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Abstract: This paper proposes a feedback design that effectively copes with uncertainties
for reliable epidemic monitoring and control. There are several optimization-based methods
to estimate the parameters of an epidemic model by utilizing past reported data. However,
due to the possibility of noise in the data, the estimated parameters may not be accurate,
thereby exacerbating the model uncertainty. To address this issue, we provide an observer design
that enables robust state estimation of epidemic processes, even in the presence of uncertain
models and noisy measurements. Using the estimated model and state, we then devise optimal
control policies by minimizing a predicted cost functional. To demonstrate the effectiveness of
our approach, we implement it on a modified SIR epidemic model. The results show that our
proposed method is efficient in mitigating the uncertainties that may arise.

1. INTRODUCTION
Since the onset of the SARS-CoV-2 outbreak, there has
been a surge of interest in epidemic processes from many
fields including the controls community. These works typ-
ically consider analysis, parameter identification, state es-
timation, forecasting, and/or control of a particular com-
partmental model that may or may not be networked, e.g.,
(Paré et al., 2020). Further, there is also a rich body of
literature from the controls field prior to the COVID-19
Pandemic (Nowzari et al., 2016; Mei et al., 2017; Paré
et al., 2018). In this work, we present a unified framework
for parameter estimation, state estimation, and optimal
control on a generic class of nonlinear models that includes
most of the deterministic epidemic models.

The parameter and state estimation problems are ques-
tions of identifiability and observability, respectively. Con-
ventionally, differential geometric techniques were em-
ployed for obtaining sufficient conditions that verify these
notions for nonlinear systems (Grewal and Glover, 1976).
On the other hand, to obtain necessary and sufficient
conditions, Diop and Fliess (1991) introduced differential
algebraic methods for identifiability and observability. The
concepts were further developed and applied to biological
models later (Audoly et al., 2001; Saccomani et al., 2003).
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Once identifiability has been verified, the parameters must
be estimated, for which several methods exist in the liter-
ature. Most common among them are the gradient-based
and Newton-type methods like Levenberg–Marquardt and
trust region reflective algorithms (Ljung, 1999). For some
basic epidemic models, like SIR, explicit expressions for
parameters are derived by Hadeler (2011) and Magal and
Webb (2018). These ideas have also been explored for
networked epidemics (Paré et al., 2020). However, if the
state variables in those expressions cannot be directly
measured, these techniques cannot be employed.

On the other hand, constrained optimal control is also
a rich area of research with two techniques typically
employed in practice. The first one is to use Pontryagin’s
minimum principle for computing the optimal control
trajectory. However, in general, this principle is only a
necessary condition of optimality. It is sufficient only
in the case when the Hamiltonian functional is convex
in the state variable. A practically superior method to
solve these types of problems is to convert them to a
constrained nonlinear optimization problem and use a
numerical solver. Optimal control has been employed for
epidemic mitigation before, e.g., (Köhler et al., 2021).

Unlike parameter estimation and optimal control, the
literature on state estimation of epidemic processes is
lacking. Designing robust observers to accurately estimate
the current state of the epidemic model is the missing
component in the feedback optimal control. However, due
to being nonlinear, observer design for epidemic processes



is quite challenging. Extended Kalman filtering techniques
(Rajaei et al., 2021) are based on linearization and can
only provide local guarantees. Therefore, one must know
the initial state quite accurately to obtain a good state
estimate when using these techniques. On the other hand,
observer design techniques for general nonlinear systems
with global guarantees turn out to be very conservative
for epidemic models (Niazi and Johansson, 2022).

Our main contributions include the extension of the ob-
server proposed by Niazi and Johansson (2022) and pro-
viding robust guarantees under uncertainties. Moreover,
devising optimal epidemic policies using state estimates
from the observer is another novelty. Our simulation re-
sults demonstrate that incorporating a robust observer in
the feedback loop yields more reliable epidemic control.

The rest of the paper is organized as follows. Section 2
formulates the problem of interest. Section 3 outlines
the proposed framework and Section 4 provides necessary
background. Section 5 presents our proposed algorithm for
robust state estimation and Section 6 demonstrates our
method on a modified SIR epidemic model.

Notations. The Euclidean norm of x P Rn is denoted as
}x}

.
“
?
xJx. For a function w P L8pR;Rnq, the essential

supremum norm }w}8
.
“ ess suptPR }wptq}. By wrt0,t1s, we

denote the restriction of w to rt0, t1s for some t1 ą t0.
The maximum singular value of M P Rnˆm is denoted
as σmaxpMq. An identity matrix of size n ˆ n is In. For
M P Rnˆn, sympMq .

“ M `MJ, and M ě 0 (M ą 0)
means that M is positive semi-definite (resp., definite).

2. PROBLEM DEFINITION
We consider a class of deterministic epidemic models

9xptq “ Axptq `GfpHxptq, uptqq (1a)
yptq “ Cxptq (1b)

where xptq P X Ă Rnx is the state, uptq P U Ă Rnu

is the control input, and yptq P Rny is the measured
output. Each element xiptq of the state vector corresponds
to a different epidemic variable or compartment, and each
element yiptq of the output vector corresponds to a certain
measurable epidemic variable. On the other hand, each
element uiptq of the input vector corresponds to a certain
pharmaceutical or non-pharmaceutical interventions like
improving medical facilities, testing and isolation, quaran-
tining, vaccination, lockdown, social distancing, and travel
restrictions, which can be enforced by a public authority.

We have A P Rnxˆnx , G P Rnxˆng , C P Rnyˆnx with
A
.
“ Apθq, G

.
“ Gpθq, C

.
“ Cpθq

where θ is the vector of epidemic parameters. The matrix
H P t0, 1unHˆnx is known and specifies the state variables
involved in the nonlinear function f : X ˆU Ñ Rnf , where
f is smooth and thus Lipschitz continuous on a compact
domain X ˆU . That is, for every x, x̂ P X and u P U , there
exists ` ě 0 such that

}fpHx, uq ´ fpHx̂, uq} ď `}Hx´Hx̂} (2)
where

` “ sup
px,uqPXˆU

σmax

ˆ

Bf

Bx
pHx, uq

˙

. (3)

Note that f depends only on the state xptq and the input
uptq, and not on the parameters θ.
Remark 1. The class of nonlinear systems (1) captures a
variety of epidemic models in the literature. For instance,
all the basic SIS, SIR, SEIR models (Hethcote, 1989) and
their variants (Giordano et al., 2021; Niazi et al., 2021) can
be written in the form of (1a). The networked epidemic
models (Paré et al., 2020) can also written as (1a). 4

The reported data on a time interval rt0, t1s is given by
ūptq “ uptq ` δuptq (4a)
ȳptq “ yptq ` δyptq (4b)

where t0 ě 0 is the time of epidemic onset, t1 ą t0
is the current time, and δuptq and δyptq represent the
uncertainties in the input-output data. The uncertainties
δuptq and δyptq are unknown and account for clerical errors
and delays in recording and reporting the data.

Problem Statement. Given the input-output data pū, ȳq for
the past time interval rt0, t1s, we first aim to estimate the
parameters θ and the current state xpt1q of (1). Then,
based on the estimated model, we devise an optimal
control policy uptq for a future time interval rt1, t2s, t2 ą t1,
by minimizing a given cost functional

Jpxrt1,t2s, urt1,t2sq
.
“

ż t2

t1

qpx, u, tqdt (5)

subject to a set of specified constraints
ripxrt1,t2s, urt1,t2sq “ 0, i “ 1, 2, . . . , k
sjpxrt1,t2s, urt1,t2sq ď 0, j “ 1, 2, . . . , l

(6)

where xrt1,t2s
.
“ xpt, u; x̂t1 , θ̂q is the predicted state trajec-

tory obtained by integrating (1a) for t P rt1, t2s using the
values of estimated parameters θ “ θ̂ and choosing the
initial condition as the estimated state xpt1q “ x̂t1 .

3. OUTLINE OF THE PROPOSED METHOD
Given the past input-output data (4) and the cost func-
tional (5) with constraints (6), the proposed feedback
design for (1) has three main constituents.
(1) Parameter estimation. Given the past input-

output data pūptq, ȳptqq, for t P rt0, t1s, we estimate
the model parameters θ by solving

θ̂ “ arg min
θPΘ

ż t1

t0

}ȳptq ´ ypt, ū; θq}dt (7)

where ypt, ū; θq is the output of (1) at time t given
the parameters θ.

(2) State estimation. Given the past input-output data
pūptq, ȳptqq, for t P rt0, t1s, we design a state observer
that estimates the current state xpt1q by using the
estimated parameters θ̂ in (1).

(3) Optimal control: Given the estimated model (1)
with parameters θ̂ and the state x̂pt1q, we solve

u˚ptq “ arg min
uPU

Jpx, uq (8a)

subject to (6) and
#

9x“Apθ̂qx`Gpθ̂qfpHx, uq

t Prt1, t2s, xpt1q “ x̂pt1q

where the cost functional Jpx, uq is defined in (5).
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Fig. 1. Block scheme of optimal feedback control.

4. BACKGROUND MATERIAL
In this section, we introduce notions of identifiability
and observability, and describe techniques to solve the
parameter estimation and optimal control problems.
4.1 Verifying identifiability and observability
Identifiability is necessary for estimating model parame-
ters from the input-output data pū, ȳq. If the model has
non-identifiable parameters, then it is not possible to esti-
mate them uniquely (Saccomani et al., 2003).
Definition 2. System (1) is locally identifiable if, for almost
any parameter vector θ P Θ, there exists a neighborhood
N pθq Ď Θ such that, for every θ̂ P N pθq,

ypt; θq “ ypt; θ̂q,@t ě 0 ô θ “ θ̂.

On the other hand, the notion of observability guarantees
whether or not input-output data contains sufficient infor-
mation about the system’s state (Bernard et al., 2022).
Definition 3. System (1) is locally observable if, for any
τ ě 0 and almost any xpτq P X , there exists a neighbor-
hood N pxpτqq P X such that, for every x̂pτq P N pxpτqq,
ypt, u;xpτqq “ ypt, u; x̂pτqq,@t P rτ,8q ô xpτq “ x̂pτq.

Identifiability and observability of (1) are required for
the well-posedness of the parameter and state estimation
problems, respectively. To verify these notions for (1), we
employ the GenSSI algorithm proposed by Ligon et al.
(2018), which tests the injectivity of the observation map
obtained by taking Lie derivatives of the output.
4.2 Solving the parameter estimation problem
Once identifiability of the system has been verified, the
parameters must be estimated. To carry out this process,
optimization algorithms like Levenberg-Marquardt (Moré,
1978) and trust region (Byrd et al., 1987) can be used.
4.3 Solving the optimal control problem
In order to solve (8), we convert it to a constrained
nonlinear optimization problem (Betts, 2010) and use
interior point (Byrd et al., 1999) or trust region reflective
(Coleman and Li, 1994) methods.
5. ALGORITHM FOR ROBUST STATE ESTIMATION
The main challenge in the proposed scheme (Figure 1)
is the state estimation problem. Existing observer design
techniques for the state estimation of epidemic processes
are quite conservative and often turn out to be infeasi-
ble (Niazi and Johansson, 2022). Moreover, observers for

epidemic models are often designed for specific compart-
mental models and cannot be adapted to other models.
Here, we extend an observer for general epidemic models
proposed by Niazi and Johansson (2022) to include model
uncertainties and measurement noise.

After estimating the parameters from the data (4), (1) can
be written as an uncertain nonlinear system

9xptq “ Âxptq ` ĜfpHxptq, ūptqq ` wptq (9a)

ȳptq “ Ĉxptq ` vptq (9b)
where wptq P Rnx is the model uncertainty, vptq P Rny is
the measurement noise, and

Â
.
“ Apθ̂q, Ĝ

.
“ Gpθ̂q, Ĉ

.
“ Cpθ̂q.

Notice that the model uncertainty and measurement noise
result from the uncertainties in the input-output data and
the parameter estimation error θ ´ θ̂.

Consider the observer proposed by Niazi and Johansson
(2022):

9zptq “Mzptq ` pML` Jqȳptq `NĜfpqptq, ūptqq (10a)
x̂ptq “ zptq ` Lȳptq (10b)

ŷptq “ Ĉx̂ptq (10c)
where qptq .

“ Hx̂ptq ` Kpȳptq ´ ŷptqq, J, L P Rnxˆny and
K P RnHˆny are matrices to be designed, and

M “ Â´ LĈÂ´ JĈ, N “ Inx
´ LĈ.

Here, zptq P Rnx is the observer’s state, and x̂ptq P Rnx

and ŷptq P Rny are the state and output estimate of (9).

Consider the semidefinite programming (SDP) problem:
minimize µ subject to (11a)
„

sympPÂ´RĈÂ´ SĈq `Q pP ´RĈqĜ

GJpP ´RĈqJ ´Inf



ă 0 (11b)
„

´Q pH ´KĈqJ

H ´KĈ ´ 1
`2 InH



ď 0 (11c)
„

´µInx
R

RJ ´Iny



ď 0 (11d)

P “ PJ ą 0 and Q “ QJ ą 0 (11e)
where ` is the Lipschitz constant obtained from (3), and

J “ P´1S, L “ P´1R.

Theorem 4. If the SDP problem (11) is feasible, then there
exist a KL function β and K8 functions α1, α2 such that
the estimation error satisfies

}xpt1q ´ x̂pt1q} ď βp}xpt0q ´ x̂pt0q}, t1q

` α1p}wrt0,t1s}8q ` α2p}vrt0,t1s}8q.

See (?) for the proof.

The above theorem implies that the state estimation
error is stable with respect to the data and parameter
uncertainties. Particularly, the noise attenuation is directly
related to the parameter µ in (11). Moreover, in the
absence of uncertainties, the estimate x̂pt1q asymptotically
converges to the true xpt1q given that t1 is sufficiently
large. As a result of the KL function β, the transient error
resulting from the poor choice of x̂pt0q also converges to
zero asymptotically.
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Fig. 2. Block diagram of SIDHER epidemic model.

Table 1. Description of unitless control inputs.

Control Description

u1 Stringency of NPIs
u2 Proportion of medical resources dedicated
u3 Testing capacity per population
u4 Vaccination capacity per population

Table 2. Description of parameters.

Parameter Description Unit

β Infection rate 1/day
γ Recovery rate of undetected cases 1/day
ρ Recovery rate of detected cases 1/day
σ Recovery rate of hospitalized cases 1/day
ξ Mortality rate of hospitalized cases 1/day
λ Rate at which people lose immunity 1/day
φ Hospitalization rate 1/day
τ Testing rate of undetected cases 1/day
ν Vaccination rate of susceptible cases 1/day

6. APPLICATION TO SIDHER EPIDEMIC MODEL
In this paper, we demonstrate the proposed method on
an SIDHER epidemic model. After providing the model
design, we implement the proposed method step-by-step
and provide the simulation results.
6.1 Model design
We consider an SIDHER epidemic model (Susceptible,
Infected, Detected, Hospitalized, Extinct, and Recovered),
which is illustrated in Figure 2 and given by

9Sptq “ λRptq ´ βSptqIptqp1´ u1ptqq ´ νSptqu4ptq (12a)
9Iptq “ ´γIptq ` βSptqIptqp1´ u1ptqq ´ τIptqu3ptq (12b)
9Dptq “ ´pρ` φqDptq ` τIptqu3ptq (12c)
9Hptq “ ´ξHptqp1´ u2ptqq ` φDptq ´ σHptqu2ptq (12d)
9Eptq “ ξHptqp1´ u2ptqq (12e)
9Rptq “ ´λRptq ` γIptq ` ρDptq ` νSptqu4ptq ` σHptqu2ptq

(12f)
where all the state variables Sptq, Iptq, Dptq, Hptq, Eptq, Rptq P
r0, 1s, control input uptq “ r u1ptq u2ptq u3ptq u4ptq s

J

explained in Table 1, and the parameters are in Table 2.
Note that, for every t ě 0,

Sptq ` Iptq ` Dptq ` Hptq ` Eptq ` Rptq “ 1. (13)

Measured outputs. The model outputs are the following:

‚ y1 “ νS: Since we measure the proportion of popu-
lation vaccinated per day νSu4 and the vaccination
capacity u4 is known, we obtain the output y1 by
dividing both.

‚ y2 “ τI: Since we measure the proportion of popula-
tion tested per day τIu3 and the testing capacity u3

is known, we obtain the output y2 by dividing both.
‚ y3 “ D: Active number of detected infected cases.
‚ y4 “ ρD: Daily number of cases recovering after
detection.

‚ y5 “ φD: Daily number of cases hospitalized after
being detected.

‚ y6 “ H: Active number of hospitalized cases.
‚ y7 “ σH: Daily number of cases recovering after
hospitalization.

‚ y8 “ ξH: Daily number of deaths.
‚ y9 “ E: Total number of deaths.
‚ y10 “ S` I` R: Since (13) holds and D, H, E are mea-
sured, we can obtain the output y10 by subtracting
D` H` E from 1.

Model in vector form. We can write the model (12) in the
form (1) with fpHx, uq “ r SI SIu1 Hu2 Iu3 Su4 s

J and
the corresponding pA,Cq pair is an observable (see (?) for
the matrices and more details on the simulation setup and
assumptions).

Identifiability and observability. Identifiability and observ-
ability of (12) is verified by the GenSSI software (Ligon
et al., 2018) in MATLAB. See Fig. 3 for the zero-pattern
structure of the Jacobian of the observability and identifi-
ability map. The black boxes in the figure represent non-
zero terms of the Jacobian, whereas white area represents
zero terms. From the figure, it can be seen that the Jaco-
bian has full generic rank, thus implying structural identifi-
ability and observability. Therefore, it can be inferred that
for almost all values of the initial states and parameters,
(12) is at least locally identifiable and observable.
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Fig. 3. Observability and identifiability tableau.

6.2 Simulation results
Data generation. We generate noisy synthetic data by
simulating the model (12) for t P rt0, t1s, where t0 “ 0
and t1 “ 30 days, with “true” parameters provided in
Table 3 to illustrate the proposed method. The input-
output data pū, ȳq is corrupted with white Gaussian noise
that is sampled from N p0, 10´6q. The nominal input is
chosen as

uptq “

»

—

—

–

0.01rsinpt{2qu` 0.015
0.01rcospt{2qu` 0.015
0.01rsinpt{3qu` 0.015
0.01rcospt{3qu` 0.015

fi

ffi

ffi

fl

.



The true initial state is chosen to be
xt0 “ r 0.999 10´3 10´6 0 0 0 sJ

which is only used for data generation and is not known
by the parameter and state estimation algorithms.

Parameter estimation. The parameters ρ, φ, σ, ξ can be
estimated using the least square solution by

ρ̂ “

ż t1

t0

ȳ3ptq
Jȳ4ptq

ȳ3ptqJȳ3ptq
dt, φ̂ “

ż t1

t0

ȳ3ptq
Jȳ5ptq

ȳ3ptqJȳ3ptq
dt

σ̂ “

ż t1

t0

ȳ6ptq
Jȳ7ptq

ȳ6ptqJȳ6ptq
dt, ξ̂ “

ż t1

t0

ȳ6ptq
Jȳ8ptq

ȳ6ptqJȳ6ptq
dt.

The data ȳ is discrete and can be interpolated for comput-
ing the above integrals. By fixing these estimated param-
eters, the remaining parameters are estimated using the
nlgreyest function from the System Identification Tool-
box in MATLAB employing the Trust-Region-Reflective
Algorithm. See Table 3 for the estimated parameters.
Notice that, for parameter estimation, we do not know
the true initial state xt0 . Instead, we guess the initial state
appropriately, where St0 is chosen uniformly at random
from r0.95, 1s; It0 from r0, 0.05s; Dt0 , Ht0 , Et0 are obtained
from y3pt0q, y6pt0q, y9pt0q; and Rt0 is obtained from (13).

Table 3. Model parameters.

Parameter True value Estimated value

β 0.3500 0.3530
γ 0.1000 0.0981
ρ 0.0500 0.0501
σ 0.0400 0.0399
ξ 0.0200 0.0202
λ 0.0167 0.0383
φ 0.1429 0.1428
τ 0.3000 0.2757
ν 0.0100 0.0100

Note that since the system (12) is locally identifiable, and
the parameter estimation problem (7) is non-convex, the
solution obtained in Table 3 might be local.
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Fig. 4. State estimation by the proposed observer.

State estimation. After obtaining the estimated parame-
ters, we employ the observer (10) for estimating the state
of (12). The observer is designed by solving (11), which
yields the design matrices J,K,L. The result of the state
estimation method is demonstrated in Fig. 4. It can be
seen that the observer converges very closely to the true
state within three days of the epidemic outbreak.

Optimal control. In the optimal control problem, we choose
the cost functional (5) as

Jpx, uq “

ż t2

t1

`

xptqJΓxptq ` uptqJΛuptq
˘

dt

where Γ ě 0 and Λ ą 0 are chosen to be
Γ “ diagp0.01, 1, 0, 2, 10, 0q

Λ “ diagp0.01, 0.01, 0.01, 0.01q.

In short, we would like to minimize the susceptible, in-
fected, hospitalized, and extinct cases in the time interval
rt1, t2s. The control inputs are bounded as 0 ď u1ptq ď 1,
0 ď u2ptq ď 0.9, 0.1 ď u3ptq ď 0.7, and 0 ď u4ptq ď 0.7.

The equality constraint in (6) is (12) with estimated
parameters (Table 3) and initialized at estimated state
x̂pt1q. The inequality constraints in (6) are

Iptq ´ Ī ď 0, Hptq ´ H̄ ď 0, Eptq ´ Ē ď 0

where we choose Ī “ 0.5, H̄ “ 0.05, and Ē “ 0.005.
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Fig. 5. State trajectory with optimal control input.
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Fig. 6. Sequence of optimal control input.

We use the fmincon solver in MATLAB for obtaining the
optimal solution of (8). We consider a piecewise constant
control input uptq, where uptq remains constant for a
period of 14 days. The optimal control sequence is obtained
for five such periods, i.e., the solution recommends how
the policy should be varied in the future after every
14 days. The obtained optimal control input is shown
in Fig. 6 and the resulting predicted state trajectory



in Fig. 5. Notice from Fig. 5 that the constraints on
I, H, and E are satisfied. From the forecast of E, using
the polynomial fit of the estimated trajectory, it can be
seen that the number of deaths are significantly reduced
under the optimal control algorithm. This prediction is
reliable only when, in addition to the parameters, the
current state xpt1q is accurately estimated. The results
may vary significantly if the unmeasured states are not
chosen accurately. From Fig. 6, we can see that the optimal
controller recommends to enact a full lockdown for the first
four weeks to suppress the epidemic growth ( 9I ă 0). The
lockdown is then lifted gradually by increasing the testing
and vaccination capacities. On the other hand, to avoid
the number of deaths and to satisfy the hard constraint
Eptq ď Ē, the optimal controller recommends to employ
full medical resources throughout the finite future horizon.

7. CONCLUDING REMARKS

We presented a unified framework for feedback optimal
control of epidemic processes via a general class of nonlin-
ear compartmental models. For the parameter estimation
and constrained optimal control, we employed existing
methods and techniques from system identification and
optimal control theory. For the state estimation, however,
the proposed robust observer design criteria is a novel con-
tribution of this paper. By considering a realistic epidemic
model, we demonstrated how optimal control policies can
be devised by employing the proposed feedback design.
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