model is derived which through packet simulations
is shown to provide accurate quantitative and qualitative
information such as prediction of stability regions, behavior
to cross traffic and which dynamics that influence the closed
loop behavior. This model is also compared with pre-existing
FAST TCP models and it is illustrated that using appropriate
sampling rates and previously neglected estimation dynamics
may have a large impact on the closed loop properties. We
also introduce a novel link model that is validated towards
packet/level data.

I. INTRODUCTION

The tremendous complexity of the Internet makes it

extremely difficult to model and analyze. However, re-

cently significant progress in the theoretical understanding

of network congestion control has been made following

seminal work by Kelly and coworkers [20]. The key to

success is to work at the correct level of aggregation—

which is, fluid flow models with validity at longer time-

scales than the round-trip time (RTT). By explicitly mod-

eling the congestion measure signal fed back to sources,

and posing the network flow control problem as an opti-

mization problem—where the objective is to maximize the

total source utility—the rate control problem can be solved

in a completely decentralized manner provided that each

source has a concave utility function of its own rate [20],

[26].

This optimization perspective of the rate control problem

has been widely adopted. It also allows for dynamical

laws and the developed algorithms can be classified as:

(1) primal, when the control at the source is dynamic

but the link uses a static law; (2) dual, when the link

uses a dynamic law but the source control is static; and
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(3) primal/dual, when dynamic controls are used both at

the source and the links, see [23], [27], [29], for nice

overviews.

By appropriate choice of utility function even protocols

not originally based on optimization, such as TCP Reno,

can be interpreted as distributed algorithms trying to max-

imize the total utility [25]. Delay based protocols such

as TCP Vegas [5] or FAST TCP [17] can be classified as

primal/dual algorithms with queuing delay as dynamic link

price.

To ensure that the system will reach and maintain a

favorable equilibrium, it is important to assess the dy-

namical properties, such as stability and convergence, of

the schemes. Instability means that the protocol is unable

to sustain the equilibrium and manifests itself as severe

oscillations in aggregate traffic quantities such as queue

lengths.

From a control perspective, the main focus has been

on stability, with numerous contributions concentrating on

proving stability for more or less general configurations

and scenarios as a result. Stability of some basic schemes

was established already in [20], [26], but under very

idealized settings, see also, e.g., [2], [22], [39]. However

all results mentioned above have ignored the effect of

network delay, which is critical for stability. Local stability

of Reno/RED with feedback delays has been studied in

[13], [28]. The stability analysis reveals that these protocols

tend to become unstable when the delay increases and,

more surprisingly, when the capacity increases. This has

spurred an intensive research in protocols that maintain

local stability also for networks with high bandwidth-

delay product, see e.g., [21], [32]. Other examples of work

proving local stability when taking delay into consideration

are [19], [30], [36]. To be able to obtain global results

but still not ignoring delay, the authors behind [8], [31],

[40], use Lyapunov-Krasovskii and Lyapunov-Razumikhin

functionals to establish global convergence. An alternative

approach is taken in [35] where global stability of a

TCP/AQM setting is analyzed via integral-quadratic con-

straints (IQC).

In this contribution we try to shift the focus from the

stability results as such, to the physical modeling itself. By

refining a local version of the classical primal/dual fluid
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flow model following Kelly’s [20] framework, and inter-

polating our results to a window based scheme (FAST TCP

and FIFO queues), we illustrate how essential a sufficiently

accurate model is when making conclusions concerning

stability of the true system. To authors knowledge, in

practice, rigorous model validation of dynamical proper-

ties of congestion control protocols are very rare in the

literature. As an example, it seems like knowledge about

how a network (source/resource) system should be excited

externally in the case of validation of the source- and link

dynamics from measurement data, has gone unnoticed so

far. Something that must be done with care if validation

is performed in closed loop which is preferable for many

scenarios. This issue is further elaborated on in [15] where,

using the same model as here, it is illustrated how such

experiments should be carried out in practice.

Also, following [20], much of the analysis has been

based on fluid flow models including source controls, link

price mechanisms and transport latencies. We argue that

it is also important to model the dynamics of estimators

typically present in the source side and the different

sampling mechanisms in a network (typical congestion

control mechanisms work in a number of different time

scales) as they may have a large impact on the closed loop

properties when considering the wide range of scenarios

that can be foreseen in future networks exhibiting extreme

heterogeneity in terms of bandwidth-delay products and so

on. We substantiate our claims with NS-2 simulations.

The paper is organized as follows. Some preliminaries

on modeling and identification are presented in Section II.

In Section III a well-known model of a network is pre-

sented, refined and linearized. To substantiate our results

a case study is performed in Section IV where a model

of FAST TCP is developed and validated in the scope of

our framework and furthermore used for stability analysis.

Conclusions are given in Section V.

II. SOME GENERAL REMARKS ON MODELING

In modeling and identification of complex systems, it is

instrumental to consider the intended use of the model so

that system properties of importance for the application are

modeled with sufficient accuracy and irrelevant “details”

are ignored. For example, a simulation model may have

quite different properties as compared to a model suitable

for control design.

Example 2.1: The system

G◦ =
1

(s + 1)2(s + 0.01)

is modeled by

Ĝ =
0.5

(s + 0.04)(s + 0.01)
.

The open loop step responses of the system and the model

is given in the upper plot in Fig. 1. Clearly the model

is not suitable for step-response simulation of the open

loop system dynamics. However, this model allows for a
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Fig. 1. Step responses in Example 2.1. Dashed line: True system. Solid
line: Model. Upper: Open loop. Lower: Closed loop

reliable control design. Designing a controller C = C(Ĝ)
such that the designed complementary sensitivity function

T (Ĝ) = ĜC(Ĝ)/(1 + ĜC(Ĝ)) has a bandwidth of 0.4

rad/s and applying this controller to the system yields the

closed loop step response in the lower plot of Fig. 1 where

also the response predicted by the model is shown. We see

that the agreement is quite good.

Over the last fifteen years or so there has been significant

progress in modeling and identification when the model

is to be used for control design. The present state-of-the

art is summarized in [11], [12], see also [1]. In short, an

accurate model is required over a frequency band covering

the intended bandwidth of the closed loop. Formally this

can be expressed as
∥

∥

∥

∥

∥

Ĝ − G◦

Ĝ
T (Ĝ) S(G◦, Ĝ)

∥

∥

∥

∥

∥

∞

≪ 1, (1)

where C(Ĝ) is the controller designed on the basis of

the model Ĝ, where T (Ĝ) = ĜC(Ĝ)/(1 + ĜC(Ĝ)) is

the corresponding complementary sensitivity function and

where S(G◦, Ĝ) = 1/(1 + G◦C(Ĝ)) is the sensitivity

function for the true closed loop system. Since T (Ĝ)
typically is approximately unity at low frequencies and

rolls off above the desired closed loop bandwidth and

S(G◦, Ĝ) exhibit the opposite behavior it follows that

a good relative model fit is only required around the

designed closed loop bandwidth. A prerequisite for the

above discussion to be valid is that S(G◦, Ĝ) is stable

which is guaranteed if the closely related robust stability

condition
∥

∥

∥

∥

∥

T (Ĝ)
Ĝ − G◦

Ĝ

∥

∥

∥

∥

∥

∞

< 1,

is satisfied.

Returning to Example 2.1 we see from Fig. 2 that the

model fit is actually good around the desired closed loop

bandwidth (0.4 rad/s) for the used model.
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Fig. 2. Bode diagrams in Example 2.1. Dashed line: System. Upper
solid line: Model. Lower solid line: Desired complementary sensitivity
function.

The reason why a good model fit is not required at all

frequencies is that the closed loop will be insensitive to the

model accuracy at low frequencies since the controller gain

typically will be large here (this is the essence of feedback

control) whereas at high frequencies the controller gain

will be small also resulting in low sensitivity to the

modeling accuracy.

Packet based network communication systems are highly

complex systems exhibiting asynchronous behavior, large

number of heterogeneous nodes and non-linear behavior.

The aggregation of traffic flows into fluid flows can be seen

as a way of neglecting high frequency behavior well in line

with the discussion above. However, as outlined above, an

appropriate model must also capture the system dynamics

around the desired bandwidth and in Section III we will

discuss this issue in more detail.

III. NETWORK MODEL

In this part we present a mathematical abstraction of

the network. The model and notation follows the spirit of

previous work found in e.g. [14], [18], [27], [33].

A. fluid flow model

The bottlenecks in the network will be modeled as

an indexed set of L resources (or links) each with an

associated finite capacity cl in packets per seconds, where

l ∈ {1, . . . , L}. The network is shared by a set of N
persistent flows, competing about the offered capacity and

indexed with n ∈ {1, . . . , N}. Every flow is uniquely iden-

tified by its source-destination pair. That only bottlenecks

are accounted for implies that there are always at least as

many sources as links, i.e. N ≥ L is true by definition

(adjacent links with identical capacity are viewed as one

link). The impact of non-bottle neck links and short lived

(’mice’) traffic will be incorporated below, see Sections

III-B and III-C.

To represent a certain network configuration (i.e. to

associate flows with links they utilize) a routing matrix

R ∈ R
L×N is introduced. It is assumed to remain fixed

and it is defined by: Rln = 1 if link l is used by source

n, and 0 otherwise. Furthermore it is implicitly assumed

that R is properly posed—the configuration it represents

is realizable—and that R is of full rank.

Let a packet that is sent by flow n at time t appear at

link l at time t + τ f
ln. This forward delay τ f

ln models the

amount of time it takes to travel from source n to link l,
and it accounts for total latency and queuing delays. The

backward delay τ b
ln is defined in the same manner, i.e. it

is the time it takes from that a packet arrives at link l
to that the corresponding acknowledgment is received at

source n. The round-trip time associated with source n, is

in this context naturally defined as τn := τf
ln + τ b

ln. In a

buffering network round-trip time is generally time-varying

since queues normally are fluctuating. We will make the

simplification that time delays appearing in variable argu-

ments, such as xn(t− τf
ln), are replaced by corresponding

equilibrium values whereas delays appearing explicitly will

be accounted for in full, see [27] and [24] for justification

of this simplification. The validity of the model is therefore

only in time-scales coarser than the round-trip time.

The (continuous) sending rate xn(t) in packets per

second of source n at time t is related to the source

congestion window wn(t) and the round-trip time as

xn(t) := wn(t)
τn

and is accurate only for the longer

time scales considered. All sending rates are collected

in x(t) = [x1(t), . . . , xN (t)]T and the corresponding

vector of forward delays to link l is denoted τ f
l , with the

convention that elements which correspond to Rnl = 0,

i.e. not relevant for the network configuration, are set to

zero. Similarly defined, τ b
n is the vector of all backward

delays to source n.

The aggregate flow yl(t) at link l is straightforwardly

determined by the equation

yl(t) =

N
∑

n=1

Rlnxn(t − τf
ln) =: rf,l(x(t), τf

l ) (2)

where yl(t) must not exceed the associated capacity cl in

equilibrium and collected in y(t) = [y1(t), . . . , yL(t)]T , so

rf (x(t), τf ) = [rf,1(x(t), τf
1 ), . . . , rf,L(x(t), τf

L)]T .

Motivated by seminal work by Kelly and coworkers [20]

and Low and Lapsley [26], the congestion measure signal

fed back to sources is modeled explicitly: each link has

an associated congestion signal referred to as price pl(t)
which is collected in p(t) = [p1(t), . . . , pL(t)]T . The

aggregate price received at source n is defined as

qn(t) =

L
∑

l=1

Rlnpl(t − τ b
ln) =: rb,n(p(t), τ b

n), (3)

where qn(t) and rb,n(p(t), τ b
n) are individual components

of the vectors q(t) and rb(p(t), τ b) respectively.

It is assumed that source n has access to a (possibly)

corrupt version q̄n(t) of the aggregate price qn(t). A
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schematic representation of the closed loop system is given

in Fig. 3. Here S represents the source dynamics and L
represents the link dynamics, i.e. the pricing mechanism.

The map H : q(t) → q̃(t) depends on the used price

y

pq

x

LS

Σ

v

q̄

q̃

r

Σ

rf

rbH

Fig. 3. Schematic representation of the delayed closed loop system of
interconnected sources/resources.

mechanism and how it is communicated to the source. H
could, e.g., represent a quantizer.

B. Non-persisting sources

Only persistent sources—so called, “elephants”—are

included in the fluid flow model. However, the network

is also utilized by short “mice” traffic not accounted for.

This additional traffic will influence individual link prices

pl(t), and subsequently propagate to the persistent sources

via the aggregate price q(t). A natural way to model this is

to treat the “mice” as noise on the link rates, or similarly as

noise (filtered through link dynamics) affecting the prices.

Another issue is that bottlenecks only are included in the

network model. Nevertheless, also non-bottleneck links

along a source’s path might be exposed to “mice” cross

traffic—contributing to qn(t) occasionally through the (not

modeled) price mechanism. The effect of all this non-

modeled traffic is accounted for in the model by the noise

v on the corrupted aggregate price q̃(t).

C. Changes in persistent sources

In a real setting the number of sources N is not

fixed—even persistent sources connects and disconnects

occasionally. From a system perspective, it is of great

interest that remaining sources adapt to the new conditions

suitable fast and smooth. Unfortunately, such variations in

the configuration—which results in changes in the routing

matrix R—are not handled by the model since R is not

allowed to change dynamically, as stated in Section III-

A. This phenomenon must instead be dealt with in an

alternative way.

When a persistent source connects or disconnects it

means that the links along the source’s path will experience

a change in the aggregate rate. This phenomenon, deriving

from the configuration changes, is modeled by applying

suitable signal changes in the aggregate traffic y(t) rep-

resented by the signal r in Fig. 3, meanwhile keeping

the network configuration fixed. Note that persistent non

responsive traffic such as UDP traffic can be included in

the model via r.

D. Source and link dynamics

The source dynamic should produce suitable sending

rates x. As presented in [20], [26], the introduction of

the concepts of aggregate rate yl(t) and aggregate price

qn(t), allow specifications of dynamical source and link

laws that solves the resource allocation problem in a

distributed manner—that is, without the need for explicit

communication between sources. In, so called, primal/dual

control [20] each source is assumed to adjust its sending

rate dynamically based on the aggregate price qn(t) ob-

served. The task of the source dynamics is thus to first

recover the aggregate price qn(t) from the, by cross traffic

and signaling constraints, distorted signal q̄(t) and then to

further process this signal.

Recovering qn(t) can be viewed as an estimation prob-

lem. In delay-based methods such as TCP Vegas and FAST

TCP, the aggregate price is the total queuing delay along

the path and the problem is to estimate this underlying

delay from the round-trip time experienced by each packet.

In practice the information concerning q̄(t) is conveyed by

acknowledgments which typically arrive with a very high

frequency as compared to the inherent bandwidth of the

closed loop which is governed by the round-trip time or

latency. From a control point of view it therefore makes

sense to down sample the information. In FAST TCP and

TCP Westwood this is done after the estimation as in the

left block S1 in Fig. 4. However, it can equally well be

done before any processing is performed as in the right

block S2 in Fig. 4. One should notice that it is important to

include an anti-aliasing filter (represented by AI blocks in

Fig. 4) before down sampling as otherwise high-frequency

components may distort the down-sampled signal. This is

common practice in control systems but is often neglected

in network congestion control.

The actual source control is based on the estimate q̂n

of the aggregate price. In a physical network the source

control is realized by a dynamical window algorithm in an

appropriate window based transmission control protocol

such as e.g. TCP NewReno [9] or TCP Vegas [4]. The

window is typically kept fixed or smoothly changed over

a fixed time-interval, e.g. one round-trip time. This is

modeled by the hold function in Fig. 4 which typically

contribute to an increase in the overall system delay,

preceded by down-sampling and possibly also an anti-

aliasing operation.

The link dynamics L can in practice be managed by an

AQM scheme such as RED [10] or REM [3]. For delay-

based schemes it is simply a FIFO queue. Note that we

avoid to explicitly define the entity of the price signal to

keep the discussion as general as possible.

E. Linearized system

The focus of this paper is on local properties of the inter-

connected source/resource system, i.e. small perturbations
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Fig. 4. A split view of the source dynamics.

x = x∗+δx, y = y∗+δy, p = p∗+δp, q = q∗+δq around

the equilibrium will be studied. Before proceeding, remark

the slight abuse of notation that follows: the variables

(x, y, p, q) from now on all represent perturbations and

the elements in y and p corresponding to non-bottlenecks

have been removed.

By neglecting variations in delays appearing in variable

arguments, as previously stated, we regard (2) and (3) as

time invariant. Hence, the Laplace transform is applicable

which yields that the linearized aggregate quantities can

be expressed as

y(s) = Rf (s)x(s) (4)

q(s) = RT
b (s)p(s) (5)

in the frequency domain (superscript T denotes transpose).

The forward delay matrix Rf (s) is obtained, using the

routing matrix R, by replacing unit elements by the appro-

priate Laplace domain forward delay e−τ
f

ln
s. The backward

delay matrix Rb(s) is obtained similarly, using backward

delays e−τb
lns instead.

Denote the individual linearized frequency domain

source dynamics Kn(s) and link dynamics Fl(s). Define

K(s) := diag(Kn(s)) and F(s) := diag(Fl(s)) which

yields that

x(s) = K(s)q(s) (6)

p(s) = F(s)y(s) (7)

in vector form. Now (4), (5), (6) and (7) together de-

fines the linear closed loop system, representing the in-

terconnected source/resource system at equilibrium. It is

sometimes implicitly understood—by the argument—if it

is the time domain or corresponding frequency domain

expression that is considered.

IV. CASE STUDY: TIME-SCALE MODELING OF FAST

TCP

In this section the time based TCP sibling FAST TCP

recently proposed [17] is modeled and analyzed using

the framework of Section III. By rigorous modeling of

relevant dynamics and the different time scales that algo-

rithms work in, a model is obtained that when validated

against packet-level simulations is shown to be accurate.

Analysis using this model then yields stability constraints

on protocol parameters. The obtained bounds are shown to

accurately reflect the behavior in packet-level simulations.

A. Protocol rationale

Designed for large distance high speed data transfers,

FAST TCP adopts the delay-based approach of TCP Ve-

gas [5] to be able to attain a ’stable’ equilibrium. This is in

contrast to the protocols using a loss-based approach which

necessarily oscillate around the equilibrium rate. The rate

(window) control estimates the end-to-end queuing delay

and stabilizes its rate such that a targeted number of

packets are buffered in the network—subsequently, full

utilization of network resources is guaranteed. Addition-

ally, a salient feature of FAST TCP is an equilibrium

rate independent of network latency, this theoretically

implies a completely α–fair protocol. For FAST TCP this

is expressed by the constraint

xn qn = αn, n = 1, . . . , N (8)

where αn is a parameter in the algorithm, in equilibrium.

B. The FAST TCP algorithm

Below, the basic features of the FAST TCP algorithm

are briefly described. We will drop the subscript n for ease

of notation.

1) Queue size estimation: The aggregated price in the

algorithm is the queuing delay. This quantity is obtained

by estimating the latency d and then using round-trip time

samples. The latency d is estimated by simply logging

the minimum round-trip time observed, and obeying slow

dynamics it seems reasonable to approximate it as a per-

fectly known static variable. Noting that this approximation

does not affect the dynamical properties of the model, the

latency estimation procedure in FAST TCP is not further

considered in this contribution. Notice however, that any

bias in this estimate will influence the equilibrium point

and hence the fairness properties in practice.

With the kth round-trip time sample denoted τ(k), the

queue time sample is q̄(k) = τ(k) − d. This is a noisy

measurement of the actual price q(t). Consequently, in

FAST TCP q̄(k) is low-pass filtered according to

q̂(k + 1) = (1 − η(k)) q̂(k) + η(k)q̄(k) (9)

where

η(k) = min

{

3

w̃(k)
,
1

4

}

(10)

and w̃(k) is defined below.
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2) Window control: The sending rate of FAST TCP is

implicitly adjusted via the congestion window w. Instead

of considering sending rates as variables of interest as in

Fig. 3, we will therefore use window sizes in the sequel.

In each sender the window is adjusted according to

w(k + 1) = (1 − γ)w(k) + γ
d

d + q̂(k)
w(k) + γα, (11)

where α ∈ Z
+ and γ ∈ (0, 1] are protocol parameters

and d is the network latency. Note that we will distinguish

between the congestion window w, which is an interme-

diate variable, and the ’sending’ congestion window w̃,

which reflects the actual number of packets in flight. The

congestion window is updated at a constant time interval,

Tw. This means that down-sampling occur in the map

q̂ 7→ w, when the congestion window is large enough.

This is performed without any anti-alias filtering of q̂ first.

The sending window is periodically updated as follows:

It is smoothly updated during one round-trip time and

kept fixed the following round-trip time. Also this step is

performed without any anti-alias filtering. The procedure

is similar to the S1 block in Fig. 4 without AI blocks.

3) Link dynamics: FAST TCP is considered to oper-

ate in a future Internet scaled up in capacity and size

with routers applying FIFO queuing policy. Mainly, in

the literature there exist two different approaches in the

modeling of a queue: 1) treating the queue as a static

function, and 2) taking the dynamical properties over

all frequencies into consideration and hence model its

integrating effect. Examples of the first approach can be

found in, for example, [20] and [37], and the latter in [27]

and [33]. We remark that when using the window size as

explicit state of the protocol the dynamics of the link buffer

is different from the case of working directly with rates.

4) Algorithm summary: FAST TCP fits Fig. 3 with the

source dynamics described by the S1 block found in Fig. 4

ignoring the anti-alias filters.

C. Model

In this section we will derive a linearized model for

a single FAST TCP source sending over a single bot-

tleneck link. A fundamental assumption in the modeling

framework presented in Section III is that time delays

are time invariant. However, as FAST TCP operates in a

FIFO (first-in-first-out) buffering network this is not the

case since queuing delay varies with time, with nested

arguments in the variables as a consequence. We will

follow the convention introduced and motivated in Section

III-A that time delays appearing in variable arguments

are replaced by equilibrium values while delays appearing

explicitly will be accounted for. Addressing high capacity

high latency networks, queuing delay is only a fraction

of round-trip time which should benefit the considered

approximation. Still, packet-level simulations are provided

in Section IV-E to validate achieved results.

It turns out to simplify the analysis by working in

continuous time so continuous time equivalents will be

derived for as many blocks as possible of the system.

Equilibrium values are denoted with subscript 0 in the

sequel.

1) Link dynamics: In our simple one link, one source

scenario, we will model the link as a continuous integrator,

driven by the incoming rate at the link, but also include a

direct term to model the immediate effect a change in the

congestion window has on a saturated link,

ṗ(t) =















˙̃w(t−τf )+
w̃(t−τf )
d+p(t)

−c

c
, if p(t) > 0 or ˙̃w(t − τf )

+ w̃n(t−τf )
d+p(t) > c,

0, otherwise.

(12)

This novel link model is developed and thoroughly val-

idated in [16], it is obtained by a careful study of the

source/link system at packet level and captures the so

called self-clocking effect in window based schemes which

rate based models fails to do [38]. In Section IV-E we

demonstrate that the linearization of this model is accu-

rate around the equilibrium. Below we comment on the

relationship to previous work.

Linearization of (12) around the equilibrium p0 = q0 =
α/x0 yields

ṗ(t) = −
x2

0

c(α + x0d)
p(t) +

x0

c(α + x0d)
w̃(t − τf )

+
1

c
˙̃w(t − τf ). (13)

Studying (13) in the frequency domain one realizes that

when a source utilizes the link alone, i.e. x0 = c, the map

from w̃ to p is a pure time-delay as used in e.g. [37] and

[6]. However, when inelastic cross traffic (such as UDP) is

present, x0 < c, a filtering effect kicks-in and the relation

is not static anymore; this is also evident from the snapshot

of the validation experiments presented in Section IV-E.1.

2) Estimator dynamics: Assuming w0 > 12 the lin-

earized version of the queue estimator (9), (10) is given

by

q̂(k + 1) =

(

1 −
3

w0

)

q̂(k) +
3

w0
q̄(k). (14)

The filter in (9) is updated at every received acknowl-

edgment. This means that the filter receives a congestion

window amount of samples every round-trip time, hence

the mean sampling interval becomes Tq ≈ d+q0

w0
in equi-

librium. Ignoring that the true samples are non-uniformly

distributed in time, we approximate the discrete filter in

the continuous domain with

˙̂q(t) = −
3

Tq(α + x0d)
q̂(t) +

3

Tq(α + x0d)
q̄(t). (15)

where we have used that the equilibrium window is w0 =
(d+q0)x0 and (8). This approximation is accurate enough

for time-scales about a magnitude greater that the ACK-

inter-arrival time. Again, since high capacity links are

considered this should be sufficient for the scope of this

paper.
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3) Window control: We will assume that the queue

estimator produces unbiased estimates. Hence we can

linearize (11) around the equilibrium queuing delay, which

we denote by q0. Using that the equilibrium window is

w0 = (d+q0)x0 and that α = x0 q0, the linearized window

dynamics is given by

w(k + 1) =

(

1 − γ
q0

d + q0

)

w(k) − γ
αd

q0(d + q0)
q̂(k)

(16)

Considering only the case when bandwidth is high

enough to guarantee that the sampling rate Tw is greater

than the ACK-inter-arrival time, inverse sampling of

(16) together with the approximation ln
(

1 − γ q0

d+q0

)

≈

−γ q0

d+q0
, valid for sufficiently small γ q0

d+q0
> 0 (which

holds for the high bandwidth high and latency case), and

(8) yields the following continuous time equivalent

ẇ(t) = −
1

Tw

γ
α

α + x0d
w(t) −

1

Tw

γ
x2

0d

α + x0d
q̂(t) (17)

to (16). In (17), the alias effect that occurs in the down

sampling of q̂ is not accounted for. We believe, however,

that the model captures the fundamental behavior of the

congestion window update, including the separated time-

scales that is present in the system as described later on.

4) Sending window update: The sending window,

which represents the actual packets kept in flight, is as

mentioned updated every two round-trip times. To capture

this effect in the model, a sampler with the sampling

time denoted by Tw̃ in conjunction with a zero-order-hold

(ZOH) describes the signal map w 7→ w̃.

5) Model summary: The resulting mathematical ab-

straction of a single FAST TCP source sending over a

single bottleneck is represented by the block diagram

of the closed-loop system shown in Fig. 5, where the

filters Gq̂q̄(s), Gwq̂(s) and Gpw̃(s) are the frequency

domain (Laplace) equivalents to (15), (17) and (13) (ex-

cluding delay which is accounted for separately), re-

spectively. For future reference we now introduce G =
e−sτ0Gpw̃(s)Gwq̂(s)Gq̂q̄(s) where the equilibrium round-

trip-time τ0 = d + q0 = d + α/x0. The system in Fig. 5

Gpw̃(s) e−sτ
f

e−sτ
b

p

w w̃q̂
Gwq̂(s) ZOH

Tw̃

u[k]

Σ

r

Σ

v

q̄
Gq̄q̂(s)

Fig. 5. Block diagram of a single FAST TCP source sending over a
single bottleneck link.

cannot directly be analyzed in continuous time using the

Laplace transform since it is not time invariant due to the

zero-order-hold function. However, assuming that aliasing

that occur is not severe at the same time as |G(jω)| is

strictly decreasing with increasing frequency we can ignore

overlapping components in the Poisson summation formula

[34].
This simplification effectively amounts to replacing the

zero-order-hold function by a continuous time delay of
Tw̃. With this approximation, we can thus work entirely
in continuous time and the resulting loop transfer function
(assuming negative feed-back) is given by

L̃ (s) := −G (s) e
−sTw̃ =

x0d

α
e
−s

(

Tw̃+d+ α
x0

)

(

α+x0d

x0
s + 1

)

(

Tw(α+x0d)
γα

s + 1
) (

Tq(α+x0d)

3
s + 1

) (

c(α+x0d)

x2
0

s + 1
)

(18)

with Tq = 1/x0.

Once again we emphasize that due to the different

approximations made, packet-level simulations are needed

for validation of results and model. This will be provided

in Section IV-E.

Note that values of capacity c, latency d, and forward

and backward delay τ f and τ b are determined by the

particular network configuration, while α (the number

of packets buffered in the network), γ, Tq (estimation

algorithm sampling interval), Tw (window update interval)

and Tw̃ > Tw (sending window update interval) are

considered as design parameters.

D. Stability analysis

In this section, making use of the derived model of the

FAST TCP/single bottleneck model, a stability analysis is

performed. The accuracy of the predictions (the model) is

substantiated in Section IV-E.

The simplicity of the loop gain (18) makes it tractable

for stability analysis by way of the Nyquist criterion. Since

the system is open loop stable it is enough to study whether

the closed contour of the map (18) encircles −1 or not

when input argument is traversing the imaginary axis.

Consider the case with fixed finite α ∈ Z
+ and γ ∈

(0, 1] as in FAST TCP. Focusing on the high capacity

case and with a single user so that c = x0, it is realized

from (18) that the pole deriving from the link dynamics

in cancelled by the corresponding zero and that for suffi-

ciently large capacity c (and hence sending rate x0) the

pole corresponding to the queue estimation approaches

− 3
d

, while the window control dynamics is increasingly

slower with increasing c. This implies that for sufficiently

high capacity

L (jω) ≈
cd
α

e−jω(Tw̃+τf+τb)
(

Tw(α+cd)
γα

jω + 1
) (19)

in the frequency region of interest. Since the magnitude

of the transfer function (18) is strictly decreasing with

increasing frequency, the Nyquist criterion simplifies so

that a necessary and sufficient condition for stability is that

the phase-crossover frequency ωp is greater than the gain-

crossover frequency ωc. The phase-crossover frequency is

678



obtained by solving for ωp in

−
(

Tw̃ + d +
α

c

)

ωp − arctan

(

Twcd

γα
ωp

)

= −π (20)

which for sufficiently large c yields ωp ≈ π
2(Tw̃+d) , and,

similarly, solving for the gain-crossover frequency from

cd
α

√

(

Twcd
γα

ωc

)2

+ 1

= 1 (21)

gives ωc ≈ γ
Tw

. Subsequently, it is concluded that the

system is predicted to be locally stable if, as previously

stated, ωp > ωc, which gives the following stability

condition on the tunable protocol parameter γ

γ <
πTw

2(Tw̃ + d)
. (22)

The condition (22) indicates that there is a potential danger

in making the window update time proportional to the

acknowledgment inter-arrival time, that is Tw ∝
1
c
, since

the stability region then is continuously decreasing with

larger capacities.

The condition (22) also shows that the sampling rates

influence dynamics and ignoring them in the model may

yield significantly different results. For example, (22)

indicates that freezing the sending window decreases the

stability region.

Remark 4.1: It can be noted that a single source single

bottleneck scenario leads to that (13) reduces to a queue

model consisting of a pure delay which is the model used

in [37]. Furthermore, not taking estimator dynamics into

consideration and using Tω = 1 and Tω̃ = 0 in (17)

above, i.e. ignoring sampling effects, the window model

(17) becomes the continuous time equivalent to the window

model used in [37]. Thus, modulo the difference between

continuous and discrete time results, the stability bound

(22) applies to the scenario in [37] as well.

E. Model validation

In this section we will validate our theoretical findings

with packet-level simulations of a single FAST TCP source

sending over a bottleneck link. A slightly modified version

of the NS-2 implementation of FAST TCP [7] is used to

generate reference data. We point out that in the original

NS-2 implementation the window update mechanism is

such that w(k − 1) appears instead of the right most

w(k) in (11). This yields a more low-pass behavior of

the window control mechanism around the equilibrium and

increases the stability region. Here, as originally described

in [17], we use a window update according to (11) in all

simulations. We remark that x0 in (18) is taken as the

equilibrium after the occurrence of a change in conditions.

1) Identification: After deriving the model a natural first

step is to establish its accuracy. To verify the dynamical

model of the protocol, i.e. (17) in concatenation with (15),

and the link model (13) individually, we use the discrete

event simulator NS-2 to generate experimental packet-level

data. Notice, that the external excitation must be applied

with care since the system is operating in closed loop, see

[15] for a further discussion.

Two different scenarios are considered: (1) validation

of the window control by excitation through r and, (2)

validation of the link model via excitation in v, see

Fig 5. The outcomes of the experiments are described in

Example 4.1–4.3 respectively.

Example 4.1: The experimental setting is a single FAST

TCP source sending over a single bottleneck link (applying

FIFO queuing policy) with capacity c = 12020 packets/s.

The round-trip latency d = 100 ms and the network

configuration is such that τf = 0 ms and τb = 100 ms.

The FAST TCP parameters are set to α = 400, γ = 0.1
and Tw̃ = Tw = 0.01.

At time t = 10 a negative step of 1202 packets/s is

taken in the available bandwidth (realized by applying

appropriate UDP traffic), i.e. a step r of magnitude c/10 in

Fig. 5. Queue size and window size samples are collected.

The queue size data was filtered through the source control
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Fig. 6. Identification example (step in r). Dotted line: true dynamics
(NS-2). Solid line: protocol dynamics (simulated in Matlab).

dynamics, i.e. Gwq̂(s)Gq̂q̄(s)e
−sτb

. The window size sig-

nals are shown in Fig. 6, the solid line is the window size

simulated in Matlab and the dotted line the ’true’ window

size from the NS-2 simulation. It is observed that the model

fit is good. We remark that x0 is taken as the equilibrium

after the occurrence of a change in conditions.

Example 4.2: The experimental setting is a single FAST

TCP source sending over a single bottleneck link (applying

FIFO queuing policy) with capacity c = 6010 packets/s.

The round-trip latency d = 100 ms and the network

configuration is such that τf = 60 ms and τb = 40 ms.

The FAST TCP parameters are set to α = 400, γ = 0.2
and Tw̃ = Tw = 0.01.

The external perturbation is similar as in Example 4.1

except that the system in Fig. 5 is excited via a step change

in v instead of through r. The window size data was filtered

through the queue dynamics, i.e. Gpw̃(s)e−sτf

= e−sτf

c
.

The resulting signals are shown in Fig. 7. The solid line is

the queue size simulated in Matlab and the dotted line the

’true’ queue size from the NS-2 simulation. It is observed

that the map between the effective congestion window

size w̃ and the queue size p is indeed a pure delay as

predicted by the analysis in Section IV-C.1. We remark
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Fig. 7. Identification example (step in v). Dotted line: true dynamics
(NS-2), Solid line: queue dynamics (simulated in Matlab).

that in practice the excitation is achieved through direct

manipulation of the internal protocol variable q̂—actually

by applying a step with magnitude 0.025.

Example 4.3: The experimental setting is a single FAST

TCP source sending over a single bottleneck link (applying

FIFO queuing policy) with capacity c = 60096 packets/s

which is also utilized by UDP traffic taking 80% of the

total bandwidth, i.e. x0 = 0.20c = 12019 packets/s.

The round-trip latency d = 150 ms and the network

configuration is such that τf = 45 ms and τb = 105 ms.

The FAST TCP parameters are set to α = 400, γ = 0.8
and Tw̃ = Tw = 0.01.

The external perturbation is similar as in Example 4.2

but with magnitude -0.015. The window size data was
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Fig. 8. Identification example (step in v). Dotted line: true dynamics
(NS-2), Solid line: queue dynamics (simulated in Matlab).

filtered through the queue dynamics, i.e. Gpw̃(s)e−sτf

.

The resulting signals are shown in Fig. 8. The solid line is

the queue size simulated in Matlab and the dotted line the

’true’ queue size from the NS-2 simulation. It is concluded

that (13) captures the behavior well. The observed high

frequency ringing in the NS-2 data is due to jitter at packet

level which is neglected in the fluid flow approximation

and hence not captured by the model.

From the three previous examples together with exten-

sive validation experiments in the same spirit not presented

here, it is concluded that the model of the protocol dynam-

ics is accurate.

2) A cross traffic scenario: In this part the local dynam-

ical properties of the model are tested in the spirit of the

framework described in Section III and [14]. In the NS-

2 simulations, when the system is in equilibrium a UDP

source starts to send at a constant rate over the bottleneck

link. In the model in Fig. 5 this is modeled as a step in r
of suitable size. In Fig. 9 and Fig. 10 the bottleneck queue

length outputs from two different scenarios are provided.

A step change of magnitude a fifth of the capacity is
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Fig. 9. Queue size plot of a single FAST TCP source sending over a
single bottleneck link. At time t = 10s a UDP source starts to send over
the bottleneck with rate c/5. Dotted line: NS-2 simulation. Solid line:
Fluid flow model simulation (in Matlab).
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Fig. 10. Same type of plot as in Fig. 9 but with c = 13221 packets/s,
d = 20 ms.

applied at time t = 10 s. Protocol parameters are set to

α = 200, γ = 0.12 in the first case and to to α = 200,

γ = 0.5 in the second case; also, Tw̃ = Tw = 0.01 in both

cases. In Fig. 9 capacity is set to c = 24038 packets/s

and delay is configured to d = 60 ms, while in Fig. 10

capacity is c = 13221 packets/s and d = 20 ms. It is

observed that the linear model seems to capture frequency,

amplitude and decay with high precision. This is also in

line with additional experiments not reported here due to

space limitations.

3) Stability: We will now examine the validity of sta-

bility condition (22) derived in Section IV-D.

Example 4.4: Consider a single FAST TCP source send-

ing over a single bottleneck link of capacity c = 24038
packets/s. The round-trip latency is d = 100 ms and the

source tries to keep α = 100 packets buffered in the

network. The congestion window update time is set to

Tw = 0.01 ≫ Tq (this is the default value in FAST TCP

NS-2 version [7]) and the ’sending’ congestion window

is updated together with the congestion window, that is

Tw̃ = Tw. From (22) it is predicted that the system is
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stable for γ < 0.14. The system is simulated twice in NS-

2 for 25 seconds, with γ = 0.15 and γ = 0.13 respectively.

Fig. 11 shows the bottleneck queue size for the two NS-2

simulations. It is observed that γ = 0.15 yields an unstable
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Fig. 11. Queue size plot of a single FAST TCP source sending over
a single bottleneck link. Dotted line: γ = 0.15, Tw̃ = Tw = 0.01.
Solid line: γ = 0.13, Tw̃ = Tw = 0.01. Dashed line: γ = 0.13,
Tw̃ = 2Tw = 0.02.

system, while for γ = 0.13 the system becomes stable.

This indicates that the prediction of the stability region

provided by (22), which is based on the fluid flow model,

is remarkably accurate. We point out that similar results

are obtained for various configurations for sufficiently high

capacities.

The dashed line in Fig. 11 corresponds to a simulation

similar to the γ = 0.13 case above but where the ’sending’

congestion window w̃ is updated at half the rate of the

congestion window w, i.e. Tw̃ = 2Tw = 0.01. As predicted

by (22) the system becomes unstable.
4) Impact of estimation dynamics: In the literature,

estimation dynamics is often neglected, c.f. [17], leading to

that the only remaining dynamics are the window control

and time-delays (queue dynamics are static in this case).

However, considering the single source single bottleneck

configuration (x0 = c) (18) indicates that estimator dy-

namics can not be neglected whenever γα
Tw

is of the same

magnitude as capacity c. In fact there exist scenarios where

estimator dynamics are crucial whereas window dynamics

can be neglected. This is illustrated in Example 4.5.

Example 4.5: A single FAST TCP source with α =
100, Tw̃ = Tw = 0.01 and the recommended value γ = 0.5
is sending over a single bottleneck link with capacity

c = 601 packets/s and round-trip latency d = 100 ms.

As γα
Tw

= 5000 > c, the model implies that since

window dynamics (17) is clearly faster than queue esti-

mator dynamics (15), increasing γ (and making window

dynamics even faster) should not influence the system

dynamics to any appreciable extent.

The plot in Fig. 12 shows the queue sizes from two NS-

2 simulations of this system with γ = 0.5 (dotted line) and

γ = 1 (solid line) respectively. It can be observed that it is

hard to distinguish between the two curves which shows

that the model prediction for this behavior is accurate.

The accuracy of the model and the importance of

taking queue estimation dynamics into account is further

demonstrated in Example 4.6.
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Fig. 12. Queue size plot of a single FAST TCP source sending over a
single bottleneck link. Dotted line: γ = 0.5. Solid line: γ = 1.

Example 4.6: In this example the task is to predict for

what delay a single FAST TCP source (α = 500, γ =
0.5, Tw̃ = Tw = 0.01) sending over a single bottleneck

link with capacity c = 2404 packets/s is stable. This is

done by checking for what d the equality ωp = ωc is

fulfilled, where ωp and ωc are obtained by solving (20) and

(21), respectively. It is easily shown that ωp = ωc when

d ≈ 266 ms. Performing the same operation but ignoring

dynamics deriving from queue estimation in (18) yields a

delay limit at d ≈ 216 ms. The bottleneck queue of two

packet-level simulations in NS-2 are displayed in Fig.13.

From the figure it is concluded that the system becomes
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Fig. 13. Queue size plot of a single FAST TCP source sending over a
single bottleneck link. Dotted line: d = 270 ms. Solid line: d = 260 ms.

unstable for d > d∗ where d∗ is somewhere between 260
ms and 270 ms. This was also accurately predicted by the

model including all present dynamics.

V. CONCLUSIONS

Having the congestion control application in mind, and

drawing heavily from existing experience of fluid flow

modeling, we have in this contribution presented a fluid

flow model for packet-based communication networks. By

a careful study of the signal paths we have incorporated the

impact of short lived cross traffic as well as the impact of

changes in the network configuration as external signals

at suitable points in the block-diagram in Fig. 3. Also,

dynamics has been incorporated which extends the validity

of the model to a wide range of operating conditions. To

this end we have included estimator dynamics, typically

present in delay-based schemes, and sampling effects.
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We have applied our modeling framework to FAST TCP

and through packet simulations it has been shown that the

resulting model provide accurate quantitative and quali-

tative information, such as prediction of stability regions,

behavior to cross traffic and which dynamics that influence

the closed loop behavior.
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