
Stability of window-based queue control

with application to mobile terminal download∗

Niels Möller, Karl Henrik Johansson and Krister Jacobsson†

Abstract

Window-based transmission control, such as tcp,
is a cascaded control system with an inner and
an outer loop. The inner loop works on a per-
packet time scale, and is governed by the so called
ack-clock. The outer loop adjusts the sending win-
dow based on an estimate of the network state. In
this paper, we analyze the behaviour of the inner
loop in a bottleneck topology with constant cross
traffic. It is shown that the inner loop is globally
asymptotically stable and that the time constant
for local convergence is smaller than four times the
roundtrip time. These results are applied to the de-
sign of a new outer loop control mechanism for mo-
bile terminal download. Information on radio band-
width and queue length available in the radio net-
work controller (rnc), close to the base station, is
used in a proxy that resides between the Internet
and the cellular system. The control algorithm in
the proxy is window-based and sets the window size
according to event-triggered information on radio
bandwidth changes and time-triggered information
on the queue length of the rnc. The properties of
this control scheme is analysed.

1 Introduction

An important objective for current research on
transport protocols, such as tcp and related mech-
anisms, is to operate the bottleneck queues at a rea-
sonably small queue size. If this can be achieved, we

∗The work was partially supported by European Com-
mission through the projects HYCON and RUNES, by the
Swedish Foundation for Strategic Research through an Indi-
vidual Grant for the Advancement of Research Leaders, and
by the Swedish Research Council.

†School of Electrical Engineering, Royal Insti-
tute of Technology, SE-100 44 Stockholm, Sweden,
{niels,kallej,kringlan}@s3.kth.se

can gain better performance for any network traffic
that is sensitive to delay. It also makes it possible
to operate links closer to their actual capacity, i.e.,
to use less over-provisioning. It is argued in the pa-
per that to improve both end-to-end performance
and link usage a better understanding of the dy-
namical properties of both the inner and outer con-
trol loops of window-based transmission control is
needed. When transport protocols are analyzed in
the literature, the focus is mainly on the dynamics
of the window size and of the queue lengths. Here
we discuss also the properties of the inner control
loop, which is heavily affected by the acknowledge-
ment arrival process.

There is a sharp distinction between the trans-
mission queues for bottleneck links and the queues
for non-bottleneck links in the current Internet,
with mostly drop-tail queues. The queue for a
non-bottleneck link is naturally almost empty. The
queue for a bottleneck link (or “bottleneck queue”,
for short) on the other hand, is almost full. This is
a consequence of the simple drop-tail queueing dis-
cipline and the congestion avoidance mechanism of
tcp. It has a fundamental influence on the achiev-
able network performance. It is also important to
note that the maximum queue capacity (i.e., the
size of a full queue) is usually quite large. The rule
of thumb, documented in rfc 3439 [3], is to use
250 ms times the link capacity, where 250 ms is
a reasonable upper bound on end-to-end roundtrip
time on the Internet. This recommendation implies
that the delay across a path in the network is the
propagation delay plus 250 ms for each bottleneck
link on the path. Large delays are undesirable for
several reasons, including degraded quality for real-
time traffic (e.g., voice over ip) and interactive traf-
fic (e.g., telnet sessions and multi-player games).
Large delays in the core network are particularly
undesirable, which is why most of the backbone

Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

TuA08.2

683

Window
control

Window Transmission
control

Rate
Internet

Acknowledgements
Observer

State
estimate

Figure 1: Window-based transmission control viewed as a cascaded control system: an inner loop based
on the ack-clock and an outer loop governed by a window controller. The focus of this paper is on the
analysis of the inner loop.

links in the Internet are highly over-provisioned.

1.1 Window-based transmission

control

The control structure for a traditional end-to-end
window-based transmission control is illustrated in
Figure 1. The controller consists of three blocks
denoted transmission control, window control and
observer. The transmission control sets the send-
ing rate indirectly based on the transmission win-
dow and the acknowledgement (ack) arrival pro-
cess. Recall that the transmission window is the
number of packets that are sent before waiting for
an ack. The window control sets the window size
based on state estimates, such as the loss rate, the
roundtrip time, the available bandwidth, and the
level of congestion. These estimates are provided
by the observer. Note that window-based transmis-
sion control has a cascaded control structure with
an inner and an outer loop. Such control structures
are common in many control applications and their
properties are fairly well understood.

The main control objectives of the window-based
transmission control are to avoid network conges-
tion, to maintain a high utilization of available
network resources, and to fairly share the avail-
able resources between users. It is also desirable to
maintain small bottleneck queues, and hence small
queueing delays, but this not achieved in the cur-
rent Internet. Let us discuss some of the proposals
in the literature to reduce the delays.

A simple approach to decrease queue delay is to
continue to operate the queues close to maximum
capacity, but significantly cut down the buffer sizes.
The rule of thumb in rfc 3439 [3] for buffer provi-
sioning is questioned in [1], where it is argued that
backbone routers should use buffers that are an or-

der of magnitude smaller than given by the rule of
thumb.

It has been pointed out that keeping the queue
size of bottleneck queues small can be seen as a
distributed control problem, and that control the-
ory provides some of the tools needed for designing
network and end-to-end mechanisms for this prob-
lem [5, 8]. A special case of this control problem
is illustrated in Figure 1. At a sending node, the
measurements available to the controller are the ar-
rival and timing of acknowledgements (acks). The
control signal is the sending rate, which is usually
controlled indirectly via the size of the transmis-
sion window. At a bottleneck router, the available
measurements are the queue size and the timing of
arriving packets. The possible control actions are
limited. The router can decide which packets to
drop. With active queue management (aqm), pack-
ets are dropped randomly, and the control signal is
the packet drop probability.

Explicit congestion notifications (ecn) provides
an explicit, though still severely limited, informa-
tion channel between routers and end nodes. ecn

provides a single mark bit per packet, shared by
all routers along the path, which can be used for
signalling back to the sending node. When aqm

is used, and packets are dropped even though the
queue is not full, setting the ecn bit is an attrac-
tive alternative to actually discarding the packets.
It seems that use of ecn is essential for achieving
good end-to-end quality with aqm [9].

tcp variants that try to control the queue sizes
by adjusting the congestion window based on rtt

measurements, without relying on ecn or aqm in-
side the network, are called delay-based conges-
tion avoidance algorithms (dca). tcp Vegas [2] and
fast tcp [16] are two well-known algorithms in
this class. In [10], it is argued that the correlation

684

between delay changes and losses is too weak for
delay-based congestion avoidance to be effective,
and that the control is severely disturbed by short-
term queue fluctuations.

1.2 ACK-clock

The tcp algorithms control the sending rate indi-
rectly, via the window size. The window size is the
number of packets that are sent, but which for no
ack has yet been seen. A new packets is transmit-
ted when an ack for the oldest outstanding packet
is received, which is referred to as the ack-clock:
The transmission of new packets is controlled or
“clocked” by the stream of received acks.

The original motivation for the ack-clock was
robustness in the presence of network congestion:

. . . the packet flow is what a physicist
would call ‘conservative’: A new packet
isn’t put into the network until an old
packet leaves. The physics of flow predicts
that systems with this property should be
robust in the face of congestion.

Jacobson [6]

The ack-clock has other useful properties, too. The
focus of this paper is to view the ack-clock as a
transmission control inner loop, as illustrated in
Figure 1, and analyze its stability properties.

The design of the outer loop, i.e., the window
adjustment mechanism, is the object of much of
the research in transport protocols. The ack-clock
is then often ignored:

These models do not adequately capture
the self-clocking effect where a packet is
sent only when an old one is acknowl-
edged, except briefly and immediately after
the congestion window is changed. This
automatically constrains the input rate at
a link to the link capacity, after a brief
transient, no matter how large the conges-
tion windows are set.

Wang et al. [16]

It is sometimes unfortunate not to consider the
ack-clock mechanism, especially, since it has sta-
bilizing properties in itself. The ack-clock oper-
ates at a per-packet time-scale and is therefore bet-
ter suited to handle short-term queue fluctuations,

than the outer-loop control that adjusts the win-
dow and operates at an rtt-timescale.

1.3 Contribution

The main contribution of this paper is a proof that
the inner loop of window-based congestion control
is globally asymptotically stable, with a local con-
vergence time constant smaller than four roundtrip
times. It is argued that when stabilizing the queue
sizes, we can gain better performance if we take ad-
vantage of the ack-clock inner loop, and divide the
work to be done between inner and outer loop in
an appropriate way. The inner loop should be re-
sponsible for stabilizing the queues. The outer loop,
working at a slower time scale, should be responsi-
ble for fairness and for adaptation to changes in the
network state. To illustrate this design paradigm,
the results of the paper are applied to the design of
a new outer loop control mechanism for mobile ter-
minal download. Information on radio bandwidth
and queue length available in the radio network
controller (rnc), close to the base station, is used
in a proxy that resides between the Internet and
the cellular system. The control algorithm in the
proxy is window-based and sets the window size
according to event-triggered information on radio
bandwidth changes and time-triggered information
on the queue length of the rnc. The properties of
this control scheme is analysed.

The rest of the paper is organized as follows. Sec-
tion 2 describes the fluid model for the system dy-
namics, and in Section 3 we show that it is a well-
posed model. The main stability result is proved in
Section 4, and a bound for the convergence time
constant is derived in Section 5. In Section 6 we
consider an application to mobile terminal down-
load, with explicit cross-layer communication be-
tween the tcp sender and the radio network con-
troller (rnc), which manages the wireless channel.
The rnc sends a radio network feedback (rnf)
message whenever the capacity of the channel is
changed, and the tcp sender uses this information
for feedforward control of the window size. Finally,
in Section 7, we summarize our results, and draw
some conclusions on how the control work should
be divided between inner and outer loop in general.

685

2 System model

As illustrated in Figure 1, the transmission control
consists of an inner loop, the ack-clock, and an
outer loop, which adjusts the window size based on
the estimated network state. In this and the next
few sections, we analyze the system behavior when
closing the inner loop. This closed-loop system has
the window size as the input signal, and the result-
ing queue size as the output signal.

We study a flow through the network, with a sin-
gle bottleneck on the path. The capacity of the bot-
tleneck link is denoted c, and the queue size q(t).
The forward and backward delays are denoted τf
and τb, where τf is the time it takes for a packet that
is transmitted by the sender to reach the queue at
the bottleneck link, and τb is the time it takes for a
packet that leaves the queue to reach the receiver,
and for the corresponding ack to travel back to
the sender. The end-to-end roundtrip time is thus
τf + q(t)/c + τb. We also define τ = τf + τb, which
simply is the roundtrip time excluding the queueing
delay at the bottleneck link.

2.1 Sending rate

The average sending rate is one window of data per
roundtrip time. In the fluid model, this leads to the
sending rate

r(t) =
w(t)

τ + q(t− τb)/c
(1)

There is an important simplification in this equa-
tion, besides the use of a fluid model: We assume
that an ack carries information about the queue
length at the time the corresponding packet left
the queue. This simplification gives constant time
delays. It may in some cases be more realistic to
assume that an ack carries information about the
queue length at the time the corresponding packet
arrived to the queue, but this case is not covered
in the paper.

2.2 Queue dynamics

The arrival rate at the queue is given by r(t− τf)+
rx(t). Here rx denotes the cross-traffic, i.e., all pack-
ets that arrive to the queue and which do not belong
to the flow under consideration. The queue evolves

according to

q̇(t) =

{

r(t− τf) + rx(t) − c q(t) > 0

max (0, r(t− τf) + rx(t) − c) q(t) = 0

(2)
where the derivative should be interpreted as the
right-hand derivative. To investigate the stability
when closing the inner loop, we assume that the
window size w and the cross-traffic rx(t) < c are
constant. Note that we can then replace c by c− rx
and rx by 0, without any loss of generality.

Substituting (1) into (2) yields

q̇(t) =

q∗ − q(t− τ)

τ + q(t− τ)/c
q(t) > 0

max

(

0,
q∗ − q(t− τ)

τ + q(t− τ)/c

)

q(t) = 0
(3)

where q∗ = w − τc. If w ≤ τc, then q̇ ≤ 0 for all
t, hence q(t) converges to some non-negative value.
This value must be the stationary point q = 0. In
the following, we assume that w > τc, and in this
case, q∗ is the equilibrium queue size.

3 Well-posedness

In this section we show that (3) is a well-posed
model, by showing existence and uniqueness of its
solutions.

Equation (3) is a delayed differential equation [4,
14]. The state of a system is the information needed
at a time t0, in order to predict the trajectory at
time t > t0. For a delay differential equation, the
state is infinite dimensional since we need to know
the complete trajectory over an interval to predict
its future. For the system (3), that interval is [t0 −
τ, t0]. The state vector is denoted qt(θ) and defined
by

qt(θ) = q(t+ θ) θ ∈ [−τ, 0] (4)

The initial state is denoted φ0, corresponding to
the initial condition q(t) = φ0(t), for t ∈ [−τ, 0].
We have the following well-posedness result.

Theorem 1 For any non-negative and right-hand
continuous function φ0 on [−τ, 0], there exists a
uniquely determined function q(t) such that q(t) =
φ0(t) for t ∈ [−τ, 0] and q(t) satisfies (3) for t ≥ 0.

686

Proof : The existence of a solution follows from the
“step method”, since the derivative in (3) are inter-
preted as the right-hand derivative. The solution on
any interval [kτ, (k+1)τ] is found by integrating (3)
over the previous interval. The non-negativity con-
straint makes the argument non-trivial, see Ap-
pendix A for details.

For uniqueness, assume that x and x̃ are distinct
functions, both satisfying (3) with the same initial
state φ0. Let k ≥ 0 be the smallest integer such that
x(t) 6= x̃(t) somewhere in the half-open interval
kτ < t ≤ (k+1)τ . Then, the derivatives of x and x̃
must differ for some s ∈ (kτ, t). It follows that x(s−
τ) 6= x̃(s − τ), contradicting the minimality of k.
�

The trajectory can also be uniquely extended
backwards in time, as long as the trajectory is
differentiable, non-zero, and with appropriately
bounded derivative. If q(t) > 0 and −c < q̇(t) <
q∗/τ , then

q(t− τ) =
q∗ − τ q̇(t)

1 + q̇(t)/c

When q(t) = 0, however, the past trajectory is not
uniquely determined.

4 Stability

The main result of the paper is the following sta-
bility result for the queue dynamics (3).

Theorem 2 For any non-negative and right-hand
continuous function φ0 on [−τ, 0], the solution
to (3), with initial condition q(t) = φ0(t) for t ∈
[−τ, 0], satisfies q(t) → q∗ as t→ ∞.

The proof of this result follows from the follow-
ing three lemmas, which are proved in Appendix.
First define S as the following bounded subset of
the state space:

S = {φ ∈ C1(−τ, 0);−c ≤ φ̇(θ) ≤ q∗/τ

φ(θ) ≥ 0, φ(0) ≤ 2q∗, θ ∈ (−τ, 0)} (5)

Lemma 1 (Invariance) The set S is invariant
under the differential equation (3), i.e.,

qT ∈ S =⇒ qt ∈ S, t ≥ T

Lemma 2 (Boundedness) For any initial state
φ0, there exists a finite time T such that for all
t ≥ T , qt ∈ S and q(t) > 0

Lemma 3 (Stability) If φ0 ∈ S and q(t) > 0 for
all t ≥ 0, then q(t) → q∗ as t→ ∞.

The proof of the theorem follows from that by
Lemma 2, there exists a T such that qT ∈ S and
q(t) > 0 for all t ≥ T . By Lemma 3, the initial state
qT then results in a trajectory that converges to q∗.

5 Convergence rate

When using cascade control, it is essential that
the inner loop is significantly faster than the outer
loop. This section derives an upper bound for the
time constant of the inner loop. It can be used
to aid the design of the window update mecha-
nism of the outer loop. The main result of the sec-
tion can be summarized as, for arbitrary capacities
and delays, transmission control based on the ack-
clock ensures that the sending rate and the bottle-
neck queue size converge within a small number of
roundtrip times.

We concentrate on the convergence rate for small
variations, using a linearization of the queue dy-
namics (3). Note that since the link serving the
queue is of finite capacity, we can not expect to have
exponential convergence for arbitrary large initial
values. For q(t) close to q∗, the denominator in (3)
can be approximated by the stationary value for
the roundtrip delay

τ∗ = τ + q∗/c

This leads to the linearized dynamics

q̇(t) = −
q(t− τ) − q∗

τ∗

For a simple feedback system consisting of an in-
tegrator, a proportional gain, and a delay, the
Nyquist criterion yields the stability condition that
gain × delay < π/2. In our case, this gives that

(1/τ∗)τ = τ/(τ + q∗/c) < 1

Note that this stability condition is satisfied for any
τ, q∗ > 0. Let

γ =
τ

τ∗
=

τc

τc+ q∗

687

so that 0 < γ < 1. The poles of the closed-loop
system are the solutions to the equation

sesτ +
1

τ∗
= 0

Let z = τs, and rewrite the equation as

zez + γ = 0 (6)

Since the system is stable, we know that Re z < 0
for all solutions to (6). Our next goal is to find a
bound λ such that all Re z ≤ −λ for all solutions.
Then all transients of the system are bounded by
the exponential Ce−λt/τ , which corresponds to that
the convergence time constant is at most τ/λ.

Assume that z = −x+ iy, x > 0, is a pole of the
system. Substitution into (6) yields

−x+ iy = z = −γe−z = −γexeiy (7)

First, we derive a bound for |y| in terms of x. We
have

|y| ≤ |z| = γex (8)

Assume that x ≤ log(π/(2γ)), so that both left and
right hand side of (8) lie in the interval [0, π/2],
where the cos function is decreasing. Now, consider
the real part of Equation (7),

x = γex cos y = γex cos |y| ≥ γex cos(γex) (9)

Define λ as the smallest positive solution to

x = γex cos(γex) (10)

To get a bound for x, note that (9) implies that
x ≥ λ, so we have the implication

x ≤ log(π/(2γ)) =⇒ x ≥ λ

It follows that x ≥ min(λ, log(π/(2γ))). However,
we also have that λ < log(π/(2γ)), since the right
hand side of (10) is zero for x = log(π/(2γ)). Hence,
x ≥ λ for every pole. Figure 2 shows λ as a function
of γ.

The bound on the real part of the poles, λ, trans-
lates to a lower bound τ/λ on the convergence
time constant. From numerical evaluation, we have
λ(γ) > 0.298 for all γ > 0.24, see Figure 2. This
bounds is equivalent to the bound q∗/c < 3.17τ on
the average queueing delay. With this bound on
the average queue size, the convergence time con-
stant is at most 3.35 τ .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Figure 2: The bound λ, as a function of γ.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

Figure 3: The bound µ, as a function of γ.

The time constant can also be expressed in terms
of the average roundtrip time τ∗. Put µ = λ/γ, then
µ is the smallest positive solution to

µ = eγµ cos(γeγµ) (11)

and the time constant is bounded by τ∗/µ. Figure 3
shows µ as a function of γ. We see that µ > 0.298
for all γ, which implies that that the convergence
time constant is at most 3.35 τ∗.

We summarize the results in the following theo-
rem.

Theorem 3 The linearized system corresponding
to (3) is stable, and has a convergence time con-
stant smaller than τ/λ, where τ is the roundtrip
time excluding the queueing delay at the bottleneck,

688

and λ is the smallest positive solution to

x = γex cos(γex) (12)

Furthermore, for all γ, the time constant is smaller
than 3.35 τ∗. The same bound also holds if the to-
tal roundtrip time τ∗ is replaced by τ , unless the
queueing delay is extreme (more than 3.17 τ).

Due to the simplifications in the fluid model, these
bounds need to be taken with a grain of salt. For
large queueing delays, e.g., γ = 0.3, we get µ > 1
and a time constant significantly smaller than the
roundtrip time. We would probably get a larger
time constant if we did not assume that acks carry
information about the queue state at the time they
leave the queue, as discussed in the beginning of
Section 2.1. On the other hand, in the case of no
cross-traffic, the sending rate and queue length con-
verges exactly in one roundtrip time, since the ack-
clock forces the sending rate to equal the link capac-
ity, with a single roundtrip delay and no interesting
dynamics. So in this case the flow model turns out
to be conservative.

For typical network paths, with a roundtrip time
of at most a few 100 ms, we can expect convergence
time on the order of 1 s. This can be compared to
the convergence time of proposed outer loops, such
as tcpwith aqm with a convergence time of 20–
60 s [5], and fast tcp with convergence times up
to several minutes [7].

6 Mobile terminal download

In this section, we apply the previous results to a
window control mechanism (i.e., transmission con-
trol outer loop) designed for download to a mobile
terminal. For further details as well as background
material, see [11, 12, 13].

The analysis of the preceding section shows that
for a fixed window size w, the sending rate and
the queue size will converge to stationary values. A
key question for window-based transmission control
is obviously what window size should we use. In
general, the appropriate window size is related to
the bandwidth–delay product. More precisely, the
ideal window size is

wideal = τcfair + qref

where cfair is the flow’s fair share of the capacity,
and qref is a small stationary queue size. It is the job

rnc Proxy

rnf messageVariable bandwidth

tcp tcp

Figure 4: Radio network feedback architecture. The
mobile terminal on the left downloads a file from
the server on the right, via the proxy. During the
transfer, the rnc generates rnf messages including
information about the current bandwidth over the
radio link, and the current rnc queue length. The
proxy uses this information to adjust its window
size.

of the outer loop and the network state estimator
to find a proper window size.

One application where the implementation of an
ideal window control is relatively easy , is for web
browsing and file download in a mobile terminal.
This system is illustrated in Figure 4. The wireless
link is the bottleneck of the path, and the time vary-
ing capacity of this link is under the supervision of
the radio network controller (rnc) associated with
the base station. The rnc can be configured to no-
tify the tcp sender, which is a web proxy within
the operator’s network, whenever the capacity of
the radio link changes. This signalling is called ra-
dio network feedback (rnf).

To improve performance, the standard tcp win-
dow control in the proxy is replaced by a special-
ized controller that takes advantage of the rnf sig-
nalling. With estimates ĉ and τ̂ of the capacity
and delay, the tcp sender uses the following event-
triggered feedforward control law for the window
size: w = τ̂ ĉ+ qref. By applying Theorems 2 and 3,
we have the following result.

Fact 1 When the window size is set to

w = τ̂ ĉ+ qref

the queue size converges to

q∗ = qref + τ̂ ĉ− τc

within a few roundtrip times.

We see that any error in the estimate of the
bandwidth–delay product leads to a control error.

689

To compensate for this error, we use a feedback con-
trol mechanism. The rnc periodically sends rnf

messages with the actual queue size. We use a sam-
pling time significantly larger than the roundtrip
time, e.g., one or a few seconds. The proxy con-
troller uses this information in the time-triggered
feedback control law:

wk+1 = wk + qref − qk+1

We now argue that this controller removes the con-
trol error. Assume w0 = τ̂ ĉ + qref was set by the
feedforward controller. If the sampling time is large
compared to the roundtrip time, then by Theo-
rem 3, the sampling time is also a couple of times
longer than the convergence time constant. We get

q1 ≈ w0 − τc Convergence

w1 = w0 + qref − q1 ≈ τc+ qref Feedback

q2 ≈ w1 − τc ≈ qref Convergence

where the final line says that the queue has con-
verged to the desired value. To summarize, the fol-
lowing fact holds.

Fact 2 If the sampling time is large compared to
the roundtrip time, then the feedback law wk+1 =
wk +qref−qk+1 almost eliminates the bias after two
sample periods.

Compared to end-to-end tcp, the rnf controller
improves both user response time, and radio link
utilization. The changes are localized to the rnc

and the proxy, which both reside in the operator’s
network. See [12, 13] for detailed evaluations of the
proposed scheme.

7 Conclusions

In this paper, we investigate the stability proper-
ties of the ack-clock, which is the inner loop in all
window-based transmission control schemes. This
inner loop is globally asymptotically stable. Fur-
thermore, the convergence time constant for the
corresponding linearized system is bounded by a
small number of roundtrip times. Further analysis
is needed to find out to which degree this stabil-
ity result can be generalized to networks with mul-
tiple window-controlled sources and multiple bot-
tlenecks. As an example outer loop, we consider a

radio network feedback architecture, where explicit
information about the bottleneck link is available
to the outer loop window controller.

We would like to revisit design of window control
and aqm mechanisms, leaving most of the queue
stabilization work to the inner loop. It is argued
that window control and aqm should not be de-
signed for queue stabilization, since that is taken
care of by the inner loop. They should be designed
to meet the other objectives: Fairness, and adap-
tation to changes in the network state such as ca-
pacity, delay, and cross traffic intensity; these fea-
tures all operate on a slower time scale than the
per-packet time scale of the inner loop.

There are a couple of drawbacks when using feed-
back control of an open-loop stable system. The
feedback can make the system unstable; we should
design the outer loop controller so that the sys-
tem either remains stable, or exhibits oscillations in
queue sizes and other state variables that are rea-
sonably small. Furthermore, the feedback will am-
plify disturbances, which can be expected to be a
major concern for transmission control, where cross
traffic induces stochastic queue variations that dis-
turb the system and the measurements.

Let us end with a discussion of fairness and
AQM. What information is needed in order to en-
sure fairness between tcp flows? It seems that we
must have some information about what our fair
share of the available bandwidth is (for some appro-
priate definition of fairness, e.g., proportional fair-
ness). For example, compare the case of a few large
cross-traffic flows, to the case of a large number of
smaller flows. The fair share per flow is quite dif-
ferent in these two cases, hence, to select the right
sending rate for our flow, we need to be able to dis-
tinguish between these cases. Estimating the fair
share from the ack timing alone seems non-trivial.

So how come that standard tcp with drop-tail
queues exhibits any fairness? The reason is the
packet loss signal. Bottleneck queues are full, and
hence drop packets. And among all the flows that
share a bottleneck link, the packet drops are dis-
tributed between flows in proportion to the size
of the flows. Note that tcps response, multiplica-
tive decrease, is not proportional to the packet loss
probability, which is equal for all flows, but rather
it is related to the packet loss frequency.

Assume that some improved congestion control
mechanism achieves the goal of maintaining small

690

bottleneck queues, without packet losses. Then the
packet loss signal, which is directly related to rela-
tive flow size, is no longer available, and the control
must work with ack timing alone. This makes fair-
ness a more challenging problem. One motivation
for the use of aqm is that it reintroduces a signal,
the ecn marks, which is proportional to flow size.

References

[1] G. Appenzeller, I. Keslassy, and N. McKeown.
Sizing router buffers. In SIGCOMM, Portland,
September 2004. ASM.

[2] L. S. Brakmo and L. L. Peterson. TCP Vegas:
end-to-end congestion avoidance on a global
Internet. IEEE Journal on Selected Areas in
Communications, 13(8):1465–1480, 1995.

[3] R. Bush and D. Meyer. Some internet archi-
tectural guidelines and philosophy. RFC 3439,
December 2002.

[4] J. K. Hale and S. M. V. Lunel. Introduction
to functional differential equations. Springer-
Verlag, 1993.

[5] C. Hollot, V. Mistra, D. Towsley, and W. B.
Gong. A control theoretic analysis of red. In
IEEE Infocom 2001, 2001.

[6] V. Jacobson. Congestion avoidance and con-
trol. ACM Computer Communication Review,
18:314–329, 1988.

[7] C. Jin, D. X. Wei, and S. H. Low. FAST TCP:
motivation, architecture, algorithms, perfor-
mance. In Proceedings of IEEE Infocom.
IEEE, March 2004.

[8] F. P. Kelly, A. K. Maulloo, and D. K. H.
Tan. Rate control in communication networks:
shadow prices, proportional fairness and sta-
bility. Journal of Operational Research Soci-
ety, 49:237–252, 1998.

[9] L. Le, J. Aikat, K. Jeffay, and F. D. Smith. The
effects of active queue management on Web
performance. In SIGCOMM, volume 33 of
Computer Communication Review, pages 265–
276, Karlsruhe, October 2003. ACM.

[10] Jim Martin, Arne Nilsson, and Injong Rhee.
Delay-based congestion avoidance for tcp.
IEEE/ACM Trans. Netw., 11(3):356–369,
2003.

[11] I. Cabrera Molero, N. Möller, J. Petersson,
Å. Arvidsson R. Skog, O. Flärdh, and K. H.
Johansson. Cross-layer adaptation for TCP-
based applications in WCDMA systems. In
IST Mobile & Wireless Communications Sum-
mit, Dresden, 2005.

[12] N. Möller, I. Cabrera Molero, K. H. Johans-
son, J. Petersson, and Å. Arvidsson R. Skog.
Using radio network feedback to improve TCP
performance over cellular networks. In IEEE
Conference on Decision and Control and Euro-
pean Control Conference, Seville, 2005. IEEE
CSS.

[13] Niels Möller. Automatic control in TCP over
wireless. KTH Licentiate Thesis, September
2005.

[14] S.-I. Niculescu. Delay effects on stability, vol-
ume 269 of Lecture notes in control and infor-
mation sciences. Springer, 2001.

[15] M. Vidyasagar. Nonlinear systems analysis.
Prentice-Hall, second edition, 1993.

[16] J. Wang, D. X. Wei, and S. H. Low. Modelling
and stability of FAST TCP. In Proceedings of
IEEE Infocom, Miami, March 2005. IEEE.

A Existence argument

Assume that f is continuous, and φ0, defined on
[−1, 0], is non-negative and right-hand continuous.1

Consider the equation

x(t) = φ0(t) for −1 ≤ t ≤ 0 (13)

ẋ(t) = f(x(t− 1)) if x(t) > 0 (14)

ẋ(t) = max(0, f(x(t− 1))) if x(t) = 0 (15)

1In the proof, the continuity of φ0 is not used in the con-
struction of x(t), only for proving that the constructed func-
tion actually is a solution. The results can be extended to an
arbitrary non-negative, measurable and essentially bounded
initial state φ0, if the notion of a “solution” is generalized
appropriately.

691

Equation (3) is of this form. The time derivatives
should be interpreted as right-hand derivatives.

It is sufficient to show that there exists a solution
for 0 ≤ t ≤ 1, satisfying the same requirements as
φ0; then existence for all t ≥ 0 follows by induction.
Define

ψ(t) = φ0(0) +

∫ t

0

f(φ0(s− 1))ds

for t ∈ [0, 1]. If ψ is non-negative, we can set x(t) =
ψ(t) for t ∈ [0, 1], but in the general case, we have
to modify it via the following construction.

Let c = sups |f(φ0(s))|, and define the set A as
the set of all functions z ∈ C(0, 1) such that

1. z(t) ≥ 0 for t ∈ [0, 1], with equality for t = 0.

2. 0 ≤ s ≤ t ≤ 1 =⇒ z(s) ≤ z(t).

3. z(t) + ψ(t) ≥ 0 for t ∈ [0, 1].

4. |z(s) − z(t)| ≤ c|s− t| for all s, t ∈ [0, 1].

The set is non-empty, since
∫ t

0
|f(φ0(s−1))|ds ∈ A,

and the functions in A are bounded below by zero.
Define

Z(t) = inf
z∈A

z(t)

Requirement 4 implies that Z(t) is continuous. De-
fine

x(t) = Z(t) + ψ(t)

Next, we verify that this x(t) is a solution to the dif-
ferential equation. Let t ∈ [0, 1] be arbitrary. There
are two cases, depending on whether or not the non-
negativity constraint is active or not at this point.

Active In this case x(t) = 0 and ψ̇(t) = f(φ0(t −
1)) < 0. It follows that for some interval [t, t+
ǫ], ψ is decreasing. Then, on this interval, Z is
increasing, and it follows from the minimality
of Z that x is identical zero. Hence the right-
hand derivative satisfies ẋ(t) = 0.

Not active In this case, either x(t) > 0 or ψ̇(t) =
f(φ0(t−1)) ≥ 0. Then it follows from the con-
tinuity properties of x, f and φ0, and the mini-
mality of Z, that Z is constant in some interval
[t, t+ ǫ]. Hence the right hand derivatives sat-
isfy Ż(t) = 0 and ẋ(t) = ψ̇(t) = f(φ0(t− 1)).

In both cases, x satisfies the differential equation at
the point t, and since t was arbitrary, it is a solution
on the interval [0, 1], as required.

Note that the construction in this proof avoids
enumerating the intervals where x(t) is zero, since
they may be infinitely many. For example, con-
sider a solution of the form x(t) = (max(0, (t −
1/2)2 sin(1/(t− 1/2))))2, which is continuously dif-
ferentiable, but is zero on infinitely many intervals
accumulating at t = 1/2.

B Proof of Lemma 1

It is sufficient to show that xt ∈ S for t ∈ [0, τ];
then the result follows by induction. The main idea
of the proof is to use bounds on the derivative q̇.
For all t ∈ [0, τ] we have

q̇(t) ≤ max

(

0,
q∗ − q(t− τ)

τ + q(t− τ)/c

)

≤
q∗

τ
(16)

q̇(t) ≥
q∗ − q(t− τ)

τ + q(t− τ)/c
≥ −c (17)

Hence, xt satisfies the φ̇ bounds in (5) for all t.
These bounds imply that

q(0) − tc ≤ q(t) ≤ q(0) + tq∗/τ (18)

for all t ∈ [0, τ]. Since q0 ∈ S, similar inequalities
hold also for t ∈ [−τ, 0]; in this interval we get

q(0) + tq∗/τ ≤ q(t) ≤ q(0) − tc (19)

Next, we show that q(0) ≤ 2q∗ implies that q(t) ≤
2q∗ for t ∈ [0, τ]. If q(0) ≤ q∗, this follows directly
from (18). So assume q(0) = (1 + α)q∗, with 0 <
α ≤ 1. The bound (19) implies that q(t) > 0 for
t ∈ [−τ, 0]. Then for t ∈ [0, τ], we have

q(t) = q(0) +

∫ t

0

q̇(s)ds

= (1 + α)q∗ +

∫ t

0

q∗ − q(s− τ)

τ + q(s− τ)/c
ds

(20)

Using (19) again, q(s− τ) ≥ q(0) + (s− τ)q∗/τ =
(α + s/τ)q∗. Inserting this expression into the nu-
merator of the integrand, and replacing the integra-
tion interval by the subset where the new integrand

692

is positive, we find

q(t) ≤ (1 + α)q∗ + q∗
∫ t

0

1 − α− s/τ

τ + q(s− τ)/c
ds

≤ (1 + α)q∗ + q∗
∫ (1−α)τ

0

1 − α− s/τ

τ + q(s− τ)/c
ds

≤ (1 + α)q∗ + q∗
∫ (1−α)τ

0

1 − α− s/τ

τ
ds

= q∗(1 + α+ (1 − α)2/2)

= q∗(3/2 + α2/2) ≤ 2q∗

(21)
This concludes the proof that the set S is invariant.

C Proof of Lemma 2

Like in the proof for the previous lemma, the φ̇
bounds in (5) are satisfied for all t ≥ 0, so it re-
mains to find a T such that 0 < q(t) ≤ 2q∗ for
all t ≥ T . We handle the upper and lower limit
separately, resulting in times Tu and Tl, and then
T = max(Tu, Tl).
Upper bound: If t ≥ τ and q(t) ≥ 2q∗, then (16)
implies that q(t) ≥ q∗ for t ∈ [t − τ, t], and hence
q̇(t) ≤ 0. If q(t) ≥ 2q∗ for all t ≥ τ , then q(t) would
be decreasing and bounded below by 2q∗, hence
converging to some limit no smaller than 2q∗. But
that is impossible, since q∗ is the only stationary
point.

Therefore there is some finite Tu ≥ τ such that
q(Tu) ≤ 2q∗. By Lemma 1, then xt ∈ S for all
t ≥ Tu.
Lower bound: Fix the initial condition φ0. Then
either q(t) > 0 for all t ≥ 0, so we can take Tl = 0
and there is nothing to prove. Or there is some
minimum t0 ≥ 0 such that q(t0) = 0.

Then since q̇(t) ≤ q∗/τ , we have 0 ≤ q(t) ≤ q∗

for t ∈ [t0, t0 + τ]. Assume for the moment that
there are infinitely many points tk, k ≥ 1, such that
tk > t0 and q(tk) = 0. We can order the points so
that tk < tk+1.

Since q(t) − q∗ changes sign at tk, q̇(t) changes
sign at tk + τ . It follows that the points are sepa-
rated by at least τ . For all k = 0, 1, 2, . . ., we have
tk+1 > tk + τ and

q(t) < q∗ for t2n < t < t2n+1, n = 0, 1, 2, . . .

q(t) > q∗ for t2n−1 < t < t2n, n = 1, 2, 3 . . .

This separation makes it straight-forward to bound
the sequence of extreme values.

First consider the intervals [t2n−1, t2n], n =
1, 2, 3, . . . where q(t) ≥ q∗. The maximum is at-
tained where q̇ changes sign, at q(t2n−1 + τ). The
bound (16) implies

q(t2n−1 + s− τ) ≥ q∗ + (s− τ)
q∗

τ
= s

q∗

τ
(22)

and

q(t2n−1 + τ) = q∗ +

∫ τ

0

q̇(t2n−1 + s)ds

= q∗ +

∫ τ

0

q∗ − q(t2n−1 + s− τ)

τ + q(t2n−1 + s− τ)/c
ds

≤ q∗ +

∫ τ

0

q∗ − sq∗/τ

τ
ds

= q∗ +
q∗

τ

∫ τ

0

(1 − s/τ)ds

=
3

2
q∗

(23)
This shows that q(t) ≤ 3q∗/2 for all t ≥ t0. From
this, we also get an improved lower bound. Consider
the interval [t2n, t2n+1], for n = 1, 2, 3, . . ., where
q(t) ≤ q∗. From (23) we get q(t2n + s− t) ≤ 3q∗/2,
and

q(t2n + τ) = q∗ +

∫ τ

0

q̇(t2n + s)ds

= q∗ +

∫ τ

0

q∗ − q(t2n + s− τ)

τ + q(t2n + s− τ)/c
ds

≥ q∗ +

∫ τ

0

q∗ − 3q∗/2

τ + q(t2n + s− τ)/c
ds

= q∗ −
q∗

2

∫ τ

0

1

τ + q(t2n + s− τ)/c
ds

≥ q∗ −
q∗

2

∫ τ

0

1

τ
ds

=
q∗

2
(24)

It follows that q(t) ∈ [q∗/2, 3q∗/2] for all t ≥ t1,
and we can take Tu = t1.

Finally, consider the case that there is no infinite
sequence of points tk where the trajectory intersects
q∗. Then, let tN be the final intersection (or tN = t0
if there are no intersections at all). Then for t >
tN + τ , the trajectory is either non-decreasing and
below q∗, or non-increasing and above q∗. In either
case, take T = tN + τ .

693

D Proof of Lemma 3

We use the circle criterion to prove asymptotic sta-
bility under the additional assumption that the tra-
jectory satisfies 0 < q(t) ≤ 2q∗, which is guaranteed
by Lemma 2. We first make a change of variables

x(t) = (q(tτ) − q∗)/(τc+ q∗) (25)

which transforms Equation (3) to

ẋ(t) = −γ
x(t− 1)

1 + x(t− 1)
(26)

where γ = τc/(τc+q∗) < 1. The assumption q(t) >
0 translates to x > γ − 1 and the upper bound
q(t) ≤ 2q∗ translates to x(t) ≤ 1 − γ.

Equation (26) can be decomposed as a linear sys-
tem with a static non-linear feedback ψ(x).

ẋ(t) = −γx(t− 1) − γu(t) (27)

u(t) = ψ(x(t− 1)) (28)

ψ(x) = −
x2

1 + x
(29)

The transfer function for the linear system with
u(t) as input and x(t− 1) as output is

G(s) =
γ

γ + ses

which is obviously stable, cf., Section 5.
For |x| ≤ 1 − γ, the non-linearity ψ satisfies the

sector inequalities

αx2 ≤ xψ(x) ≤ βx2 (30)

with

α = −
1 − γ

2 − γ
β =

1 − γ

γ
(31)

Let D(a, b) denote the circle in the complex plane,
centered on the real axis, which intersects the real
axis at a and b. According to the circle criterion, a
sufficient condition for stability of the feedback sys-
tem is that the Nyquist curve G(iω) stays inside the
circle D(−1/β,−1/α), with a positive margin [15].
In our case, the circle is

D(−γ/(1 − γ), (2 − γ)/(1 − γ))

with center at 1 and radius r = 1/(1 − γ) > 1.

To see that the Nyquist curve is inside this circle,
with a positive margin, first consider the smaller
circle D(1 − r, 1), which is tangent to the original
circle at 1− r, and tangent to the Nyquist curve at
1. Define a linear fractional transformation which
maps D(1−r, 1) onto the unit circle, and the origin
onto itself:

h(z) =
z

(1 − 2γ)z + 2γ
(32)

Compute the image of the Nyquist curve under h,
h(G(iω)),

h(G(iω)) =
γ

(1 − 2γ)γ + 2γ(γ + iωeiω)

=
1

1 + 2iωeiω

|h(G(iω))|2 =
1

|1 + 2iωeiω|2

=
1

1 + 4ω2 − 4ω sinω
≤ 1

where the final inequality follows from | sinω| ≤
|ω|. We also see that the curve touches the unit
circle only when ω = 0. Hence, the Nyquist curve
is inside D(1 − r, 1), getting close only at 1 (for
ω = 0), and it follows that the Nyquist curve is
inside D(1 − r, 1 + r) with a positive margin.

694

	Main Menu
	Symposium Overview
	Program at a Glance
	Session Index
	Author Index

