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Abstract—Distributed estimators for sensor networks are dis-
cussed. The considered problem is on how to track a noisy time-
varying signal jointly with a network of sensor nodes. We present
a recent scheme in which each node computes its estimate as
a weighted sum of its own and its neighbors’ measurements
and estimates. The weights are adaptively updated to minimize
the variance of the estimation error. Theoretical and practical
properties of the algorithm are illustrated. The results provide
a tool to trade-off communication constraints, computing efforts
and estimation quality.

I. I NTRODUCTION

A wireless sensor network (WSN) is a network of au-
tonomous devices that can sense their environment, make
computations and communicate over radio with neighboring
devices. WSNs have a growing domain of application in areas
such as environmental monitoring, industrial automation,intel-
ligent buildings, search and surveillance, and public transporta-
tion [1]–[3]. Today they are mostly used for monitoring and
diagnosis, but their potential capability goes beyond thatsince
they can provide real-time information for closed-loop control
systems [4], [5]. The characteristics of WSNs motivate the
development of new classes of distributed estimation and con-
trol algorithms, which explore these systems’ limited power,
computing and communication capabilities. It is importantthat
the algorithms have tuning parameters that can be adjusted
according to the demands set by the applications. In this
paper, we investigate such a distributed estimation algorithm
for tracking an unknown time-varying physical variable.

The main contribution of this paper is a novel distributed
minimum variance estimator. A noisy time-varying signal is
jointly tracked by a WSN, in which each node computes
an estimate as a weighted sum of its own and its neigh-
bors’ measurements and estimates. The filter weights are
time varying and updated locally. The filter has a cascade
structure with an inner loop producing the state estimate and an
outer loop producing an estimate of the error covariance. The
state estimate is obtained as the solution of an optimization
problem with quadratic cost function and quadratic constraints.
We show that the problem has a distributed implementation
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with conditions that can be checked locally. It is argued
that the estimator is practically stable if the signal to track
is slowly varying, so the estimate of each node converges
to a neighborhood of the signal to track. The estimate in
each node has consequently a small variance and a small
bias. A bound on the estimation error variance, which is
linear in the measurement noise variance and decays with
the number of neighboring nodes, is presented. The algorithm
is thus characterized by a trade-off between the amount of
communication and the resulting estimation quality. Compared
to similar distributed algorithms in the literature, the one
presented in this paper gives better estimates, but to the cost of
an increased computational complexity. This is illustrated in
the implementation discussion and the computer simulations in
the latter part of the paper. An extended version of the current
paper with proofs and further discussion has been submitted
for journal publication [6]. Early versions of the results see [7],
[8].

Distributed signal processing is a very active research area
due to the recent developments in wireless networking and
computer and sensor technologies. The estimator presentedin
this paper has two particular characteristics: it does not rely
on a model of the signal to track, and its filter coefficients
are time varying. It is related to recent contributions on low-
pass filtering by diffusion mechanisms, e.g., [7]–[14]. Many of
these papers focus on diffusion mechanisms to have each node
of the network obtaining the average of the initial samples of
the network nodes. Major progress has been made in under-
standing how the convergence behavior of these consensus or
state-agreement problems. It is not straightforward to carry
over this work to the problem of tracking a time-varying
signal. An attempt is made in [12], where a scheme for
sensor fusion based on a consensus filter is proposed. Each
node computes a local weighted least-squares estimate and the
authors show it converges to the maximum-likelihood solution
for the overall network. An extension of this approach is
presented in [15], where the authors study a distributed average
computation of a time-varying signal, when the signal is
affected by a zero-mean noise. A convex optimization problem
is posed to derive the edge weights, which each node uses to
minimize the least mean square deviation of the estimates.
The same linear filter is also considered in [16], where the
weights are computed off-line to speed up the computation of
the averages. Further characterization of consensus filters for
distributed sensor fusion is given in [14].

Another approach to distributed estimation is to use non-
linear filters based on self-synchronization and coupling func-
tions, e.g., [17]–[20]. In this case, the estimate of each node
is provided by the state of a nonlinear dynamical system. This



system is coupled to some of the other nodes by a static
coupling function. Some conditions on the coupling function
that lead to state synchronization asymptotically is investigated
in [20].

Distributed filtering using model-based approaches are stud-
ied in various wireless network contexts, e.g., [21]–[25].
One possible approach is using distributed Kalman filters.
More recently there are attempts to mix the diffusion mecha-
nism, discussed previously, with distributed Kalman filtering,
e.g., [13], [26]. A plausible approach is to communicate the
estimates of the local Kalman filters, and then average these
values using a diffusion strategy.

Let us briefly summarize the originality of our approach
compared to the literature. First, note that our estimator tracks
a time-varying signal, while [10]–[12] are limited to averaging
initial samples. Our approach does not require a model of the
system that generates the signal to track, in contrast to model-
based approaches, e.g., [13], [25]. We do not impose a pre-
assigned coupling law among the nodes as in [20]. Compared
to [12]–[14], we do not rely on the Laplacian matrix associated
to the communication graph, but consider a more general
model of the filter structure. Moreover, our filter parameters
are computed through distributed algorithms, whereas for
example [15] and [16] rely on centralized algorithms for
designing the filters. Note that in the early versions of our
contribution [7], [8], we extended the algorithms in [12]–
[14] by designing the filter weights such that the variance of
the estimation errors is minimized. In the current paper, we
improve the filter design considerably and the performance
limit of the filter is characterized.

The outline of the paper is as follows. Section II presents
the distributed estimation problem considered throughoutthe
paper. A centralized minimum variance optimization problem
is given and its solution is characterized. The distributed
estimator design is discussed in Section III. A distributed
minimum variance optimization problem is given and its
relation to the centralized problem is indicated. By restrict-
ing the set of admissible filter weights, it is possible to
obtain a completely distributed solution, where convergence
is guaranteed. A bound on the estimation error variance is
computed. The latter part of Section III discusses estimation
of the error covariance. Section IV presents the detail of the
implementation of the estimation algorithm. Numerical results
illustrating the performance of the proposed estimator and
comparing it to some related proposals are also given. Finally,
Section V concludes the paper.

Notation:: We denote the non-negative integersN0 =
{0, 1, 2, . . . }. With | · | we denote either the absolute value
or the cardinality, depending on the context. With‖ · ‖ we
denote theℓ2-norm of a vector and the spectral norm of a
matrix. Given a matrixA ∈ R

n×n, we denote withλr(A),
1 ≤ r ≤ n, its r-th eigenvalue, withλmin(A) = λ1(A)
and λmax(A) = λn(A) being the minimum and maximum
eigenvalue, respectively, where the order is taken with respect
to the real part. We refer to its largest singular value as
γmax(A). The trace ofA is denotedtrA. With I and 1

we denote the identity matrix and the vector(1, . . . , 1)T ,
respectively. Given a stochastic variablex we denote byEx
its expected value. In order to keep light the notation, we
disregard the time dependence when it is clear from the
context.

II. PRELIMINARIES

In this section we state the problem and we derive central-
ized conditions under which the estimation error converges.
We then pose a centralized optimization problem that yields
weights for minimum variance estimation. The centralized
case is instructive for the design of the distributed estimator.

A. Problem Formulation

ConsiderN > 1 sensor nodes placed in random and static
positions on the space. We assume that each node measures a
common scalar signald(t) corrupted by additive noise:

ui(t) = d(t) + vi(t) , i = 1, . . . , N ,

with t ∈ N0 and wherevi(t) is zero-mean white noise. Let us
collect measurements and noise variables in vectors,u(t) =
(u1(t), . . . , uN (t))T and v(t) = (v1(t), . . . , vN (t))T , so that
we can rewrite the previous equation as

u(t) = d(t)1 + v(t) , t ∈ N0 .

The covariance matrix ofv(t) is supposed to be diagonal
Σ = σ2I, so vi(t) and vj(t), for i 6= j, are uncorrelated.
The additive noise, in each node, can be averaged out only if
nodes communicate measurements or estimates. Note that the
communication rate of the measurements and estimates should
be just fast enough to track the variations ofd(t). Indeed, in-
creasing the sampling rate, in general, is not beneficial because
measurements might then be affected by auto-correlated noise.

It is convenient to model the communication network as an
undirected graphG = (V, E), whereV = {1, . . . , N} is the
vertex set andE ⊆ V × V the edge set. We will assume that
if (i, j) ∈ E then (j, i) ∈ E , namely the graph is undirected.
The graphG is said to be connected if there is a sequence of
edges inE that can be traversed to go from any vertex to any
other vertex.

In the following we will denote the set of neighbors of
nodei ∈ V plus the node itself as

Ni = {j ∈ V : (j, i) ∈ E} ∪ {(i, i)} .

The estimation algorithm we propose is such that a nodei
computes an estimatexi(t) of d(t) by taking a linear combi-
nation of neighboring estimates and measures

xi(t) =
∑

j∈Ni

kij(t)xj(t− 1) +
∑

j∈Ni

hij(t)uj(t) . (II.1)



We assume that neighboring estimates and measures are al-
ways successfully received, i.e., there are no packet losses.1

We assume that for each nodei, the algorithm is initialized
with xj(0) = ui(0), j ∈ Ni. In vector notation, we have

x(t) = K(t)x(t− 1) +H(t)u(t) . (II.2)

Note that the matricesK(t) and H(t) can be interpreted
as the adjacency matrices of two graphs with time-varying
weights. These graphs are compatible with the underlying
communication network representedG. We denote this as
K(t) ≃ G andH(t) ≃ G.

Given a WSN modelled as a connected graphG, we have
the following design problem: find time-varying matricesK(t)
and H(t), compatible withG, such that the signald(t) is
consistently estimated and the variance of the estimate is
minimized. Moreover, the solution should be distributed in
the sense that the computation ofkij(t) andhij(t) should be
performed locally by nodei.

B. Convergence of the Estimation Error in the Centralized
Scenario

Here we derive conditions onK(t) andH(t) that guarantee
the estimation error to converge. Define the estimation error
e(t) = x(t)−d(t)1 . Introduceδ(t) = d(t)−d(t−1), so that
the error dynamics can be described as

e(t) = K(t)e(t− 1) + d(t)(K(t) +H(t) − I)1

− δ(t)K(t)1 +H(t)v(t) .
(II.3)

Taking the expected value with respect to the stochastic
variablev(t), we obtain

E e(t) = K(t)E e(t− 1) + d(t)(K(t) +H(t) − I)1

− δ(t)K(t)1 .
(II.4)

We have the following result.
Proposition 2.1:Consider the system Equation (II.3). As-

sume that

(K(t) +H(t))1 = 1 , (II.5)

and that there exists0 ≤ γ0 < 1 such that

γmax(K(t)) ≤ γ0 (II.6)

for all t ∈ N0.
(i) If H(t)1 = 1 , for all t ∈ N0, then

lim
t→+∞

E e(t) = 0 .

(ii) If |δ(t)| < ∆, for all t ∈ N0, then

lim
t→+∞

‖E e(t)‖ ≤
√
N∆γ0

1 − γ0
. (II.7)

1This assumption is motivated by the fact that we assume the network is
static, that appropriate channel and source coding are applied, and there is an
Automatic Repeat Request (ARQ) protocol. These are natural assumptions in
many WSN applications. Note that we implicitly assume that the sampling
time between measures is long relative to the coherence time of the wireless
channel coefficients, so there is enough time to detect and retransmit erroneous
packets until they are successfully received. More detailsare given in
Section III.

Proposition 2.1(i) provides the conditionH(t)1 = 1 under
which the estimate is unbiased. It is possible to show that in
this case the variance is minimized ifK(t) = 0 and

hij(t) = hji(t) =







1

|Ni|
if j ∈ Ni

0 otherwise.

Note that nodes do not use any memory and that the error
variance at each node is proportional to its neighborhood size.
However, ifd(t) is slowly varying, then, under the assumptions
of Proposition 2.1(ii), it is possible to guarantee that‖E e(t)‖
tends to a neighborhood of the origin, but the estimate might
be biased. Note also that‖E e(t)‖ has the meaning of a
cumulative bias, in the sense that it is a function of the sum
of theN biases of individual nodes.

The size of the cumulative bias can be kept small with
respect to the signal to track by defining a proper value of
γ0. In particular, Equation (II.7) can be related to the Signal-
to-Noise Ratio (SNR) of the average of the estimate in an
intuitive way as follows. LetPd denote the average power of
d and letPb denote the desired power of the biases of the
average of the estimates. Then, we define the desired SNR
as SNR= Pd/Pb. Since there areN nodes, we consider the
average SNR of each node asΥ = SNR/N . Let us assume
that we want the estimator to guarantee that the right-hand
side of Equation (II.7) is equal to this desired

√
SNR. This is

equivalent to that

γ0 =

√
Υ√

Υ + ∆
.

The right-hand side is useful in the tuning of the estimator,so
we denote it asf(∆,Υ). By choosing an appropriateΥ, we
have a guaranteed convergence property of the estimator given
by the correspondingf(∆,Υ). This function is particularly
useful, since in next sections it will allow us to relate the size
of the bias of estimates with the variations of the signal to
track, and the stability of the estimates.

C. Centralized Variance Minimization

We show in this subsection how we can determine the
matricesK(t) and H(t) so that the bias is kept small and
the variance minimized. The error covariance matrix is given
by

P (t) = E (e(t) − E e(t))(e(t) − E e(t))T .

Using the error update Equation (II.3), we have that the
covariance is updated according to

P (t) = K(t)P (t− 1)K(t)T + σ2H(t)H(t)T , (II.8)

where we use the fact thatx(t− 1) andu(t) are independent
stochastic variables. We want to findK(t) andH(t) so that,
given the covariance matrixP (t− 1), the covarianceP (t) is
minimized. We consider the trace ofP (t) as a measure of
the size ofP (t). It represents a cumulative error variance,



namely, the sum of the error variance at each node. We have
the following optimization problem

P1 : min
K(t),H(t)

tr (K(t)P (t− 1)K(t)T ) (II.9)

+ σ2tr (H(t)H(t)T )

s.t. (K(t) +H(t))1 = 1 ,

γmax(K(t)) ≤ f(∆,Υ) ,

K(t) ≃ G , H(t) ≃ G .
Notice that the objective function is quadratic inK(t) and
H(t) for a givenP (t − 1). The first constraint is the linear
matrix equality (II.5). The second constraint, which ensures
that the expected value of the estimation error converges to
a neighborhood of zero, can be written as a linear matrix
inequality using Schur complement [27]. The last two con-
straints, impose the structure of the matricesK(t) andH(t)
to be compatible with the graphG.

The cost function of problemP1 may suggest that it is
possible to distribute the optimization by letting each node
minimize its own error variance. This approach is impossible,
however, because the nodes are coupled through the global
constraints:(K(t) +H(t))1 = 1 andγ(K(t)) ≤ γ0.

Although the optimization problemP1 can conceptually be
solved using standard numerical optimization tools, it clearly
requires a powerful central node collecting data, computing
new weights, and dispatching them back to the nodes. There
could also be large delays (due to multi-hop routing of data
from nodes to the central unit), and large power consumptions,
beside the typical disadvantage that centralized solutions are
not fault tolerant.

In the following sections, we propose a fully decentralized
solution, where each node computes its weights minimizing
the variance of its estimate.

III. D ISTRIBUTED ESTIMATOR DESIGN

In this section we describe how each node computes adap-
tive weights to minimize its estimation error variance. Starting
from the centralized problemP1, we first show that we can
transform the global constraints into distributed ones. The
constraint(K(t)+H(t))1 = 1 is easily handled. It turns out
that the constraintγmax(K(t)) ≤ f(∆,Υ) can be translated
into a set of constraints of the type

∑

j∈Ni
k2

ij ≤ ψi, whereψi

is a constant that can be computed locally by the nodes. Using
these new constraints, we pose a optimization problem for
finding optimal filter weights that minimize the error variance
in each node. A complication is that the weights depend on the
error covariance matrix, which is not available at each node.
We end this section by discussing a way of estimating it.

A. Distributed Variance Minimization

Let Mi = |Ni|, which denotes the number of neighbors of
nodei, including the node itself. Collect the estimation errors
available at nodei in the vectorǫi ∈ R

Mi . The elements of
ǫi are ordered according to the node indices:

ǫi = (ei1 , . . . , eiMi
)T , i1 < · · · < iMi

.

Similarly, we introduce vectorsκT
i (t), ηT

i (t) ∈ R
Mi corre-

sponding to the non-zero elements of rowi of the matrices
K(t) andH(t), respectively, and ordered according to node
indices. The expected value of the estimation error at nodei
can be written as

E ei(t) = κT
i (t)E ǫi(t− 1) − κT

i (t)δ(t)1 , (III.1)

where we used the fact thatd(t) − d(t − 1) = δ(t) and
that (K(t) + H(t))1 = 1 . Note that the latter inequality
is equivalent to that(κi(t) + ηi(t))

T
1 = 1. We will assume

that ei(0) = ui(0). It follows that

E (ei(t) − E ei(t))
2 = κT

i (t)Γi(t− 1)κi(t) + σ2ηT
i (t)ηi(t) ,

where Γi(t) = E (ǫi(t) − E ǫi(t))(ǫi(t) − E ǫi(t))
T . To

minimize the variance of the estimation error in each node,
we need to determineκi(t) and ηi(t) so that the previous
expression is minimized at each time instance. We have the
following optimization problem:

P2 : min
κi(t),ηi(t)

κT
i (t)Γi(t− 1)κi(t) + σ2ηT

i (t)ηi(t)

(III.2)

s.t. (κi(t) + ηi(t))
T
1 = 1 , (III.3)

γmax(K(t)) ≤ f(∆,Υ) . (III.4)

Note that the inequality constraint (III.4) is still global, as
γmax(K(t)) depends on allκi(t), i = 1, . . . , N . We show
next that it can be replaced by the local constraint

‖κi(t)‖ ≤ ψi , t ∈ N0 , (III.5)

whereψi > 0 is a constant that can be computed locally.
For i = 1, . . . , N , let us define the setΘi = {j 6= i :

Nj ∩Ni 6= ∅}, which is the collection of nodes located at two
hops distance from nodei plus neighbor nodes ofi. We have
the following result.

Proposition 3.1:Suppose there existψi > 0, i = 1, . . . , N ,
such that

ψi +
√

ψi

∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj ≤ f2(∆,Υ) , (III.6)

whereα(i)
i,j , α

(j)
i,j ∈ (0, 1) are such that

∑

c∈Nj∩Ni

k2
ic ≤ α

(i)
i,j

Mi
∑

r=1

κ2
iir

∑

c∈Nj∩Ni

k2
jc ≤ α

(j)
i,j

Mj
∑

r=1

κ2
jir
.

If ‖κi(t)‖2 ≤ ψi, i = 1, . . . , N , thenγmax(K(t)) ≤ f(∆,Υ).

Proposition 3.1 provides a simple local condition on the
filter coefficients such thatγmax(K) ≤ f(∆,Υ). We can
expect that Proposition 3.1 is in general conservative, be-
cause no a-priori knowledge of the network topology is used,
the proof relies on the Geršgorin theorem and the Cauchy-
Schwartz inequality. There are many other ways to bound the
eigenvalues of a matrix by its elements than the one used in the
proof above, e.g., [28, pages 378–389]. However, we do not
know of any other bounds requiring only local information,



useful for distributed implementation. Note also that Perron-
Frobenius theory cannot be directly applied to bound the
eigenvalues, because we make no assumption on the sign of
the elements ofK(t).

The parametersα(i)
i,j and α(j)

i,j in Proposition 3.1 can all
be set to one. It gives, however, conservative bounds on
the maximum eigenvalue ofKKT . In Section IV, we will
show how to chose these parameters to avoid too conservative
bounds.

B. Optimal Weights for Variance Minimization

Using previous results, we can rewrite problemP2 as:

P3 : min
κi(t),ηi(t)

κi(t)
T Γi(t− 1)κi(t) + σ2ηi(t)

T ηi(t)

(III.7)

s.t. (κi(t) + ηi(t))
T
1 = 1

‖κi‖2 ≤ ψi , (III.8)

The optimization problem is convex, because the cost func-
tion is convex (Γ(t−1) is positive definite, since it represents
the covariance matrix of Gaussian random variable) and the
two constraints are convex. The problem admits a strict interior
point solution, corresponding toκi(t) = 0 and ηi(t)1 = 1.
Thus, Slater’s condition is satisfied so strong duality holds [29,
pag. 226]. The problem, however, does not have a closed
form solution, so we need to rely on numerical algorithms to
derive the optimalκi(t) andηi(t). The following proposition
provides a rather specific characterization of the solution.

Proposition 3.2:For a given positive definite matrixΓi(t−
1), the solution to problemP2 is given by

κi(t) =
σ2(Γi(t− 1) + ξiI)

−1
1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
(III.9)

ηi(t) =
1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
, (III.10)

with ξi ∈
[

0,max(0, σ2/
√
Miψi − λmin(Γi(t− 1)))

]

.
Proposition 3.2 gives an interval within which the optimalξi
can be found. The first constraint in problemP2 resembles that
of the water-filling problem for power allocation in wireless
networks [29]. Analogously to that problem, simple search
algorithms can be considered to numerically solve forξi, for
example, a bisection algorithm. Note that each nodei needs to
know the covariance matrixΓi(t−1) to compute the weights.

C. Bounds on the Error Variance

The optimal weights from Proposition 3.2 gives the follow-
ing estimation error variance.

Proposition 3.3:Let κi(t) andηi(t) be an optimal solution
given by (III.9) and (III.10). Then

E (ei(0) − E ei(0))2 = σ2

E (ei(t) − E ei(t))
2 ≤ σ2

Mi
, t ∈ N0 \ {0} .

A consequence of Proposition 3.3 is that the estimation error
in each node is always upper bounded by the variance of the
estimator that computes the averages of theMi measurements

ui(t). The bound is obviously rather conservative, since we
do not use any knowledge about the covariance matrixΓi(t).
Proposition 3.2 helps us to improve the bound in Proposi-
tion 3.3 as follows.

Corollary 3.4: The optimal value ofκi(t) and ηi(t) are
such that the error variance at nodei satisfies

E (ei(t)−E ei(t))
2 ≤ σ2

Mi +
(

∑

j∈Ni
M−1

j + (Miψi)−1/2
)−1 .

The choice of the constantsψi, i = 1, . . . , N , in the local
constraint of problemP3 is critical for the performance of the
distributed estimator. A method for distributed computation of
suitable values ofψi is given in [6].

D. Estimation of Error Covariance

Estimating the error covariance matrix is in general hard for
the problem considered in this paper, because the estimatoris
a time-varying system and the stochastic processx, and thus
e, is not stationary. However, if we consider the signals in the
quasi-stationary sense, estimation based on samples guarantees
to give good results. We have the following definition.

Definition 3.5 ([30, pag. 34]):A signal s(t) : R → R is
said to be quasi-stationary if there exists a positive constantC
and a functionRs : R → R, such thats fulfills the following
conditions
(i) E s(t) = ms(t), |ms(t)| ≤ C for all t
(ii) E s(t)s(r) = Rs(t, r), |Rs(t, r)| ≤ C for all t and

lim
N→+∞

1

N

N
∑

t=1

Rs(t, t− τ) = Rs(τ)

for all τ .
It is easy to see that the time-varying linear system (II.2)
is uniformly bounded-input bounded-output stable [31, pag.
509]. If a quasi-stationary signal is the input of such system,
then its output is also quasi-stationary [32]. In our case, the
measurement signalu(t) is (component-wise) stationary and
ergodic and thus also quasi-stationary. This implies that also
x(t) is quasi-stationary, since it is the output of a uniformly
exponentially stable time-varying linear system. Thus, we
estimate the error covariance using the sample covariance.
Specifically, we have that the meanE ǫi = mǫi

(t) and
covarianceΓi(t) can be estimated from samples as

m̂ǫi
(t) =

1

t

t
∑

τ=0

ǫ̂i(τ) (III.11)

Γ̂i(τ) =
1

τ

t
∑

τ=0

(ǫ̂i(τ) − m̂ǫi
(τ))(ǫ̂i(τ) − m̂ǫi

(τ))T ,

(III.12)

where ǫ̂i(t) is the an estimate of the error. Thus the problem
reduces to design an estimator ofǫi(t). Node i has estimates
xij

(t) and measurementsuij
(t), ij ∈ Ni, available. Letx(i)(t)

andu(i)(t) denote the collection of all these variables. We can
model this data set as

x(i)(t) = d(t)1 + β(t) + w(t) , u(i)(t) = d(t)1 + v(t) ,



where β(t) ∈ R
Mi models the bias of the estimates and

w(t) is zero-mean Gaussian noise modelling the variance of
the estimator. Summarizing: nodei has available2Mi data
values in which half of the data are corrupted by a small
biased termβ(t) and a low variance noisew(t) and the other
half is corrupted by zero-mean Gaussian noisev(t) with high
variance. It is clear that using onlyu(i)(t) to generate an
estimated̂(t) of d(t), which could then be used to estimate
ǫ̂i(t) = x(i)(t) − d̂(t)1 , would have the advantage of being
unbiased. However, its covariance is rather large sinceMi is
typically small. Thus, using only measurements to estimate
d(t) yield to an over-estimate of the error, which results in poor
performance. On the other hand, using onlyx(i)(t) we obtain
an under-estimate of the error. This makes the weightsηi(t)
rapidly vanish and the signal measurements are discarded, thus
tracking becomes impossible. From these arguments, in order
to use bothxi(t) and ui(t) we pose a linear least square
problem as follows:

min
d̂,β̂

∥

∥

∥

∥

(

xi

ui

)

−A

(

d̂

β̂

)
∥

∥

∥

∥

2

s.t.
∥

∥B
(

d̂ β̂
)∥

∥

2 ≤ ρ

with A ∈ R
2Mi×Mi+1 andB ∈ R

Mi×Mi+1

A =

(

1 I
1 0

)

, B =
(

0 I
)

,

andρ being the maxim value of the squared norm of the bias.
However, the previous problem is difficult to solve in a closed
form (it typically requires heavy numerical algorithms to find
the solution, as SVD decomposition [33]). Notice also that,in
general, the value ofρ is not known in advance, being it a
maximum value of the cumulative bias. We thus consider the
following regularized problem

min
d̂,β̂

∥

∥

∥

∥

(

xi

ui

)

−A

(

d̂

β̂

)∥

∥

∥

∥

2

+ ν

∥

∥

∥

∥

B

(

d̂

β̂

)∥

∥

∥

∥

2

(III.13)

whereν > 0 is a parameter whose choice is typically rather
difficult. Notice that a stochastic least square problem cannot
be used since the cross covariance between the datax(i)(t)
andu(i)(t) is not known and it seems difficult to estimate.

The solution of (III.13) is

(d̂, β̂)T = (xi, ui)TA
(

ATA+ νBTB
)−1

.

The inverse of the matrix in the previous equation can be
computed in closed form [6].

Since we are interested in estimatingǫi(t) = x(t)− d(t)1
we observe that such an estimate is given byβ̂. From the
solution of (III.13), we have

β̂ =
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1 (III.14)

For the choice of the parameterν we propose to use the Gen-
eralized Cross-Validation (GCV) method [34]. This consists
in choosingν as

ν = arg min
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1
.

Typically the GCV methods is computationally expensive
since the trace of the matrix(ATA+ νBTB)−1 is difficult to
compute, but in our case we have a closed form representation
of the matrix, and thus the computation is not difficult.
However, it might be computationally difficult to carry out
the minimization. Observing that

ν = arg min
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1

≤ arg min
‖(ATA+ νBTB)−1AT ‖

tr (ATA+ νBTB)−1
‖(xi, ui)T ‖ ,

(III.15)

a sub-optimal value ofν can be computed solving the right
hand side of (III.15). Note that the first term in the right hand
side of (III.15) is a function ofν that can be computed off-line
and stored in a look-up table at the node. Then, for different
data, the problem becomes that of searching in the table.

Using (III.14) with the parameterν computed from (III.15)
we can then estimate the error mean and covariance matrix
applying (III.11) and (III.12), respectively.

IV. I MPLEMENTATION AND NUMERICAL RESULTS

This section presents the estimator structure and the algo-
rithmic implementation followed by some numerical results.

A. Estimator Structure and Implementation

Figure 1 summarizes the structure of the estimator imple-
mented in each node. The estimator has a cascade structure
with two sub-systems: the one to the left is an adaptive filter
that produces the estimate ofd; the one to the right computes
an estimate of the error covariance matrixΓi. In the following,
we discuss in some detail a pseudo-code implementation of the
blocks in the figure.

The estimator is presented as Algorithm 1. Initially, the
distributed computation of the threshold is performed (lines
1–8): node i updates its thresholdψi until a given precision
̟ is reached. In the computations ofψi, we choseα(i)

i,j =

|Nj ∩ Ni|/(Mi − 1) and α(j)
i,j = |Nj ∩ Ni|/(Mj − 1). This

works well in practice becausekiir
, ir = 1, . . . ,Mi, are of

similar magnitude. Indeed, the stability of the average of the
estimation error established in Section II-B, and the bounds on
the error variance in Section III-C, ensure that estimates among
nodes have similar performance. Numerical results show that
that the while-loop (lines 4–8) converges after about 10–20
iterations.

The estimators for the local mean estimation error and the
local covariance matrix are then initialized (lines 9–10).The
main loop of the estimator is lines 13–24. Lines14–19 are re-
lated to the left subsystem of Figure 1. The optimal weights are
computed using Equations (III.9) and (III.10) (lines 17–18).
Notice that the optimal Lagrangian multiplierξi is computed
using the functionbisection which takes as argument the
interval [0,max(0, σ2/

√
Miψi − λmin(Γi(t− 1)))] where the

optimal value lays. Notice that, if the nodes have limited
computational power, so that the minimum eigenvalue of the
matrix Γi(t− 1) cannot be exactly computed, an upper-bound
based on Geršgorin can be used instead. The estimate of



u(t)

xi(t− 1)

xi(t)Γ̂i(t− 1)

Γ̂i(t− 1)

Γ̂i(t)

z−1

z−1

ǫ̂(t)

ψi Γ̂i(0)Γ̂i(0)xi(0)

xj∈Ni

ν

x+

i = κT (t)x+ηT (t)u

with weights (III.9)
and (III.10)

Eq. (III.14)
Eq. (III.11)
and (III.12)

Estimator block designed in subsection III-A–III-B Estimator block designed in section III-D

Fig. 1. Block diagram of the proposed estimator. It consists of two subsystems in a cascade coupling. The subsystem to the left is an adaptive filter that
produces the estimate ofd(t) with small variance and bias. The subsystem to the right estimates the error covariance matrix.

Algorithm 1 Estimation algorithm for nodei
1. t := 0
2. ψi(t− 1) = 0
3. ψi(t) = 1/Mi

4. while |ψi(t) − ψi(t− 1)| ≥ ̟ = 10−10 do
5. ψi(t+ 1) = Ti(ψ(t))
6. collect thresholds from nodes inΘi

7. t := t+ 1
8. end while
9. t := 0

10. m̂ǫi
(t) := 0

11. Γ̂i(t) := σ2I
12. xi(t) := ui(t)
13. while foreverdo
14. Mi := |Ni|
15. t := t+ 1
16. ξi = bisection

(

[0,max(0, σ2/
√
Miψi−λmin(Γi(t−1)))]

)

17. κi(t) :=
σ2(Γ̂i(t− 1) + ξiI)

−1
1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

18. ηi(t) :=
1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

19. xi(t) :=
∑

j∈Ni
κij

(t)xj(t− 1) +
∑

j∈Ni
ηij

(t)uj(t)

20. β̂ :=
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1

21. ǫ̂i := β̂

22. m̂ǫi
(t) :=

t− 1

t
m̂ǫi

(t− 1) +
1

t
ǫ̂i(t)

23. Γ̂i(t) :=
t− 1

t
Γ̂i(t − 1) +

1

t
(ǫ̂i(t) − m̂ǫi

(t))(ǫ̂i(t) −
m̂ǫi

(t))T

24. end while

d(t) is computed in line 19. Lines 20–23 are related to the
right subsystem of Figure 1. These lines implement the error
covariance estimation by solving the constrained least-squares
minimization problem described in subsection III-D. Sample
mean and covariance of the estimation error are updated in
lines 22–23. These formulas correspond to recursive imple-
mentation of (III.11) and (III.12).

Let us comment on the inversions of the estimated error
covariance matrix̂Γi in lines 17–18. In general, the dimension
of Γ̂i is not a problem because we consider cases when
the number of neighbors is small. Precautions have still to
be taken, because even though the error covariance matrix
Γi is always positive definite, its estimatêΓi may not be
positive definite before sufficient statistics are collected. In our
implementation, we use heuristics to ensure thatΓ̂i is positive
definite.

B. Numerical Results

Numerical simulations have been carried out in order to
validate performance of the proposed distributed estimator. We
compare the our estimator with some similar estimators related
to the literature. We consider the following five estimators:

E1: K = H = (I−L)/2 whereL is the Laplacian matrix
associated to the graphG.

E2: K = 0 andH = [hij ] with hij = 1/Mi if nodei and
j are connected, andhij = 0 otherwise. Thus, the
updated estimate is the average of the measurements.

E3: K = [kij ], where kii = 1/2Mi, kij = 1/Mi if
node i and j are connected,kij = 0 otherwise,
whereasH = [hij ] with Hii = 1/2Mi, andhij = 0
elsewhere. This is the average of the old estimates
and node’s single measurement.



(a)
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(b)

Fig. 2. Topology of the networks withN = 25 nodes (on the left) and
N = 35 (on the right) used in the simulations. For the network withN = 35,
three nodes are highlighted, corresponding to the identifier 12, 18, and23.
They have the following number of neighbors:|N12| = 2, |N18| = 8, and
|N23| = 15. The node with maximum degree in all the network is node23.

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

Measurements

E1: Laplacian based

E2: Average ofu

E3: Average ofx andui

E4: Average ofx andu

Ep: Proposed Estimator

t

t

t

t

t

t

x
i
(t

)
i
=

1
,

.
.

.
,

N
x

i
(t

)
i
=

1
,

.
.

.
,

N
x

i
(t

)
i
=

1
,

.
.

.
,

N
x

i
(t

)
i
=

1
,

.
.

.
,

N
x

i
(t

)
i
=

1
,

.
.

.
,

N
u

i
(t

)
i
=

1
,

.
.

.
,

N

Fig. 3. Plots showingN = 35 realizations of the measurements and estimates
at each node for each estimator.

E4: K = H with kij = 1/2Mi if node i and j
are connected, andi = j. The updated estimate
is the average of the old estimates and all local
measurements.

Ep: The estimator proposed in this paper.

The estimatorsE1, . . . , E4 are based on various heuristics.
They are related to proposals in the literature, e.g.,E1 uses
filter coefficients given by the Laplacian matrix, cf., [12]–
[14]. It is important to note, however, that in general the
weights based on Laplacian do not ensure the minimization
of the variance of the estimation error. Notice that we did
not consider the centralized solution. Although this wouldbe
interesting, it is computationally difficult to solve problemP1

at each time step for each node, even for small networks.
We have benchmarked the estimators with various test

signalsd. Here we limit the discussion to a specific case. We
suppose that we know a bound∆ on the variation ofd. We set
∆ to be10% larger than its actual value. We have chosen the
desired average SNR toΥ = 10, see Section II. We consider
the two networksG25 and G35 with N = 25 andN = 35
nodes, respectively, shown in Figure 2. These networks are
obtained by distributing the nodes randomly over a squared
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Fig. 4. Zoom of some of the curves in Figure??. In particular, we plot the
measurements and estimates of the nodes12, 18 and23 having the minimum
degree, degree equal to the average degree of the network, and maximum,
respectively (see Figure 2). In thick solid curve is shown the signald(t). The
dashed curves show the measurement and estimate at node 12, in dash-dotted
those at node 18 and the solid curves show those at node 23. Thehorizontal
lines in the the top-left figure are the interval within whichthe estimates
variate. We chose to have different scales to make more clear the estimation
process.

area of sizeN/3. The graph is then obtained by letting two
nodes communicate if their relative distance is less than

√
N .

We discuss in detail the distributed estimator over the net-
work networkG35. Measurements and estimates for all nodes
are shown in Figure 3. Clearly, the measurements are quite
noisy, and in particularσ2 = 1.5. All estimators,E1, . . . , E4

and Ep, are able to track the signal, but the quality of the
estimates are varying quite a bit. It is evident thatE1 and
E2 give the worst estimates, whileEp performs best. The
relative performance betweenE1, . . . , E4 is rather obvious
given how their estimate is constructed, e.g.,E2 simply take
the average of the measurements whileE4 averages over
both measurements and estimates. By choosing the weights
appropriately, we see that the proposed estimatorEp gives
substantially lower estimation variance. Figure 4 shows a
zoom of Figure 3 for the time interval[350, 450]. The figure
compares the measurements and estimates of the three nodes
highlighted in Figure 2. These nodes represent the node with
minimum connectivity (dashed curve), average connectivity
(dash-dotted curve) and maximum connectivity (solid curve).
The thick line correspond tod. Note that the node with low
connectivity is not followingd very well. We also see that
the estimate produced byE3 has a quite substantial bias.
In general, we have observed through extensive simulations
thatE3 work well for low-frequency signals to track, whereas
E4 works better for signal with higher frequency. Numerical
studies of various networks confirm the type of behaviors we
see in Figures 3 and 4.

V. CONCLUSIONS

In this paper, we have presented a fully distributed minimum
variance estimator for wireless sensor networks. The purpose



of such estimator is accurate tracking of a time varying
signal using noisy measurements. A mathematical framework
is proposed to design a filter, which runs locally in each node.
It only requires a cooperation among neighboring nodes. In
order to obtain a minimum variance estimator, we started from
a centralized optimization problem, and then we converted it
into a decentralized problem transforming global constraints
into distributed ones. The filter structure is composed by a
cascade of two blocks: the first block computes the estimator
coefficients at each time instance, and the second block esti-
mates the error covariance matrix needed, by the first block,at
next step. The estimator coefficients are designed such thatthe
local behavior of a node ensures the overall estimation process
to be stable. We showed that the distributed estimator is stable,
with mean and variance of the estimation error bounded.
Numerical results proved that our filter outperforms existing
solutions proposed in literature, as well as other heuristic
solutions. Future work includes stability analysis of the filter
with respect to packet losses, and experimental validationin
our laboratory setting.
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