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Abstract—Distributed estimators for sensor networks are dis- with conditions that can be checked locally. It is argued
cussed. The considered problem is on how to track a noisy time- that the estimator is practically stable if the signal tcckra
varying signal jointly with a network of sensor nodes. We present is slowly varying, so the estimate of each node converges

a recent scheme in which each node computes its estimate a g . ) .
a weighted sum of its own and its neighbors’ measurementssto a neighborhood of the signal to track. The estimate in

and estimates. The weights are adaptively updated to minimize e?ICh node has consequently a small Varia_nce and a Sma”
the variance of the estimation error. Theoretical and practical bias. A bound on the estimation error variance, which is

properties of the algorithm are illustrated. The results provide |inear in the measurement noise variance and decays with
a tool to trade-off communication constraints, computing effots  ha number of neighboring nodes, is presented. The algorith
and estimation quality. . . ’ )
is thus characterized by a trade-off between the amount of
I. INTRODUCTION communication and the resulting estimation quality. Coraga
0 similar distributed algorithms in the literature, theeon

A wireless sensor network (WSN) is a network of aut s * X
tonomous devices that can sense their environment, m&ugsented in this paper gives better estimates, but to titeoto
increased computational complexity. This is illustiate

computations and communicate over radio with neighbori X s . . X "
devices. WSNs have a growing domain of application in are implementation discussion and the computer simulgiion
the latter part of the paper. An extended version of the atirre

such as environmental monitoring, industrial automatiioi|- ) . . .
ligent buildings, search and surveillance, and publicspanta- paper with proofs and further discussion has been submitted

tion [L]-[3]. Today they are mostly used for monitoring an%orjournal publication [6]. Early versions of the resuleeq7],
diagnosis, but their potential capability goes beyond ivate o ) L )

they can provide real-time information for closed-loop ttoh Distributed signal processing is avery active resear_cb are
systems [4], [5]. The characteristics of WSNs motivate tH\jeue to the recent developments in wireless networking and

development of new classes of distributed estimation and cgomputer and sensor technologies. The estimator presented

trol algorithms, which explore these systems’ limited pDWeth|s paper has two particular characteristics: it does abt r

computing and communication capabilities. It is importiuait on a model Qf the §|gn¢'I;1I to track, and its f}lter. coeff|C|Ients
the algorithms have tuning parameters that can be adjusfé§ time varying. Itis related to recent contributions ow-lo

according to the demands set by the applications. In tff@ss filtering by diffusion mechanisms, e.g., [7]-{14]. Ma
paper, we investigate such a distributed estimation atyari these papers focus on diffusion mechanisms to have each node

for tracking an unknown time-varying physical variable. of the network obtaining the average of the initial sampibs 0
The main contribution of this paper is a novel distributeH1e nt_atwork nodes. Major progress h.as been made in under-
minimum variance estimator. A noisy time-varying signal istanding how the convergence behavior of these consensus or

jointly tracked by a WSN, in which each node COmput‘:gtate-agreement problems. It is not straightforward taycar

an estimate as a weighted sum of its own and its neight®’ this work to the problem of tracking a time-varying
bors' measurements and estimates. The filter weights atdnal ?n.attimptds made in [12], }(\;herg a schemde for o
time varying and updated locally. The filter has a cascagghso' fusion based on a consensus filter is proposed. Eac
structure with an inner loop producing the state estimadkssn node computes a local weighted least-squares estimatéiand t

outer loop producing an estimate of the error covariance. TﬁUthorS show it converges to the maximum-likelihood sofuti

state estimate is obtained as the solution of an optimizati®’ the overall network. An extension of this approach is
problem with quadratic cost function and quadratic constsa Presented in [15], where the authors study a distributethgee
We show that the problem has a distributed implementatiG@MPutation of a time-varying signal, when the signal is
affected by a zero-mean noise. A convex optimization proble
The work by A. Speranzon was partially supported by the EemopCom- iS posed to derive the edge weights, which each node uses to
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system is coupled to some of the other nodes by a statie denote the identity matrix and the vectfr,..., 1)7,

coupling function. Some conditions on the coupling funetiorespectively. Given a stochastic variahleve denote bylE x

that lead to state synchronization asymptotically is itigased its expected value. In order to keep light the notation, we

in [20]. disregard the time dependence when it is clear from the
Distributed filtering using model-based approaches aid sticontext.

ied in various wireless network contexts, e.g., [21]-[25].

One possible approach is using distributed Kalman filters.

More recently there are attempts to mix the diffusion mecha-

nism, discussed previously, with distributed Kalman fiftgr In this section we state the problem and we derive central-

€9 [13], [ZfG]H AI pla:i'blle app;_rloach IS ;O rtlzommunlcate :ﬁed conditions under which the estimation error converges
estimates of the local Kaiman filters, and then average &g heny pose a centralized optimization problem that yields

values using a diffusion strategy. weights for minimum variance estimation. The centralized

Let us briefly summarize .the originality of our approaclgase is instructive for the design of the distributed estima
compared to the literature. First, note that our estimatakss

a time-varying signal, while [10]-[12] are limited to avgiag
initial samples. Our approach does not require a model of the Problem Formulation

system that generates the signal to track, in contrast teemod ConsiderN > 1 sensor nodes placed in random and static
based approaches, e.g., [13], [25]. We do not impose a pre- ! - P ! :

assigned coupling law among the nodes as in [20]. Compalfi)a%s'tlonS on the space. We assume that e:_;u_:h nod_e measures a
to [12]-[14], we do not rely on the Laplacian matrix asscaiat common scalar signal(t) corrupted by additive noise:

to the communication graph, but consider a more general
model of the filter structure. Moreover, our filter paramster

are computed through distributed algorithms, whereas for

example [15] and [16] rely on centralized algorithms folith ¢ € No and wherev;(?) is zero-mean white noise. Let us
ments and noise variables in vectany, =

designing the filters. Note that in the early versions of o(P!léct measure
contribution [7], [8], we extended the algorithms in [12]—(“1(t)""’“{V(t))T andv(t) = (”1(_’5)’""'UN(’5))T’ so that
[14] by designing the filter weights such that the variance §f¢ Can rewrite the previous equation as
the estimation errors is minimized. In the current paper, we
improve the filter design considerably and the performance u(t) =d(t) 1 +o(t), teNo.
limit of the filter is characterized. . . _ _
The outline of the paper is as follows. Section Il presentd'® covariance matrix ob(t) is supposed to be diagonal
the distributed estimation problem considered througfibet > = o>, S0 vi(t) and v;(t), for i # j, are uncorrelated.

paper. A centralized minimum variance optimization prable The additive noise, in each node, can be averaged out only if
is given and its solution is characterized. The distributd?Pd€S communicate measurements or estimates. Note that the

estimator design is discussed in Section Ill. A distributegPmmunication rate of the measurements and estimatestshoul

minimum variance optimization problem is given and it§€ just fast enough to track the variationsdgf). Indeed, in-
relation to the centralized problem is indicated. By restri céasing the sampling rate, in general, is not beneficiad e
ing the set of admissible filter weights, it is possible t§easurements might then be affected by auto-correlatesg noi
obtain a completely distributed solution, where convecgen It is convenient to model the communication network as an
is guaranteed. A bound on the estimation error variance Ygdirected graply = (V,&), whereV = {1,..., N} is the
computed. The latter part of Section Il discusses estinativertex set an& C V x V the edge set. We will assume that
of the error covariance. Section IV presents the detail of tif (i,7) € £ then(j,i) € £, namely the graph is undirected.
implementation of the estimation algorithm. Numericaufess The graphg is said to be connected if there is a sequence of
illustrating the performance of the proposed estimator agglges in€ that can be traversed to go from any vertex to any
comparing it to some related proposals are also given. lijinaPther vertex.

Il. PRELIMINARIES

wit) = d(t) +vi(t), i=1,...,N,

Section V concludes the paper. In the following we will denote the set of neighbors of
Notation:: We denote the non-negative integelyy = nodei € V plus the node itself as

{0,1,2,...}. With | - | we denote either the absolute value

or the cardinality, depending on the context. With || we Ni={jeV:(i)e&u{(i}.

denote the/?-norm of a vector and the spectral norm of a

matrix. Given a matrixA € R"*", we denote with\,(A), The estimation algorithm we propose is such that a node
1 < r < n, its r-th eigenvalue, withAnin(A) = Ai(A) computes an estimate (¢) of d(t) by taking a linear combi-
and Apax(A) = An(A) being the minimum and maximum nation of neighboring estimates and measures

eigenvalue, respectively, where the order is taken witheets

to the real part. We refer to its largest singular value as zi(t) = Z kij(t)x;(t—1) + Z hij(tui(t).  (11.1)
Ymax(A). The trace ofA is denotedtr A. With I and 1 JEN: JEN;



We assume that neighboring estimates and measures arePabposition 2.1(i) provides the conditiali(¢) 1 = 1 under
ways successfully received, i.e., there are no packetddsse which the estimate is unbiased. It is possible to show that in
We assume that for each noélehe algorithm is initialized this case the variance is minimizedAf(¢) = 0 and

with 2;(0) = »;(0), j € N;. In vector notation, we have )

x(t) = K(t)z(t — 1) + H(t)u(t). (1.2) By (t) = hya(t) = Mm”jEM

Note that the matriced((¢) and H(t) can be interpreted 0 otherwise

as the adjacency matrices of two graphs with time-varyin

weights. These graphs are compatible with the underlyif¥ipte that nodes do not use any memory and that the error

communication network representgl We denote this as variance a}t eac_h node is pro_portlonal to its naghborhoz@ Si

K(t)~G andH(t) ~ G. However, _|f'd(t) is s.I.ovv.Iy. varying, then, under the assumptions
Given a WSN modelled as a connected grahhwe have of Proposmon_ 2.1(ii), it is possible to guarantee trm e®)|l _

the following design problem: find time-varying matrick§t) tends_ to a neighborhood of the origin, but the estl_mate might

and H(t), compatible withG, such that the signal(¢) is P€ biased. Note also thatEe()| has the meaning of a

consistently estimated and the variance of the estimateCidnulative bias, in the sense that it is a function of the sum

minimized. Moreover, the solution should be distributed iR’ the &V biases of individual nodes.

the sense that the computation/ef () and h;;(t) should be The size of the cumulative bias can be kept small with
performed locally by node. respect to the signal to track by defining a proper value of

~0- In particular, Equation (11.7) can be related to the Signal
B. Conyergence of the Estimation Error in the Centralizeg)-Noise Ratio (SNR) of the average of the estimate in an
Scenario intuitive way as follows. LetP; denote the average power of
Here we derive conditions oR (t) and H (¢) that guarantee d and let P, denote the desired power of the biases of the
the estimation error to converge. Define the estimationrerraverage of the estimates. Then, we define the desired SNR
e(t) = z(t) —d(t) 1. Introduced(t) = d(t) — d(t — 1), so that as SNR= P;/P,. Since there aré&V nodes, we consider the
the error dynamics can be described as average SNR of each node ds= SNR/N. Let us assume
_ _ _ that we want the estimator to guarantee that the right-hand
e(t) = Kt)elt — 1) +dO)(K () + H(t) - D1 (11.3) side of Equation (11.7) is equal to this desirgBNR. This is
— MK T + H(t)(t) . equivalent to that
Taking the expected value with respect to the stochastic VT
variablewv(t), we obtain 70 = Nod N

Be(t) = K(t)Be(t —1) +d(t)(K(t) + H(t) - ) 1 The right-hand side is useful in the tuning of the estimator,
— K@) L. we denote it asf(A, T). By choosing an appropriaté, we
(14)  have a guaranteed convergence property of the estimatm giv
by the corresponding’(A, T). This function is particularly
“useful, since in next sections it will allow us to relate tliees

We have the following result.
Proposition 2.1: Consider the system Equation (11.3). As

sume that of the bias of estimates with the variations of the signal to
(K@) +Ht)1 =1, (1.5)  track, and the stability of the estimates.
and that there exists < 4o < 1 such that C. Centralized Variance Minimization
Ymax (K (t)) <0 (1.6) We show in this subsection how we can determine the
for all t € IN,. matrices K (t) and H(t) so that the bias is kept small and
() If H{#)1 = 1, for all t € Ny, then the variance minimized. The error covariance matrix is igive
1 L by
lim Ee(t)=0.
e P(t) = E(e(t) - Be(t))(e(t) — Ee(t)” .
(i) If |6(¢)] < A, for all t € Ny, then
JNA Using the error update Equation (11.3), we have that the
lim |[Ee(t)| < 1770 (11.7) covariance is updated according to
t—+o0 —

P(t) = K({t)P(t — VK ()" + > H(t)H(t)" 1.8
1This assumption is motivated by the fact that we assume the refso ( ) ( ) ( ) ( ) to ( ) ( ) ’ ( )
static, that appropriate channel and source coding aréeapind there is an .
Automatic Repeat Request (ARQ) protocol. These are natasainaptions in where W_e use_ the fact tha(t - 1) a}ndu(t) are mdependent
many WSN applications. Note that we implicitly assume that thepgiag ~ stochastic variables. We want to fidd(¢) and H (¢) so that,

time between measures is long relative to the coherence tinteeakireless given the covariance matrik’(t _ 1) the covarianceP(t) is
channel coefficients, so there is enough time to detect arahshit erroneous ’

packets until they are successfully received. More details given in mm'm'zed- We consider the trace at(t) as a measure of
Section 1II. the size of P(¢). It represents a cumulative error variance,



namely, the sum of the error variance at each node. We h&ienilarly, we introduce vectors? (t),n! (t) € R™: corre-

the following optimization problem sponding to the non-zero elements of révof the matrices
) ) K(t) and H(t), respectively, and ordered according to node
Py K H () tr(K@PE-1K®HT) (1.9 indices. The expected value of the estimation error at node
+ 02‘51"( ( )H(t)T) can be written as
st. (K@)+H@)1 =1, Eei(t) =rl () Be(t—1) — sl (t)6(t) 1, (1n.1)
Tmax (K (1)) < f(A,T), where we used the fact thak(t) — d(t — 1) = 46(¢) and
Kit)~G, H(t)~g. that (K(t) + H(t))1 = 1. Note that the latter inequality

is equivalent to thatx;(t) +7;(t))" 1 = 1. We will assume

Notice that the objective function is quadratic Ki(¢) and that e;(0) — wu;(0). It follows that

H(t) for a given P(t — 1). The first constraint is the linear
matrix equality (11.5). The second constraint, which emsur T (e;(t) — Ee;(t))? = ] ()T (t — 1)ri(t) + o?nl (t)ni(t),

that the expected value of the estimation error converges t T

a neighborhood of zero, can be written as a linear matrWBe,re_Fi(t) = E(a(t) - Ee(t)(a(t) — Ee(?))". To
inequality using Schur complement [27]. The last two corlinimize the variance of the estimation error in each node,
straints, impose the structure of the matridést) and H (¢) we neeq to detgr_ml'ne;i(t) and m(.ﬁ ) S0 that the previous

to be compatible with the grap®. expression is minimized at each time instance. We have the

The cost function of problen; may suggest that it is following optimization problem:

possible to distribute the optimization by letting each @od p, . min kL (OT;(t — 1)ki(t) + o0 (£)n:(t)

minimize its own error variance. This approach is impossibl i (£),mi (t)

however, because the nodes are coupled through the global (111.2)

constraints (K (¢) + H(t))1 = 1 and~v(K(t)) < 7. s.t. (ki) +m(tNT1 =1, (1.3)
Although the optimization problerf®; can conceptually be Ymax (K (1)) < F(A,T). (111.4)

solved using standard numerical optimization tools, iadie
requires a powerful central node collecting data, comgutiiNote that the inequality constraint (1Il.4) is still globads
new weights, and dispatching them back to the nodes. Thérex (K (t)) depends on alk;(t), i = 1,...,N. We show
could also be large delays (due to multi-hop routing of dafteXt that it can be replaced by the local constraint

from nodes to t_he ce_ntral unit), and large power consumplion k()| < tps, teNg, (1n.5)
beside the typical disadvantage that centralized solsitame

not fault tolerant. where); > 0 is a constant that can be computed locally.

In the following sections, we propose a fully decentralized Fori = 1,..., N, let us define the seb; = {j # i :
solution, where each node computes its weights minimizing; NN; # 0}, which is the collection of nodes located at two
the variance of its estimate. hops distance from nodeplus neighbor nodes af We have
the following result.

Proposition 3.1: Suppose there exist;, > 0,i=1,..., N,

In this section we describe how each node computes adgpeh that
tive weights to minimize its estimation error variance.rtg
from the centralized probler®;, we first show that we can ¥ + /i Z ” EJJ)% < (A7), (11.6)
transform the global constraints into distributed onese Th J€O;:
constraint(K (t)+H(t)) 1 = 1 is easily handled. It turns out (%) (])
that the constrainty,..(K(t)) < f(A, T) can be translated wherea, ;, a;; € (0,1) are such that
into a set of constraints of the ty@ en, ki < i, wherey; e ( )
is a constant that can be computed Iocally by the nodes. Usmgz k2. < aj Z K, Z kfa <a’ Z K, -
these new constraints, we pose a optimization problem fe;nn; cEN;NN;
finding optimal filter weights that minimize the error varian 9 .
in each node. A complication is that the weights depend on tHe”Ki P < vii =1, N, thenmax (K(#)) < f(A,T).
error covariance matrix, which is not available at each node
We end this section by discussing a way of estimating it.

IIl. DISTRIBUTED ESTIMATOR DESIGN

Proposition 3.1 provides a simple local condition on the
filter coefficients such thaty,..(K) < f(A,T). We can

A. Distributed Variance Minimization expect that Proposition 3.1 is in general conservative, be-
Let M, — ||, which denotes the number of neighbors ofause no a—priori knowledg]e of the network topology is used,

nodes, including the node itself. Collect the estimation errorg1e proof .relles on the Gggorin theorem and the Cauchy-
available at nodé in the vectore; € RM:. The elements of _chwartz inequality. There_ are many other ways to bount_:l the
¢; are ordered according to the node indices: eigenvalues of a matrix by its elements than the one usecin th
proof above, e.g., [28, pages 378-389]. However, we do not

€ = (€i17--~76m)T, i << - know of any other bounds requiring only local information,



useful for distributed implementation. Note also that Besr w;(t). The bound is obviously rather conservative, since we
Frobenius theory cannot be directly applied to bound thi® not use any knowledge about the covariance matix).
eigenvalues, because we make no assumption on the sigiPafposition 3.2 helps us to improve the bound in Proposi-
the elements of{(t). 4 tion 3.3 as follows.

The parametem,(fj). and affj) in Proposition 3.1 can all  Corollary 3.4: The optimal value ofx;(t) and 7;(t) are
be set to one. It gives, however, conservative bounds &uch that the error variance at nodeatisfies

the maximum eigenvalue oK K7. In Section IV, we will o2
; fuei(t)— Ee;(t))? <
show how to chose these parameters to avoid too conservative™ g = . L\
bounds. M; + (ZjeM M+ (M)~ )
The choice of the constanis;, : = 1,..., N, in the local

B. Optimal Weights for Variance Minimization

. . . constraint of problenPs is critical for the performance of the
Using previous results, we can rewrite probléh as: P 3 P

distributed estimator. A method for distributed computatof

Py (?}in(t) k()T (t — )i (t) + o?ns(t) s (t)  suitable values ofy; is given in [6].
Ki 3T
(1.7) D. Estimation of Error Covariance
st (k) +m@)T1 =1 Estimating the error covariance matrix is in general hard fo
154]|% < i (11.8) the problem considered in this paper, because the estinsator

a time-varying system and the stochastic proecesand thus
The optimization problem is convex, because the cost fung-is not stationary. However, if we consider the signals i th

tion is convex ['(t — 1) is positive definite, since it representgjuasi-stationary sense, estimation based on samplesgeesa

the covariance matrix of Gaussian random variable) and ttiegive good results. We have the following definition.

two constraints are convex. The problem admits a strictimte  Definition 3.5 ([30, pag. 34]):A signal s(t) : R — R is

point solution, corresponding te;(t) = 0 andn;(t)1 = 1. said to be quasi-stationary if there exists a positive @orst

Thus, Slater’s condition is satisfied so strong duality B9, and a functionR, : R — R, such thats fulfills the following

pag. 226]. The problem, however, does not have a closeahditions

form solution, so we need to rely on numerical algorithms tq(i) T s(t) = ms(t), |ms(t)| < C for all ¢

derive the optimak;(t) and;(t). The following proposition (i) Es(t)s(r) = Rs(t, ), |Rs(t,7)| < C for all ¢t and

provides a rather specific characterization of the solution

N
Proposition 3.2: For a given positive definite matrii; (¢ — lim 1 Z Ry(t,t —7) = Ry(7)
1), the solution to problenPs is given by N—+oo N £
2(Ty(t — 1)1 for all 7.
wit) = - L=+ &I 1 (11.9) 7

21 T(T;(t— 1)+ &)1 1 + M; It is easy to see that the time-varying linear system (l1.2)
1 is uniformly bounded-input bounded-output stable [31,.pag
mi(t) = 21Tt — 1)+ &)1 + M, (111.10) 509]. 'If a quasi—.stationary si'gnal 'is the input of such syste
_ ) then its output is also quasi-stationary [32]. In our cabke, t
with &; < [O,max(p, o /v Mipi — )‘rr}in_(Fi(t - )] . measurement signal(¢) is (component-wise) stationary and
Proposition 3.2 gives an interval within which the optingal orgodic and thus also quasi-stationary. This implies thed a
can be found. The first constraint in problgfa resembles that ;1) js quasi-stationary, since it is the output of a uniformly
of the water-filling problem for power aIIocat|0n_ in wirekes exponentially stable time-varying linear system. Thus, we
networks [29]. Analogously to that problem, simple searcfsiimate the error covariance using the sample covariance.
algorithms can be considered to numerically solve&grfor Specifically, we have that the mealie; = m.,(t) and
example, a bisection algorithm. Note that each nodeeds to covariancel;(¢) can be estimated from samples as
know the covariance matrik;(t — 1) to compute the weights.

t
1
C. Bounds on the Error Variance e, (1) = < > ) (111.11)
The optimal weights from Proposition 3.2 gives the follow- TTO
ing estimation error variance. N | A i\ A lN T
Proposition 3.3: Let «;(¢) andn;(t) be an optimal solution Li(r) = T Z_;)(Q(T) e, (1)) (& () = e (7))
given by (111.9) and (I11.10). Then ~ (11.12)
E (e;(0) — Ee;(0)* = o2 whereé;(t) is the an estimate of the error. Thus the problem
, 02 reduces to design an estimator«ft). Node: has estimates
E(ei(t) — Eei(t))” < 77 t€No\{0}. x;,(t) and measurements, (t), i; € \;, available. Let:(9) (t)

f ¢
('l) . .

A consequence of Proposition 3.3 is that the estimatiorr err%nddlél t(hti)sdde;;(;tié?zscollectlon of all these variables. We can

in each node is always upper bounded by the variance of e

estimator that computes the averages of Miemeasurements z (t) = d(t) 1 + 8(t) + w(t),  uD () =d(t)1 + v(t),



where 3(t) € RM: models the bias of the estimates andypically the GCV methods is computationally expensive
w(t) is zero-mean Gaussian noise modelling the variance sifice the trace of the matrixA” A + v BT B)~! is difficult to

the estimator. Summarizing: nodehas available2M; data compute, but in our case we have a closed form representation
values in which half of the data are corrupted by a smalf the matrix, and thus the computation is not difficult.
biased term3(t) and a low variance noise(t) and the other However, it might be computationally difficult to carry out
half is corrupted by zero-mean Gaussian nei§g with high the minimization. Observing that

variance. It is clear that using onry(”(t) to generate an T T Nel AT/ i iNT
estimated(t) of d(t), which could then be used to estimate v = arg min (A7 A + Vf B) f (“T_l’u )|
&(t) = 2 (t) — d(t) 1, would have the advantage of being tr(ATA +vBYB)

v T T R\—1 AT

unbiased. However, its covariance is rather large sihgds < arg min I(A"A+vB B)" A" (=, )T
typically small. Thus, using only measurements to estimate tr (ATA+vBTB)~! ’ ’
d(t) yield to an over-estimate of the error, which results in po@{ sub-optimal value of can be computed solving the right
performance. On the other hand, using onl{ (¢) we obtain hand side of (Il.15). Note that the first term in the right Han
an under-estimate of the error. This makes the weight® side of (111.15) is a function of that can be computed off-line
rapidly vanish and the signal measurements are discartuiesl, tand stored in a look-up table at the node. Then, for different
tracking becomes impossible. From these arguments, irr ordgta, the problem becomes that of searching in the table.

to use bothz'(t) and u'(t) we pose a linear least square Using (111.14) with the parameter computed from (111.15)
problem as follows: we can then estimate the error mean and covariance matrix

i d 2 applying (111.11) and (I11.12), respectively.
. N4
Iggl H (u’) (ﬁ) IV. IMPLEMENTATION AND NUMERICAL RESULTS
st. ||B(d ﬁ)||2 <p This section presents the estimator structure and the algo-
rithmic implementation followed by some numerical results

(111.15)

with A € R2MixMi+1 gnd B ¢ RMixMi+1
1 I A. Estimator Structure and Implementation
a=(10) B=0 D

1 0 Figure 1 summarizes the structure of the estimator imple-

and being the maxim value of the squared norm of the bia|g1ented in each node. The estimator has a cascade structure

However, the previous problem is difficult to solve in a ckd)sew'th two sub-systems: the one to the left is an adaptive filter

form (it typically requires heavy numerical algorithms todi that produces the estimate @fthe one to the right computes

the solution, as SVD decomposition [33]). Notice also tiat, an estimate of the error covariance maifrix In the following,
general, the value op is not known in advance, being it avve discuss in some detail a pseudo-code implementatioreof th

maximum value of the cumulative bias. We thus consider tl%OCkS in t_he f|gur_e. . .
following regularized problem The estimator is presented as Algorithm 1. Initially, the

1-8): nodei updates its threshold; until a given precision
TV i i (1)
w is reached. In the computations ¢f, we choseq; ; =
wherev > 0 is a parameter whose choice is typically ratherV; N Ni|/(M; — 1) and OzEJJ) = [N; N N;|/(M; —1). This
difficult. Notice that a stochastic least square problermoan Works well in practice becausk;, , i, = 1,...,M;, are of
be used since the cross covariance between the adélt(a) similar magnitude. Indeed, the stability of the averagehef t
andu(“(t) is not known and it seems difficult to estimate. estimation error established in Section 1I-B, and the beund
The solution of (II1.13) is the error variance in Section IlI-C, ensure that estimanesray
5 o4 i —1 nodes have similar performance. Numerical results shotv tha
(d,8)" = (a",u") A (AT A+ vB"B) that the while-loop (lines 4-8) converges after about 10—-20
The inverse of the matrix in the previous equation can lrations.
computed in closed form [6]. The estimators for the local mean estimation error and the
Since we are interested in estimatiagt) = «(¢t) — d(t)1  local covariance matrix are then initialized (lines 9—-1Dhe
we observe that such an estimate is given byFrom the main loop of the estimator is lines 13—24. Lines-19 are re-

2
(I11.13)

solution of (111.13), we have lated to the left subsystem of Figure 1. The optimal weighgs a
R 2 v1T2 + (1+ )1 T computed using Equations (111.9) and (111.10) (lines 17)18
B = 1 (I.14)  Notice that the optimal Lagrangian multipli€r is computed

1_ v Mi(1+2v)(1+v) using the functiorbi sect i on which takes as argument the
For_the choice of the parametemwe propose to use_the GeNnterval [0, max(0, 02 //M;h; — Amin(Li(t — 1)))] where the
eralized Cross-Validation (GCV) method [34]. This corsistyntimal value lays. Notice that, if the nodes have limited
in choosingy as computational power, so that the minimum eigenvalue of the
[(ATA+vBTB)~LAT (2%, u))T|| matrix T';(t — 1) cannot be exactly computed, an upper-bound
tr (ATA+vBTB)-! : based on G&gorin can be used instead. The estimate of

v = arg min



- v 2;(0) 1y(0) : v ri(0)
3 TieN; i 3
| \ 2 B | |
i ™ot = K (D" (b i Lo
| > with weights (111.9) ™ Eq (I114) Eq. (1111 Li(t)
Pat—1) >  and (IIl.10) zit) |1, , and(i12) |
3 ¥ fi(t—1) |
| o = |

“Estimator block designed in subsection II-A-IIB | Estimator block designed in section I-D

Fig. 1. Block diagram of the proposed estimator. It consi$tsMd subsystems in a cascade coupling. The subsystem to fthis kn adaptive filter that
produces the estimate df¢) with small variance and bias. The subsystem to the right etgrthe error covariance matrix.

Algorithm 1 Estimation algorithm for node d(t) is computed in line 19. Lines 20-23 are related to the
1.t:=0 right subsystem of Figure 1. These lines implement the error
g- 15'{8);1)1/:]\/[9 covariance estimation by solving the constrained leas&iss
4 while i (t) — it — 1)] > @ = 1071 do minimization pro_blem described in sgbsectlon [lI-D. Saenpl .
5. Vit + 1) = Ti(y(t)) mean and covariance of the estimation error are updated in
6 collect thresholds from nodes i®; lines 22—-23. These formulas correspond to recursive imple-
7. t =t+1 mentation of (I11.11) and (111.12).

g' f“ﬂ ‘(’)"h'le Let us comment on the inversions of the estimated error

10. me (t) =0 covariance matrix’; in lines 17-18. In general, the dimension
11 Ti(t) == 0?1 of I'; is not a problem because we consider cases when
12. x;(t) = ui(t) the number of neighbors is small. Precautions have still to
13. while foreverdo be taken, because even though the error covariance matrix
1‘5‘- i\/f_t:l/\lﬂ I; is always positive definite, its estimai&, may not be
16. ¢: = bisection([0, max(0, Uz/m /\mm( A(t=1)))]) positive definite before sufficient statistics are collecte our

implementation, we use heuristics to ensure that positive

T P TG S 20 definite.

M; +0%21 T(Fi(t — 1) + 511)71
1. () = 1 B. Numerical Results

Mi+ o2 17 ([Lut = 1) + &) Numerical simulations have been carried out in order to
19. zi(t) =2 e, Riy (t)a ) 3t =1) 4+ 3 e n, My ()us (1) validate performance of the proposed distributed estiméfe
(

2 p1T2 4 (14 0) 170 compare the our estimator with some similar estimatorsedla

20. B = T+v M(t2)1+) to the literature. We consider the following five estimators

21. & =0 E,: K = H = (I-L)/2whereL is the Laplacian matrix

2 e, (t) 1= -1 (t—1)+ Eé_(t) associated to the gragh _

' GV T t Ey: K =0andH = [h;;] with h;; = 1/M; if node: and

R -1 . . A A j are connected, anfl;; = 0 otherwise. Thus, the

23 Li(t) = Tt Pi(t = 1) + t (&) — e, (£))(&:(E) — updated estimate is the average of the measurements.
e, (t))T FEs3: K = [k”], where ki = 1/2M1, kij = 1/Mz if

24. end while node i and j are connectedk;; = 0 otherwise,

whereasH = [h;;| with H;; = 1/2M;, andh;; =0
elsewhere. This is the average of the old estimates
and node’s single measurement.



Measurements - Iy Laplacian based

i\

350 4%0 * 450
Es: Average ofz andu;

N
P s PR

@ (b)

Fig. 2. Topology of the networks wittv = 25 nodes (on the left) and
N = 35 (on the right) used in the simulations. For the network with= 35,
three nodes are highlighted, corresponding to the identif?e 18, and23.
They have the following number of neighbot#vi2| = 2, [Nis| = 8, and
|[N23| = 15. The node with maximum degree in all the network is nade

1

Fig. 4. Zoom of some of the curves in FiguP&. In particular, we plot the
measurements and estimates of the ndded 8 and23 having the minimum
degree, degree equal to the average degree of the netwatknmarimum,

respectively (see Figure 2). In thick solid curve is showa signald(¢). The

dashed curves show the measurement and estimate at node 18hidalted
those at node 18 and the solid curves show those at node 2Hhorizental

lines in the the top-left figure are the interval within whithe estimates
variate. We chose to have different scales to make more cleagdtimation
process.

T

z

S
1 Ej: Laplacian based
=
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»: Average ofu
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T, “Average 6z andu.
Lo,

10]

/ii; o Avejrgége ofz andu”
e " area of sizeN/3. The graph is then obtained by letting two
*% nodes communicate if their relative distance is less tan.
=5 We discuss in detail the distributed estimator over the net-
§ﬁ e T P e work networkGss. Measurements and estimates for all nodes
are shown in Figure 3. Clearly, the measurements are quite
noisy, and in particulas? = 1.5. All estimators,E1, ..., E,
Fig. 3. Plots showingV = 35 realizations of the measurements and estimatéNd £, are able to track the signal, but the quality of the
at each node for each estimator. estimates are varying quite a bit. It is evident that and
E, give the worst estimates, whil&, performs best. The
relative performance betweef,,..., E, is rather obvious
] / _ given how their estimate is constructed, e g, simply take
_ d = j. The updated estimateihe ayerage of the measurements while averages over
is the average of the old estimates and all loc@yi, measurements and estimates. By choosing the weights
measurements. o appropriately, we see that the proposed estimdiprgives
E,: The estimator proposed in this paper. substantially lower estimation variance. Figure 4 shows a
The estimatorsEy, ..., E, are based on various heuristicszoom of Figure 3 for the time intervas50, 450]. The figure
They are related to proposals in the literature, elg).,uses compares the measurements and estimates of the three nodes
filter coefficients given by the Laplacian matrix, cf., [12]-highlighted in Figure 2. These nodes represent the node with
[14]. It is important to note, however, that in general theninimum connectivity (dashed curve), average connegtivit
weights based on Laplacian do not ensure the minimizatiglash-dotted curve) and maximum connectivity (solid curve
of the variance of the estimation error. Notice that we dithe thick line correspond td. Note that the node with low
not consider the centralized solution. Although this wobé connectivity is not followingd very well. We also see that
interesting, it is computationally difficult to solve prebh?;  the estimate produced b¥s; has a quite substantial bias.
at each time step for each node, even for small networks. |n general, we have observed through extensive simulations
We have benchmarked the estimators with various teht F5 work well for low-frequency signals to track, whereas
signalsd. Here we limit the discussion to a specific case. Wg, works better for signal with higher frequency. Numerical

suppose that we know a bourdon the variation ofl. We set  studies of various networks confirm the type of behaviors we
A to be10% larger than its actual value. We have chosen thge in Figures 3 and 4.

desired average SNR f = 10, see Section Il. We consider

the two networksGss and Gss with N = 25 and N = 35 V. CONCLUSIONS

nodes, respectively, shown in Figure 2. These networks ardn this paper, we have presented a fully distributed minimum
obtained by distributing the nodes randomly over a squaredriance estimator for wireless sensor networks. The fa&po

oS

. Proposed Estimator 7

E,; K = H with k;; = 1/2M; if node i and j
are connected, an



of such estimator is accurate tracking of a time varyings] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average ocemsus

signal using noisy measurements. A mathematical framework
is proposed to design a filter, which runs locally in each modﬁ6
It only requires a cooperation among neighboring nodes. In
order to obtain a minimum variance estimator, we starteohfro17]
a centralized optimization problem, and then we converted i

into a decentralized problem transforming global constsai [18]
into distributed ones. The filter structure is composed by a
cascade of two blocks: the first block computes the estimatog
coefficients at each time instance, and the second block esti

mates the error covariance matrix needed, by the first blatck,
next step. The estimator coefficients are designed suchhbhat
local behavior of a node ensures the overall estimationga®c

to be stable. We showed that the distributed estimator desta [21]
with mean and variance of the estimation error bounded.
Numerical results proved that our filter outperforms erigti [22]
solutions proposed in literature, as well as other heuristi

solutions. Future work includes stability analysis of tHeefi
with respect to packet losses, and experimental validdtion
our laboratory setting.

The authors would like to thank&kan Hjalmarsson, Bjn
Johansson, Mikael Johansson and Bo Wahlberg for fruitful
discussions.
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