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ABSTRACT This paper considers distributed allocation strategies, formulated as a distributed sum-
preserving (fixed-sum) allocation of resources over a multi-agent network in the presence of heterogeneous
arbitrary time-varying delays. We propose a double time-scale scenario for unknown delays and a faster
single time-scale scenario for known delays. Further, the links among the nodes are considered subject
to certain nonlinearities (e.g, quantization and saturation/clipping). We discuss different models for non-
linearities and how they may affect the convergence, sum-preserving feasibility constraint, and solution
optimality over general weight-balanced uniformly strongly connected networks and, further, time-delayed
undirected networks. Our proposed scheme works in a variety of applications with general non-quadratic
strongly-convex smooth objective functions. The non-quadratic part, for example, can be due to additive
convex penalty or barrier functions to address the local box constraints. The network can change over time,
is not necessarily connected at all times, but is only assumed to be uniformly-connected. The novelty of
this work is to address all-time feasible Laplacian gradient solutions in presence of nonlinearities, switching
digraph topology (not necessarily all-time connected), and heterogeneous time-varying delays.

INDEX TERMS Allocation strategies, balanced digraphs, networked constrained optimization, sum-
preserving coupling-constraint.

I. INTRODUCTION
Resource allocation strategies in the real world are subject to
possible nonlinear constraints, e.g., quantization [1], [2] over
a finite number of bits and the so-called clipping. Some works
even consider single-bit data-exchange to reduce communi-
cation loads over the network [3], [4]. Such nonlinearities,
in general, may affect the performance of the distributed
algorithms. The existing distributed optimization methods
in both constrained [5] and unconstrained settings [6], [7],
[8] are mostly linear. This paper proposes a discrete-time

algorithm for distributed resource allocation and constrained
optimization subject to link nonlinearity and heterogeneous
time delays. The problem is to optimally assign (a fixed
amount of) resources to minimize (maximize) a cost (util-
ity) function, with applications from coverage in deployment
problems over robotic networks [9] to generator coordination
for economic dispatch [10] over the energy grid, and even
network epidemics [11]. Existing literature assume ideal (lin-
ear and unconstrained) communications, i.e., the exchanged
information over a network can be of any real value. This is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2022 255

https://orcid.org/0000-0003-0959-6608
https://orcid.org/0000-0001-6029-9380
https://orcid.org/0000-0002-8737-1984
https://orcid.org/0000-0002-2525-5101
https://orcid.org/0000-0003-0753-1261
https://orcid.org/0000-0002-1706-708X
https://orcid.org/0000-0001-9940-5929
https://orcid.org/0000-0003-4800-6738


DOOSTMOHAMMADIAN ET AL.: DISTRIBUTED ANYTIME-FEASIBLE RESOURCE ALLOCATION

not practical as communication links are digital and of limited
bandwidth. In addition, communication links may experience
delays (e.g., due to packet re-transmission). Under limited
network bandwidth and/or latency, the existing solutions may
not be optimal or may lose feasibility. The feasibility con-
straint ensures the balance between assigned resources and
the overall demand. The proposed strategies can be used for
resource management over Cloud infrastructure (as in [1])
while considering heterogeneous delays over links, local box
constraints on the states, and quantized (discrete-valued) com-
munications among the servers.

A. RELATED LITERATURE
The classical work in the context of constrained distributed
optimization mainly assume linear and ideal communication
and data transmission, e.g., see the seminal work by [12]
which considers a Laplacian-based constraint on the states.
Some recent works consider unconstrained distributed opti-
mization [13] and consensus optimization [14] subject to com-
munication delays, resource allocation over open networks
subject to arrivals/departures of nodes [15], and double aver-
aging and projection-based solutions over static digraphs [16].
Bit allocation for distributed optimization setups is also con-
sidered in [17]. In resource allocation, solution feasibility is
crucial for the resource-demand balance (at the termination
point of the algorithm) to avoid service disruption and even
system breakdown [18]. The Laplacian gradient solutions
benefit from anytime feasibility [10], [18], i.e., the sum-
preserving equality-constraint holds at all iterations of the
algorithm, in contrast to asymptotic feasibility in the primal-
dual and ADMM-based solutions [19], [20], [21], [22], [23].
Some other concerns in distributed resource allocation are: (i)
uniform-connectivity in case of dynamic and sparse mobile
networks in contrast to all-time connectivity [19], [20], [21],
[22], [23]. (ii) Latency over the network to account for possi-
ble time-varying heterogeneous delays due to data exchanges
over unreliable communication links between agents or even
asynchronicity between the nodes. The time-delays may even
cause feasibility gap in the allocation algorithm [24]. Finally,
(iii) possible nonlinearities in the model mainly due to quan-
tization [1] and discrete-value optimization [2] in contrast to
the ideal linear models.

Some example resource-allocation applications include
economic dispatch and generation control over the smart-
grid [10], [25], [26], [27] and CPU scheduling over the
network of data centers [1]. Apart from these quadratic mod-
els, some other works also address possible non-quadratic
objectives [28], [29], [30] to span more application scenarios.
In general, nonlinear dynamics (either inherent to the system
model or additive constraints due to limited capacity/storage)
are prevalent in practical applications and cannot be addressed
with the existing linear algorithms. Some examples are: the
ramp-rate-limit on the generators’ dynamics for automatic
generation control [27], impulsive-noise resiliency in consen-
sus algorithms [31], or convergence in finite/fixed-time [4].

Quantization or clipping (and general strongly sign-
preserving odd nonlinearities) over dynamic networks while
satisfying distributed anytime-feasibility in presence of (pos-
sible) time-delays are not addressed in the existing opti-
mization works (to our best knowledge). For example, the
work [24] addresses homogeneous time-delays at all links
with some feasibility-gap over switching undirected (all-time)
connected graphs. Possible local box constraints on the states
may add even more complexity to the model [18]. Recall that
some of the mentioned model constraints are discussed in
consensus literature [2], [3], [4], [31], [32], [33], but not well-
addressed in their general form in the networked optimisation
research and this paper fills the gap.

B. MAIN CONTRIBUTIONS
The proposed distributed allocation protocol in this work is (i)
anytime-feasible (or primal feasible) and (ii) with the possi-
bility to address nonlinear factors on the exchanged data over
the network, due to, e.g., utilization of quantized values for
more efficient usage of network resources or limited avail-
able bandwidth that may cause clipping. In such nonlinear
setups, the existing linear methods may fail the feasibility con-
straint or converge to a sub-optimal solution (or even diverge).
Our nonlinear model converges (a) exactly under logarith-
mic quantization (as a sector-bounded nonlinearity) and (b)
with ε-accuracy under uniform quantization (as a non-sector-
bounded nonlinearity). In the uniform quantization case, we
find the quantization level to ensure convergence to the ε-
neighborhood of the optimizer and meet certain ε-accuracy.
Our solution paves the way for the use of bandwidth-limited
or fast bandwidth-efficient algorithms subject to quantized
values or to address the trade-off between ε-accuracy and
the limit on the network bandwidth. We derive the general
sufficient condition on the nonlinear mapping to preserve all-
time feasibility in presence of latency and nonlinearities, and
converge to the exact optimizer or within its ε-neighborhood.
Further, (iii) we take possible data-exchange delays into ac-
count and provide two solutions for known and unknown
heterogeneous time delays over the network. We explicitly
find a (sufficient) max bound on the time-varying delays to
not violate the algorithm convergence (for a given step rate).
Our delay-tolerant algorithm leads to no feasibility gap under
a general heterogeneous framework (and odd sign-preserving
nonlinearities). Further, (iv) this work accounts for possible
change and dis-connectivity of the network, i.e., uniform-
connectivity instead of all-time network connectivity as in [1],
[18], [24]. We provide (quadratic) CPU scheduling subject to
quantized data transmission as an example application, even
though the solution works for general non-quadratic models.
To our best knowledge, no work in the literature addresses the
contributions (i)-(iv) altogether.

C. PAPER ORGANIZATION
Section II states the problem, definitions, and preliminary
lemmas. Sections III and IV provide the proposed distributed
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nonlinear protocols and the proof of feasibility and conver-
gence under latency. Section V presents the simulation results
and Section VI concludes the paper.

II. PROBLEM STATEMENT
General Notation: ‖ · ‖2 denotes the 2-norm. “;” denotes
the column vector concatenation. The gradient is defined
as ∇F (x) := [ df1(x1)

dx1
; . . . ; dfn(xn )

dxn
]. ≺,�,�,� denote the

element-wise version of <,≤,>,≥ operator for vectors.
span{·} denotes the linear span of a vector. 1n and 0n are
vectors of all 1 s and 0 s of size n, respectively. RHS and LHS
abbreviate right-hand-side and left-hand-side (of an equation).
(·)
 denotes the transpose.

The constrained optimization problem considered in this
paper is in the following general mathematical form:

P0 : min
y

F̂ (y) =
n∑

i=1

f̂i(yi ), s.t.
n∑

i=1

aiyi = b, (1)

with y = [y1; . . . ; yn] ∈ Rn and yi as the resource assigned
(or to be assigned) to the agent i. The fixed parameter b ∈
R represents the fixed amount of total resources, and a =
[a1; . . . ; an] ∈ Rn+ is a general weighting vector. The function
f̂i(yi ) at agent i represents the cost as a function of assigned
resources to agent i. By change of variable as xi = aiyi, the
problem turns into the following simpler (sum-preserving)
form:

P1 : min
x

F (x) =
n∑

i=1

fi(xi ), s.t.
n∑

i=1

xi = b, (2)

where fi(xi ) = f̂i(
xi
ai

). The cost functions fi : R �→ R are

strongly-convex1 and smooth at all agents. This is defined
later in the following assumption. We make the following
assumption on the objective function.

Assumption 1: The local objectives fi(xi ) : R → R,
i ∈ {1, . . . , n} are strongly convex, proper, and closed with

locally Lipschitz derivatives such that 2v <
d2 fi (xi )

dx2
i

< 2u with

u ≥ v > 0.
Note, however, that the assumption of strong convexity

is for determining the algorithm’s convergence rate, while

strict convexity 0 < d2 fi (xi )
dx2

i
is sufficient for the proof of con-

vergence. For quadratic cost strong and strict convexity are
equivalent. The ratio u

v
≥ 1 in Assumption 1 is referred to

as the condition number of fi and, for example, equals to
1 for quadratic objective functions (e.g., for CPU schedul-
ing), which may affect the rate of convergence in general
distributed optimization problems [34].

In some applications, there are certain box constraints on
the states as mi ≤ xi ≤ Mi. One can remove such constraints
in P1 by adding some convex penalty functions [35] or barrier
functions [18], [36] (as discussed later). Recall that the sum

1Our results are valid for general strictly-convex smooth functions. For the
proof of convergence strict convexity is sufficient, while the assumption on
strong-convexity is for the purpose of determining the convergence rate.

of the strongly convex fi(·) and a convex penalty function is
strongly convex2. In general, the penalty and barrier functions
are convex but not necessarily quadratic, and adding them to
the objective function makes it non-quadratic. Therefore, such
problems cannot be addressed by general consensus-based
solutions assuming a quadratic cost model, e.g., the solution
by [1]. Some examples of general non-quadratic costs are
given in [38] for linear dynamics, where no node/link non-
linear constraint is addressed.

In distributed resource allocation, the idea is to assign re-
sources to the agents in order to solve P1 in a distributed
fashion and based on the local data exchange in the neigh-
borhood of agents3 (see examples in Section V). However, in
practical applications, some constraints on the states or non-
linearities on the agents’ dynamics may affect the convergence
and solution optimality; for example, when the states take dis-
crete (quantized) values or the communication bandwidth is
limited. The main contribution of this work is to address how
such possible nonlinearities and constraints can be addressed
in the proposed distributed solution. Further, the conditions
to reach the exact optimizer of P1 need to be defined. For
example, suppose the exact optimizer cannot be reached under
certain conditions. In that case, we need to determine the ε-
bound on the convergence, i.e., to define the furthest distance
to the optimizer x∗ that the algorithm may converge to (known
as the ε-neighborhood bound [39]).

In many existing solutions, participating nodes are assumed
to be interconnected with undirected communication links.
This means that the network topology forms a connected
undirected graph. Note, however, that the results of this pa-
per are suitable for balanced dynamic directed graphs as
well, where the network topology may change over time,
i.e., our results are valid over uniformly-connected digraphs
with balanced (not necessarily bi-stochastic) weights on the
incoming and outgoing links. Considering (possibly delayed)
information exchange due to time delays while simultane-
ously handling anytime-feasibility is another contribution of
our work. Anytime (or all-time) feasibility implies that the
coupling resource-demand constraint in (2) holds at all times
and at any termination point of our algorithm.

A. PRELIMINARY DEFINITIONS AND LEMMAS
The network of agents is represented by graph G with weight
matrix W . Define its Laplacian matrix as L = D − W with
D = diag[

∑n
j=1 Wi j] and positive link weights Wi j > 0.

Assumption 2: Network G(k) is weight-balanced, i.e.,
1


n W (k) = (W (k)1n)
. Further, Wii = 0 and Wi j > 0. The
union of the network over every finite time-interval of length

2In the presence of general local constraints, the transformation from (1) to
(2) by change of variables needs certain condition regarding the composition
convexity to be addressed. See [37, Section 3.2.4] for details.

3We assume synchronous clocks (and communication) over the network as
in many other existing literature.
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B, i.e., GB = ⋃k+B
k G(k) for k ≥ 0, is strongly-connected,

which is known as uniform-connectivity or B-connectivity4.
Such weight-balanced digraphs (and their weight matrices

W ) can be designed using, e.g., the algorithm in [40].
Lemma 1: For a weight-balanced graph G, its Lapla-

cian matrix L is positive semi-definite. Let y1 ∈ Rn,

y1 := y1 − 1

n y1
n 1n, and λn, λ2 as the largest and smallest

non-zero (real) eigenvalue of Ls = L + L

2 . Then, the following

Laplacian disagreement function satisfies,

y

1 Ly1 = y


1 Lsy1 = y

1 Lsy1, (3)

λ2‖y1‖2
2 ≤ y


1 Lsy1 ≤ λn‖y1‖2
2 (4)

Further, given y2 = g(y1) ∈ Rn as a (element-wise) mono-
tonic function of y1 such that, for ith element of y1, y2, 0 <
κ ≤ y2 i

y1 i
≤ K and (y2i − y2 j )(y1i − y1 j ) ≥ 0 for all i, j, we

have

λ2κ‖y1‖2
2 ≤ y


2 Lsy1 ≤ λnK‖y1‖2
2 (5)

Proof: The proof of (3) and (4) follows from [41]. We
prove (5) in the following.

y

2 Lsy1 = y2


Lsy1 = 1

2

n∑
i, j=1

W i j (y2i − y2 j )(y1i − y1 j )

(6)

with symmetric matrix W defined as W +W 

2 . The first equality

above follows from the fact that 1

n Ls = Ls1n = 0n. Follow-

ing the (element-wise) monotonic property of y with respect
to x,

κ (y1i − y1 j )(y1i − y1 j ) ≤ (y2i − y2 j )(y1i − y1 j )

≤ K(y1i − y1 j )(y1i − y1 j )

Using the above in (6) along with (4) proves (5). �
For more information on the above, the notion of mirror

digraphs in consensus literature is insightful.
Corollary 1: For uniformly-connected network GB with

B > 0 satisfying Assumption 2, Lemma 1 can be restated for
its Laplacian LB and its largest/smallest non-zero eigenvalue
λnB, λ2B. In (3)–(5) holds for any symmetric positive semi-
definite matrix, for example L = L
L, satisfying L1n = 0n

and 1

n L = 0


n . Then, x
Lx ≤ λ2
n‖x‖2

2.
Definition 1: Define Sb = {x ∈ Rn|1


n x = b} as the set of
all feasible values for x.

Lemma 2: Under Assumption 1, P1 has a unique feasible
optimizer x∗ ∈ Sb satisfying ∇F (x∗) = ψ∗1n, ψ∗ ∈ R, and
∇F (x) /∈ span{1n},∀x �= x∗, x ∈ Sb.

Proof: The proof follows from the strong-convexity of
F (x) in Assumption 1 and the KKT condition [42]. For com-
pleteness, we give another proof based on level-set analysis.
Define the level set for γ ∈ R as Lγ (F ) := {x ∈ Rn|F (x) ≤

4In this work, the network topology is assumed time-varying, in general.
For notation simplicity, we drop the dependence of G, W , and other network
parameters on time-index k unless it is required for clarification purposes.

γ }. Assumption 1 implies that all the level sets of F (·) are
strongly convex [42], and thus, only one, say Lγ (F ), touches
the affine feasibility constraint facet Sb at only one point, say
y. Then, ∇F (y) is orthogonal to the facet Sb, and ∇F (y) ∈
span{1n}. For two points z, y ∈ Sb on level sets γ1 = F (z) >
F (y) = γ2, from [27, Lemma 1],

(∇F (z) − ∇F (y))
(y − z) > 0. (7)

By contradiction consider both ∇F (y) ∈ span{1n} and
∇F (z) ∈ span{1n}. This implies either two points (i) on the
same level set Lγ (F ), γ = F (y) = F (z) both adjacent to
the affine feasibility constraint set Sb, or (ii) on two level
sets Lγ1 (F ),Lγ2 (F ) with γ1 = F (y) �= F (z) = γ2 adjacent to
Sb. Since Sb is linear, (i) contradicts the Assumption 1 on
the strong convexity of the level sets. In case (ii), y, z ∈ Sb
implies 1


n (y − z) = 0 and (∇F (y) − ∇F (z))
(y − z) = 0
which contradicts (7). �

Note that x∗ defined in the above is assumed to follow the
box constraints, i.e., mi ≤ x∗

i ≤ Mi for all i.
Lemma 3 ([42], [43]): Consider a strictly-convex continu-

ous function F : Rn → R, two points x1, x2 ∈ Rn, and δx :=
x1 − x2. There exists x̂ := αx1 + (1 − α)x2, 0 < α < 1 such
that,

F (x1) = F (x2) + ∇F (x2)
δx + 1

2
δx
∇2F (̂x)δx.

Then, from Assumption 1, for strongly convex function F ,

F (x1) ≥ F (x2) + ∇F (x2)
δx + vδx
δx (8)

F (x1) ≤ F (x2) + ∇F (x2)
δx + uδx
δx (9)

In (8)–(9) are also known as quadratic lower and upper
bound equations. For Lipschitz continuous functions (9) refers
to the generalized Cauchy–Schwarz inequality.

Lemma 4: Define ξ (x) := ∇F (x) − 1
n

∑n
i=1

dfi (xi )
dxi

1n.
Then, for any x ∈ Sb,

1

4u
ξ
ξ ≤ F ≤ 1

4v
ξ
ξ, (10)

∇F (x)
δx = ξ (x)
δx. (11)

with F := F (x) − F∗ and F∗ as the optimal cost F (x∗).
Proof: The proof directly follows from Lemma 2. See,

e.g., [10] for the proof of (10). The proof of (11) is as follows,

∇F (x)
δx = ξ
δx + 1

n

n∑
i=1

dfi(xi )

dxi
1


n δx = ξ
δx

where the latter follows from 1

n δx = 1


n x1 − 1

n x2 for any

two feasible x1, x2 ∈ Sb. Putting x2 = x∗ and considering x1

as any feasible x ∈ Sb (11) follows. �
Note that for notation simplicity, we dropped the depen-

dence on x (also in the rest of the paper unless needed).
The next lemma follows from Assumption 1 and the fact that
strong-convexity implies strict convexity.
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Lemma 5: Let Assumption 1 hold. For any x ∈ Sb define
residual F = F (x) − F∗ and ξ (x) as in Lemma 4. Then,

v‖x − x∗‖2
2 ≤ F ≤ u‖x − x∗‖2

2, (12)

‖ξ‖2

2u
≤ ‖x − x∗‖2 ≤ ‖ξ‖2

2v
. (13)

Proof: From Lemma 3, substituting x1 = x and x2 = x∗ we
get,

∇F (x∗)
δx + vδx
δx ≤ F ≤ ∇F (x∗)
δx + uδx
δx

From Lemma 4, ∇F (x∗)
δx = ξ (x∗)
δx = 0 since ξ (x∗) =
0n from the definition. This gives (12) which, along with (10)
and taking the square roots results in (13). �

III. PROPOSED DISCRETE-TIME NONLINEAR SOLUTION
In this section, we introduce a 1st-order protocol to update
the state of agents at every time-step k, while considering
possible nonlinear models on the data transmissions. We con-
sider a group of n agents sharing information over nonlinear
(possibly) delayed links. Following a common assumption
in the literature, we assume synchronized clocks over the
multi-agent network. This can be implemented by e.g., the
fully-distributed algorithms proposed in [44], [45], [46] for
synchronization over (wireless) sensor network. At time-step
k, every agent i shares dfi (xi )

dxi
with its out-neighbors j ∈ N+

i ,

and agent j receives ϕi := g( dfi (xi )
dxi

) from in-neighbors i ∈
N−

j , where g(·) represents a nonlinear mapping due to, e.g.,
signal clipping or logarithmic quantization over the channel.
The (delay-free) information update at agent i is,

xi(k + 1) = xi(k) − η
∑

j∈N−
i

Wi j (ϕi(k) − ϕ j (k)) (14)

with k ∈ Z≥0 as the time-index, η > 0 as the step size, and
W = [Wi j] satisfying Assumption 2. In terms of implementa-
tion, at the beginning of each time slot, each node i receives
the states of its in-neighbors j ∈ N−

i and multi-casts (or
broadcasts) its own state to its out-neighbors j ∈ N+

i . Then, it
updates its state xi(k + 1) based on the received information
(and its own previous state xi(k)) as in (14). Similar to the
existing literature, we assume collision-free packets and con-
tention mechanisms to resolve this issue over the networked
busses, where the details are out of the scope of this work and
skipped here.

The vector form of the coordination protocol (14) is

x(k + 1) = x(k) − ηLϕ(k), (15)

with L as the graph Laplacian. One can consider a more
general formulation (over undirected weight-symmetric net-
works) by adding a post-processing step as a node nonlinearity
along with the nonlinearity on the links in (14). This gives a
more general formulation as,

xi(k + 1) = xi(k) − η
∑

j∈N−
i

Wi jg(ϕi(k) − ϕ j (k)), (16)

where the nonlinearities g(·) in (14) and (16) are different in
general, however, both satisfy the assumption below.

Assumption 3: The nonlinear mapping g : R → R is sign-
preserving and odd, i.e., g(z)z > 0 for z �= 0, g(0) = 0. Fur-
ther,

κ ≤ g(z)

z
≤ K, (17)

and limz→0
g(z)

z �= 0 implying that g(·) is “strongly” sign-
preserving. Further g(·) is monotonically non-decreasing.

Example nonlinearities satisfying Assumption 3 are log-
arithmic quantization [33], [47] and saturation (or clip-
ping) [27]. In this work we more focus on quantization which
is an inherent property of the network and at all the links.
It is typically assumed that these nonlinearities are generally
the same at all links; see some more examples for nonlinear
robust consensus in [31]. As we see later in this section,
the convergence of our algorithm under dynamics (14) and
(16) is proved under fixed step size η. This is a privilege in
terms of convergence rate over diminishing step sizes in some
algorithms as in [20]; see some detailed discussions on this
in [30]. Note that the exact convergence rate of (16) (and (14))
depends on the choice of the nonlinearity g(·). For example,
it is even possible to achieve convergence in fixed or finite
time by considering g(·) as sign-based nonlinearities; see, for
example, [4], [27], [48].

One immediate implication of Assumption 3 is,

κ2∇F
∇F ≤ ϕ
ϕ ≤ K2∇F
∇F, (18)

κ∇F
∇F ≤ ∇F
ϕ ≤ K∇F
∇F, (19)

where we drop the dependence on time-index k for notation
simplicity (also in the rest of the paper unless where needed).

A. PROOF OF FEASIBILITY AND CONVERGENCE
First we discuss anytime-feasibility, i.e., under initialization
x(0) ∈ Sb the solution preserves its feasibility at every k
(referred to as sum-preserving property). Under similar box
constraints at all nodes, a simple local initialization is b

n .
Under heterogeneous box constraints, one can use existing
results for establishing a feasible initialization in a distributed
way. For example, [10, Algorithm 2], provides a finite-time
algorithm to re-adjust the initial guesses (within the box con-
straints) even for a network of time-varying sizes.

Lemma 6 (Feasibility & Uniqueness): Let Assumptions 1,
2, and 3 hold. By any feasible initialization x(0) ∈ Sb, the
solution under dynamics (14) remains feasible, i.e., x(k) ∈
Sb,∀k > 0. Further, ∇F (x∗) = ψ∗1n with x∗ as equilibrium
under dynamics (14) and ψ∗ ∈ R from Lemma 2.

Proof: x(0) ∈ Sb implies that
∑n

i=1 xi(0) = b. Following
Assumptions 2 and 3, we have 1


n Lϕ(k) = 0n where the
gradient is well-defined from Assumption 1. Note that this
holds irrespective of network connectivity and is a direct re-
sult of symmetric weights and oddness of g(·). Then, from
(15),

∑n
i=1 xi(k + 1) = ∑n

i=1 xi(k) = b for all k ≥ 0. Next,
assume ∇F (x∗) = θ /∈ span{1n} and, thus, there exist nodes
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α and β ∈ N−
α over GB(k) such that θα > θβ . From (14),

xα (k + 1) < xα (k), implying that such x∗ is not an equi-
librium of (14), which is a contradiction. Thus, for the
equilibrium x∗ we have ∇F (x∗) ∈ span{1n}. Using Lemma 2
and anytime-feasibility in Lemma 6, ∀x ∈ Sb there is no other
x �= x∗ satisfying ∇F (x) ∈ span{1n}. This implies that x∗
with ∇F (x∗) = ψ∗1n is the unique equilibrium of (14). �

Theorem 1 (Convergence): Initializing from x(0) ∈ Sb and
under Assumptions 1–3, dynamics (14) converges to x∗ with
∇F (x∗) =: ψ∗1n (as the optimal solution of P1) for small
enough step-rate η (see the bound in Theorem 2 and 3).

Proof: Consider positive Lyapunov-type function F (k) :=
F (x(k)) − F∗ (as in Lemma 4 and 5) representing the
residual cost. We prove F (k + 1) < F (k) under dynam-
ics (14) for x(k) �= x∗ and F (x∗) = 0. For two feasible states
x(k + 1), x(k) ∈ Sb define δx(k) := x(k + 1) − x(k). From
Lemma 3 we need to show that

∇F
δx + uδx
δx ≤ 0, (20)

−η∇F
Lϕ + uη2ϕ
L
Lϕ ≤ 0, (21)

where the latter follows from dynamics (15). From Assump-
tion 3 and (18)–(19), and Lemma 1 (Corollary 1 for uniformly
connected networks), the above is satisfied if

(−κηλ2 + uλ2
nK2η2)ξ
ξ ≤ 0, (22)

where the strict inequality above holds for

η <
κλ2

uλ2
nK2

=: η (23)

and for ξ = 0 holds the equality. In other words, F (x(k +
1)) ≤ F (x(k)) and from Lemma 2 the strict equality uniquely
holds for

F (x(k + 1)) = F (x(k)) ⇐⇒ dfi

dxi
= df j

dx j
= ψ∗, ∀i, j.

(24)

Therefore, under the proposed dynamics (14), the function F
is decreasing in time5 till x reaches the unique equilibrium
point x∗ satisfying (24), which is the optimizer of P1 and the
theorem follows. �

Note that for non-Lipschitz mapping g(·), a similar line of
reasoning results in

η <
κλ2

uλ2
n

ξ
ξ
ϕ
ϕ

=: η (25)

instead of (23) with ϕ = ϕ − 1
n

∑n
i=1 ϕi1n.

Lemma 7: Let Assumptions 1, 2, and 3 hold and x(0) ∈ Sb.
Following the notations in Theorem 1, for η < η the rate of
decrease in F (k) under protocol (14) is

F (k + 1)

F (k)
≤ 1 − 4v(κηλ2 − uλ2

nK2η2) (26)

5Recall that to prove F (x(k + 1)) < F (x(k)) for x �= x∗, strict convexity of
fi is sufficient. The strong-convexity assumption is for determining the bound
on the linear rate of convergence.

FIGURE 1. Two quantization approaches: (left) uniform, and (right)
logarithmic quantization with level μ. Logarithmic quantizer ql (·) is

“strongly” sign-preserving as limz→0
ql (z)

z ≥ (1 − μ
2 ) > 0, in contrast to

uniform quantizer with qu (z)
z = 0 for − μ

2 ≤ z < μ
2 .

and x(k) converges to x∗ with the rate

‖x(k) − x∗‖2
2

‖x(0) − x∗‖2
2

≤ u

v
(1 − 4vκηλ2 + 4vuλ2

nK2η2)k . (27)

Proof: From Lemma 4 and 5,

δF = F (k + 1) − F (k) ≤ ∇F
δx + uδx
δx

at time k. Following (22) for η < η,

δF ≤ (−κηλ2 + uλ2
nK2η2)ξ
ξ ≤ 0

and using the RHS of (10) we have 4vF ≤ ξ
ξ which re-
sults in (26). Here, we used the fact that the term −κηλ2 +
uλ2

nK2η2 is non-positive. Combining (26) with (12) gives,

‖x(k) − x∗‖2
2 ≤ F (k)

v

≤ 1

v
(1 − 4vκηλ2 + 4vuλ2

nK2η2)kF (0)

≤ u

v
(1 − 4vκηλ2 + 4vuλ2

nK2η2)k‖x(0) − x∗‖2
2

For a B-connected network, from Corollary 1, the proof can
be stated over time scale of size B, i.e., one can prove F (k +
B) < F (k) for the B-connected network GB with eigenvalues
λ2B, λnB. Then, the proof similarly follows. �

Note that the RHS of (26) and (27) give a bound on
the convergence rate as a function of η. The RHS of (27)
is quadratic and, for example, gives the tightest bound for
η = η

2 = κλ2
2uλ2

nK2 . Similar results are given for unconstrained

distributed optimization, e.g., in [30].

B. UNIFORM QUANTIZATION AND ε-ACCURACY
Next, we consider the case that nonlinear mapping g(·) is
sign-preserving, but not “strongly” sign-preserving. A simple
example is when dg

dz |z=0 = 0 as in uniform quantization (in
case of finite packet size for the networking links), see Fig. 1.
Uniform quantization is motivated by recent digital communi-
cation devices with a limited number of bit-transmissions. The
number of bits (quantization level) defines the efficiency and
accuracy and depends on the limitations of the communication
equipment. For this case, the formulation (14) can be written
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as,

xi(k +1)= xi(k) − η
∑

j∈N−
i

Wi j

(
qu

(
dfi(k)

dxi

)
− qu

(
df j (k)

dx j

))
,

(28)

with Wi j > 0 for j ∈ N−
i , in general. One can consider (pos-

sible) non-negative integer weights Wi j ∈ N, e.g., using the
distributed integer weight-balancing algorithm in [40]. These
integer weights result in quantized (or discrete) allocated
values xi (with level μ), e.g., for task allocation in CPU
scheduling [1].

Remark 1: For g(·) representing the uniform quantizer, we
have dg(z)

dz |z=0 = 0 and g(z) = 0 for −0.5μ < z < 0.5μ. This
implies that for −0.5μ1n ≺ ∇F − ψ∗1n ≺ 0.5μ1n we have
x(k + 1) = x(k) in (28). In this case, the solution reaches the
ε-neighborhood of x∗ instead. Then, one can define this ε as
follows. Since −0.5μ+ ψ∗ < dfi

dxi
< ψ∗ + 0.5μ and follow-

ing the definition of ξ , we have |ξ | ≺ 0.5μ1n and,

ξ
ξ < 0.25μ21

n 1n = 0.25nμ2

From (13),

‖x(k) − x∗‖2 ≤ ‖ξ‖2

2v
<

√
nμ

4v
=: ε (29)

which gives an estimate that how close we can get to the
optimizer x∗.

The above remark implies that by choosing fine uniform
quantization (i.e., smaller μ) the solution can get arbitrarily
close to the optimizer x∗. In this perspective, one can de-
fine the notion of ε-accuracy [39], i.e., the upper-bound on
the quantization level μ that guarantees convergence to the
ε-neighborhood of the optimizer x∗. The ε-accuracy of the
solution, then, follows (29), i.e., for the quantization level μ
the solution is guaranteed to reach the ε-neighborhood of x∗

for ε ≤
√

nμ
4v

.

C. DISCUSSIONS AND MORE APPLICATIONS
There exist many other applications for finite-sum resource
allocation; many works [10], [49], [50] are dedicated to gen-
erator coordination over smart grids (known as the economic
dispatch problem). In contrast to many existing solutions
which are limited to the quadratic cost model, as in eco-
nomic dispatch, CPU scheduling, and general consensus
problems [51], the cost function in this paper only needs
to be strongly-convex. This allows to consider the solution
for many applications with non-quadratic costs, e.g., the cost
function in [38], or to add extra objective terms to address,
e.g., penalty terms for the so-called box-constraints σ [xi −
Mi]+ + σ [mi − xi]+, with [u]+ = max{u, 0}c, c ∈ Z+ [35].
Note that [u]+ is smooth for c ≥ 2, and one can also use
smooth equivalents for non-smooth case c = 1. In this case,
non-quadratic (but strongly-convex) penalty terms in the log-
arithmic form σ

ρ
log(1 + exp(ρu)) are typically proposed [52]

to replace the non-smooth penalties for case c = 1. σ is a
weighting factor to tune the weight on the box constraint. It

can be shown that by setting ρ large enough L(z, ρ) becomes
arbitrarily close to max{u, 0}; in fact, the maximum gap be-
tween the two functions inversely scales with ρ, i.e., L(z, ρ) −
max{z, 0} ≤ 1

ρ
, and the two can become arbitrarily close by

selecting ρ sufficiently large [52]. Similarly, some smooth and
convex barrier functions are proposed in the literature (e.g.,
see [18], [36]). Let hi(xi ) represent a general local constraint
at agent i. Then, example barrier functions are defined as,

Bi(xi ) := − log(−hi(xi )), Bi(xi ) := −1

hi(xi )
(30)

which are known as, respectively, the logarithmic and inverse
barrier functions. In general the barrier functions satisfy the
following: if hi(xi ) → 0−, then Bi(xi ) → ∞.

Our results can, further, help to reach a faster rate of con-
vergence by using sign-based dynamics [27] for the nonlinear
node-based solution. In discrete-time, such non-Lipschitz dy-
namics mandate a sufficiently small step rate to reduce the
so-called chattering effect. There is a trade-off (to be prop-
erly adjusted) between the steady-state residual around the
equilibrium and the step size. In applications, one can reach
convergence in finite, fixed, or prescribed time irrespective of
the chattering (e.g., in continuous-time [27], [48]).

IV. SOLUTION IN THE PRESENCE OF TIME-DELAYS
A. DOUBLE TIME-SCALE SCHEME: UNKNOWN DELAYS
Our first solution is to update the states at a longer time-scale
such that at every link one message is delivered. The following
assumption (as in [32]) holds on this subsection for time-delay
τi j (k) on every link ( j, i):

Assumption 4:
� τi j (k) ≤ τ where 1 ≤ τ < ∞ represents the upper-

bound on the time-delays (τ = 0 implies no delay). The
finite integer bound τ ensures that data from agent i at
time k eventually reaches agent j at most in k + τ , and
also implies no missing packet.

� τi j (k) is, in general, heterogeneous, arbitrary, time-
variant, and not necessarily known.

The proposed state-update under Assumption 4 is as fol-
lows:

xi(k + 1) = xi(k) − η
∑

j∈N−
i

Wi j (ϕi(k) − ϕ j (k)) (31)

with k = � k
τ+1� as the new time-scale. In this method, the

states get updated not in every time-step k, but every τ + 1
time-steps, representing a longer time-scale k. In other words,
after initializing and sending the first messages at step k =
k = 0, the next state-update and communication occurs at
k = τ + 1 (i.e., k = 1) and every τ + 1 steps on k afterwards,
while states remain unchanged at k �= k(τ + 1). Following
Assumption 4 on time-delays, it is clear that over every link
( j, i) one data-packet is received by agent i from in-neighbor
j over τ + 1 steps of k. The feasibility and convergence under
the delayed model are proved next.
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Theorem 2: Under Assumptions 1, 2, 3, and 4, with x(0) ∈
Sb (feasible initializing), the states x(k) (and x(k)) under pro-
tocol (31) remain feasible and converge to the optimal solution
of (2) for 0 < η < η.

Proof: The proof of solution feasibility follows similar to
Lemma 6 by considering the state-update over time-scale
k. The uniqueness of the optimizer is similar to consider-
ing uniform-connectivity of the network over B + τ . The
convergence to the optimizer follows a similar analysis
as in Theorem 1 over the time-scale k. For two feasible
states x(k + 1), x(k) ∈ Sb define δx(k) =: x(k + 1) − x(k),
δF (k) =: F (x(k + 1)) − F (x(k)). Then, following the same
line of reasoning as in (20)–(25), one can find the same bound
on the convergence step rate as η < η. �

Note that the convergence of this double time-scale scheme
is slow, as agents need to wait for a while to receive the
delayed information and then update their states. However,
if delays are known and symmetric over bidirectional links,
states can get updated at the same time scale. It is clear that
this gives faster convergence, as discussed next.

B. UPDATE AT THE SAME TIME-SCALE: KNOWN DELAYS
Our other solution is to update the state at the same time-scale
k. We make the following assumptions for this case.

Assumption 5:
� Delays τi j (k) are bounded by τ , and are arbitrary, pos-

sibly heterogeneous at different links, and time-varying,
in general.

� The messages over every link ( j, i) are timestamped
and every agent i knows the time-step agent j sent the
information, i.e., τi j (k) is known.

� The network G is undirected with symmetric link-
weights and time-delays for both sides of the links are
the same, i.e., Wi j = Wji and τi j (k) = τ ji(k). The uni-
form connectivity follows similar to Assumption 2.

The state of every agent i is updated based on all the (pos-
sibly delayed) information received from neighbours at time
k + 1 as they arrive. Note that since the delays are assumed
to be heterogeneous, the received information at time k is,
in general, sent over the range [k − τ , k] (the last τ time-
steps). Also, assuming time-varying delays, it is possible that
at time-step k agent i receives more than one packet (from
in-neighbour j). This makes the solution more challenging in
terms of satisfying anytime feasibility. Recall that, for anytime
feasibility,

∑n
i=1 xi(k + 1) = ∑n

i=1 xi(k) needs to be hold at
every time k, which is satisfied by synchronous messaging
over both directions (i, j) and ( j, i) of every link. For the
same reason, the weights of all bidirectional links are designed
symmetrically. We discuss this more in the feasibility analysis
in Lemma 8. The proposed single time-scale protocol in the
presence of time delays is as follows.

xi(k + 1) = xi(k) − ητ
∑

j∈N−
i

τ∑
r=0

Wi j (ϕi(k − r)

− ϕ j (k − r))Ik−r,i j (r), (32)

where I is the indicator function,

Ik,i j (r) =
{

1, if τi j (k) = r,
0, otherwise.

(33)

Note that Ik−r,i j (r) �= 0 indicates the message received at
time k with time-delay τi j = r over the link ( j, i) (i.e., sent
at time k − r). In general, we assume Ik−r,i j (r) �= 0 for at
least one pair (i, j ∈ N−

i ) at every time k. This assumption
simply means that at least one message is delivered over the
network at every time k, and is only required to ensure that
the cost monotonically decreases at every time step under
the proposed dynamics. However, without this consideration,
the solution still converges over time. The following remark
relaxes Assumption 5 by using definition (33).

Remark 2: As a follow-up to Assumption 5, in case of
known but asymmetric time-delays at bidirectional links, say
τi j �= τ ji < τ , both agents i, j can process their mutual infor-
mation based on the known max delay τ (or possibly known
max{τi j, τ ji} ≤ τ ) on the shared mutual link, i.e., Ik,i j (τ ) =
Ik, ji(τ ) = 1 instead of Ik,i j (τi j ) = 1, Ik, ji(τ ji ) = 1, τi j �=
τ ji. This implies that both agents apply (process) their shared
information at the same time. This can be thought as a combi-
nation of the two schemes in subsections A and B.

Lemma 8: The solution under (32) and Assumptions 1, 2,
3, and 5 is anytime feasible with unique equilibrium x∗ as the
optimizer of P1.

Proof: Following Assumption 5, for every pair of links
( j, i) and (i, j) we have Wi j = Wji, τi j = τ ji, Ik,i j (τi j ) =
Ik, ji(τ ji ) = 1, and Ik,i j (r) = Ik, ji(r) = 0 for r �= τi j, τ ji.
Therefore,

Wi j (ϕi(k − r) − ϕ j (k − r))Ik−r,i j (r)

= −Wji(ϕ j (k − r) − ϕi(k − r))Ik−r, ji(r)

This implies that
∑n

i=1 xi(k + 1) = ∑n
i=1 xi(k) and the feasi-

bility follows for all k ≥ 0. The uniqueness follows similar to
Theorem 2 by considering uniform-connectivity over B + τ .
This completes the proof. �

Theorem 3: Under Assumptions 1, 2, 3, and 5, with x(0) ∈
Sb, solution under protocol (32) converges to the optimizer of
P1 for,

0 < ητ <
η

τ + 1
. (34)

with η given in (23).
Proof: The proof follows from Lemma 1. First, consider

a homogeneous case where τi j = τ , i.e., agents’ states at
any iteration k next updates at k + τ + 1 (and every τ + 1
steps afterwards). The bound on η, then, follows from The-
orem (2) and (23). Next, for general (heterogeneous) delays
two cases are possible: Case (i), time-invariant (fixed) delays
at all links where every node i receives only one (possibly)
delayed packet from j ∈ N−

i and δx remains the same as
in (20)–(25); this gives the same bound as η < η. Case (ii),
for general time-varying delays (satisfying Assumption 4),
node i receives at most τ + 1 delayed packets from the nodes
j ∈ N−

i ; and, thus, η needs to be down-scaled by τ + 1
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to ensure convergence. This is because (15) is scaled by
δx = −(τ + 1)ητLϕ(k) in the proof of Theorem 1 at step k
and, following the same line of reasoning as in (21)–(25),
(τ + 1)ητ < η guarantees F (k) < F (k − 1) for x(k − 1) �=
x∗. This completes the proof. �

C. CONVERGENCE AND OPTIMALITY DISCUSSIONS
Remark 3: The following remarks are noteworthy:

i) For time-invariant delays, one can further relax the
upper-bound in (34). In this case, at every time-step
k ≥ τ + 1, agent i receives only one packet from agent
j ∈ N−

i . Following the same line of reasoning as in the
proof of Theorem 1 and 3, the solution (32) converges
for ητ < η.

ii) Convergence under protocol (32) is faster than (31)
for the same step rate η = ητ , since the time-scale k
is τ + 1 times longer than time-scale k. However, for
general time-varying delays, the solution (32) may not
necessarily converge for η

τ+1 ≤ ητ ≤ η, while solution
(31) converges.

iii) Recall that in contrast to logarithmic quantization, uni-
form quantization is not “strongly” sign-preserving
(see Fig. 1 for 0 < μ < 1). In this case, the lower-
bound in (17) does not hold for any κ > 0. Similarly, in
case that g(z)

z is not upper-bounded, e.g., g(z) = z|z|ν−1

as in finite-time control/consensus [4], the bound (17)
in Assumption 3 does not hold. In such cases, and
similar sign-preserving odd mappings, the convergence
of discrete-time protocol (14) to the exact optimizer
cannot be guaranteed and one can prove convergence
to an ε-neighborhood of the optimizer, e.g., see [53].
Note that, in this case, function g(·) is non-Lipschitz at
the origin, i.e. limz→0

g(z)
z = K → ∞. From (25), the

solution converges for all η satisfying

ηuλ2
n

κλ2
<
ξ



ξ

ϕ
ϕ
.

For non-Lipschitz case, if ‖x(k) − x∗‖2
2 → 0, we have

ξ


ξ

ϕ
ϕ
= 1

K2
→ 0,

implying that to reach the exact optimizer x∗ we need
η → 0. Next, given 0 < η < η we want to know how
close can we get to the optimizer x∗ and optimal value
F∗. Using (13) we have

ηλ2
nϕ


ϕ
4uκλ2

≤ ξ
ξ
4u2

≤ ‖x(k) − x∗‖2
2. (35)

Therefore, for given η < η,

0 <
ηλ2

n

4uκλ2
<

‖x(k) − x∗‖2
2

ϕ
ϕ
. (36)

This means that we cannot get arbitrarily close to the
optimizer. Recall that in the case for which the nonlin-
earity is Lipschitz, as ‖x(k) − x∗‖2

2 < ε → 0 the RHS

of (36) always remains greater than 1
16u2K2 which is

satisfied for 0 < η < η via (23) (as shown in the proof
of Theorem 1). However, for non-Lipschitz mapping
g(·), the RHS → 0 and therefore the inequality cannot
be satisfied for ε → 0 as the LHS is a positive number,
and steady-state non-zero residual follows (35). For
continuous-time dynamics, however, the convergence
to the optimizer can be proved, e.g., see the results
in [27], [48].

iv) The upper-bound η on the step-rate inversely depends
on the Lipschitz constant u of the objective function fi.
For a fixed u, a larger value of v ≤ u implies tighter
bound on the convergence rate in RHS of (26). For
quadratic cost as in (41) (with u = v) we get the tightest
bound on the convergence rate.

v) For the nonlinear function g, the ratio κ
K2 < 1 appears

in (23), while in (26) the gap between κ and K2 affects
the convergence rate. From Fig. 1, coarser quantiza-
tion (larger μ) implies smaller κ = 1 − μ

2 and larger
K = 1 + μ

2 . This implies a tighter bound on η in (23)
and a looser bound on the convergence rate in (26). On
the other hand, as given by (29), coarser quantization
results in higher ε-bound and possibly larger steady-
state residual. See the simulations for better illustration.

vi) In presence of time-delays, feasible initialization can
be done via, for example, using [10, Algorithm 2] over
a longer time-scale as in Section A. This finite-time
algorithm works irrespective of discrete (quantized) or
real-valued information exchanges and gives many pos-
sible (quantized plus real) outputs.

V. SIMULATIONS
A. APPLICATION: OPTIMIZING THE CPU UTILIZATION
This application focuses on optimizing the CPU utilization
across servers (computing nodes/servers) in data centers by
carefully allocating CPU resources to workloads in a dis-
tributed fashion. The data centers are modelled as a set of V
nodes. Each node vi ∈ V can operate as a resource scheduler
(which is a standard practice in modern data centers). The set
of all jobs to be scheduled is J . Each job b j ∈ J , (where
j ∈ {1, . . . , |J |}) is the group of tasks and requires ρ j cycles
to be executed. The amount of ρ j cycles required for job b j

to be executed is known before the optimization operation.
At each node vi, the total workload due to arriving jobs is
denoted by li. Furthermore, the time period for which the
optimization runs the jobs on the servers (before the next
optimization operation for a new set of resource allocation)
is defined as Th. At each node vi, the CPU capacity during
the optimization operation is equal to πmax

i := ciTh, where
ci is the sum of all clock rate frequencies of all processing
cores of node vi given in cycles/second. For each node vi,
the CPU availability at optimization step m6 (i.e., at time step

6The CPU optimization step m is different from the time-index k of the
algorithm. In fact, the algorithm runs between every two consecutive opti-
mization steps m and m + 1.
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mTh with Th as the time period of the optimization operation)
is π avail

i [m] := πmax
i − ui[m], where ui[m] is the number of

unavailable/occupied cycles due to predicted utilization from
already running tasks over the time horizon Th at step m.

Denote the total amount of resources demanded at a specific
optimization step m as ρ[m] := ∑

b j [m]∈J [m] ρ j[m]. Further-

more, denote the total available capacity as πavail[m] :=∑
vi∈V π

avail
i [m]. We have that Th at step m, is chosen such

that ρ[m] ≤ π avail[m], i.e., the total amount of resources de-
manded meets the total available resources. This indicates that
the demand does not exceed the available resources in the
network. Th can be chosen appropriately to fulfill this (as the
box constraints). Each node needs to calculate the optimal so-
lution at every optimization step m by executing a distributed
algorithm (with time step k). The exchanged information over
the network (and the allocated CPU workloads are quantized).
The algorithm can take into account such nonlinearities. In [1]
every node balances its CPU such that each node utilizes the
same percentage of its own capacity (under the feasibility
constraint). This balancing strategy calculates the optimal
workload w∗

i [m] to be received at optimization step m such
that ∀vi, v j ∈ V

w∗
i [m] + ui[m]

πmax
i

= w∗
j [m] + u j[m]

πmax
j

= ρ[m] + utot[m]

πmax
, (37)

where πmax := ∑
vi∈V π

max
i and utot[m] = ∑

vi∈V ui[m]. Note
that in the remainder we drop the index m, since we con-
sider a single optimization step. Each node maintains a scalar
quadratic local cost function of the form,

fi(z) = 1

2
αi(z − ρi )

2, (38)

with αi > 0, ρi ∈ R as the positive demand at node vi, and z as
a global optimization parameter (that determines the optimal
workload at each node). Each node needs to calculate the opti-
mal parameter z∗ ∈ Z such that z∗ = arg minz∈Z

∑
vi∈V fi(z),

where Z denotes the set of all feasible values of z, e.g., as the
box constraints mi ≤ zi ≤ Mi. Its closed form solution for the
quadratic cost (38) is

z∗ =
∑

vi∈V αiρi∑
vi∈V αi

. (39)

From [1], in order to calculate the optimal balancing workload
according to (37), we need the solution of z∗ to be

z∗ =
∑

vi∈V π
max
i

ρi+ui
πmax

i∑
vi∈V π

max
i

= ρ + utot

πmax
. (40)

From (40) we modify (38) as

fi(z) = 1

2
πmax

i

(
z − ρi + ui

πmax
i

)2

. (41)

This means that each node (i) computes its proportion of
workload, and (ii) from its workload proportion it can calcu-
late to receive the optimal workload w∗

i equal to

w∗
i = ρ + utot

πmax
πmax

i − ui. (42)

Recall, however, that the allocated workload by (42) gives the
optimal allocation subject to the balancing constraint in (37).
In other words, it is possible to reach lower CPU allocation
costs by disregarding this balancing condition and considering
more general cost models as

fi(zi ) = 1

2
αi(zi − ρi )

2, (43)

where zi �= z j , in general. Note the subtle difference here as
the factors zi in (43) could be unequal (compared to the same
z in formulation (38)). Substituting wi from (37),

fi(w) = 1

2πmax
i

(wi − ρi )
2, (44)

This convex formulation gives a lower cost by replacing
the balancing constraint wi+ρi

πmax
i

= w j+ρ j
πmax

j
(or zi = z j) with

general sum-preserving constraint
∑n

i=1 wi = ∑n
i=1 w∗

i = ρ.
Note that we assign the same amount of overall workloads as
given by (40). The modified version of (41) is then

fi(wi ) = 1

2πmax
i

(wi − ρi )
2 s.t.

n∑
i=1

wi = ρ, z ∈ Z (45)

with z ∈ Z as the box constraints. Note that this box constraint
makes the solution non-trivial, in general. The formulation
(45) reshapes the problem in the form P1. In general, the
cost of workloads assigned by (41) is always less than (or
equal to) the cost associated with the balanced model. We add
some penalty functions to keep the servers at an operating
point away from the capacity, in fact, below 70−80% of
their capacity (due to the uncertainty of the processing times)
since the Mean Response Time of the servers grows (expo-
nentially) at some point [54]. As a rule-of-thumb, we address
this concern by box constraints on the load-to-capacity ratios
as 0 ≤ zi ≤ 0.75 (with zi = wi+ρi

πmax
i

).

For numerical simulation, a network of n = 12 servers with
the following parameters for cost function (41) is considered:
ρi ∈ [10 30], ui ∈ [10 40], πmax

i = 80. The box constraints
are 0 ≤ wi ≤ 0.75πmax

i − ρi = Mi. For simulation initializa-
tion we set the wi values for some random nodes (chosen
by randperm command) equal to min(Mi ), for one node
equal to mod(ρ,min(Mi )), and the rest equal to 0. The overall
resources are then

∑n
i=1 wi = ρ. The parameters values are:

ρ = 190, η = 0.5, and μ = 0.0675. The simulation is done
over a self-damped directed cyclic graph with balanced link
weights and λ2 = 0.134, λn = 2. Substituting κ = 1 − μ

2 =
0.9663, K = 1 + μ

2 = 1.0337, u = 1
2πmax

i
= 0.0063 in (23)

gives the max step rate η = 4.85. Table 1 compares our op-
timal allocation with the balancing strategy in [1].

264 VOLUME 1, 2022



TABLE 1 Comparison Between the Allocated Workload Costs for the Same
Amount of Overall Workload ρ: The Cost Given by (45) Versus Balancing
Model in [1]

FIGURE 2. CPU scheduling under two quantization approaches: (left) The
residual under logarithmic quantization as a strongly sign-preserving
nonlinearity is always decreasing and converges to zero, while for uniform
quantizer only convergence to the ε-neighborhood (shown by dashed red)
is guaranteed. (right) under both approaches, the solutions remain
anytime-feasible and the averages of workloads (shown by black dashed
lines) remain constant.

TABLE 2 Comparison on the Elapsed-Time of the Quantized (14) With the
Linear Solution (Over 104 Iterations)

The residuals F = F (x) − F∗ as the Lyapunov function
under the two quantization schemes are compared in Fig. 2,
which is decreasing towards zero under the logarithmic quan-
tization for η < η. The residual ε-accuracy bound from (29)
is equal to ε = 9.3; this implies the worst performance under
uniform quantization. The average of states (black dashed
lines) are constant, ensuring all-time feasibility. In addition, to
give an idea on the computational complexity of the proposed
solution (14) (with quantized nonlinearities), Table 2 com-
pares the running time of the algorithm in MATLAB R2021b
Intel Core i5 @ 2.4 GHz processor 8 GB RAM using the
tic-toc functions.

Over the same setup and parameters, CPU allocation un-
der time delays over the data-transmission network is given
in Fig. 3. We run the simulation over the weight-symmetric
cyclic graph (with λ2 = 0.09, λn = 1.33) in Section IV-B
assuming known but random delays. From (23) the (sufficient)
bound on the step-rate is η = 7.26 for no latency and, from
Theorem 3 in the presence of delays, η(τ + 1) < 7.26. The

FIGURE 3. CPU allocation under logarithmic and uniform quantization is
shown subject to latency. The communication delays are assumed random,
heterogeneous, but known and bounded by max delay τ = 1, 2, 4, 6 steps.
(Top) under same time-scale scenario and (Bottom) under double
time-scale scenario.

simulations for both quantization schemes and both (same
and double time-scale) delay scenarios with τ = 1, 2, 4, 6
and η = 0.5 are given in Fig. 3. The arbitrary delays in the
range [0 τ ] are generated via MATLAB rand. As it is clear
from the figure, due to longer waiting time, the double time-
scale scenario converges slower; however, from Theorem 2,
it always converges for any τ (for η < 7.26). In contrast the
same time-scale scenario may not converge (for large τ ) if
η(τ + 1) > 7.26.

B. LOGARITHMIC PENALTY + NON-QUADRATIC COST:
CONDITION NUMBER AND QUANTIZATION LEVEL
Recall that the proposed solution in this paper, to solve P1

based on the cost model (45), can optimize general non-
quadratic cost functions, e.g., due to additive logarithmic or
max-based penalty/barrier functions to the cost function (45).
For this simulation, we consider non-quadratic cost as in [38],

n∑
i=1

fi(xi ) =
n∑

i=1

ωi(xi − αi )
4 + σ

ρ
log(1 + exp(ρu)) (46)

with cost parameters b = 20, random αi ∈ [−5 5], random
ωi ∈ [0 0.5], σ = 1. The logarithmic penalty term with ρ = 1
is added to the objective function with weight factor σ =
1, mi = 0, Mi = 5 (implying penalty terms u1 = [xi − 5]+,
u2 = [0 − xi]+). The topology switches every 20 steps be-
tween 4 (disconnected) undirected network topologies while
their union is an undirected connected cycle, i.e., Assump-
tion 2 holds for B = 80. The simulation results are shown in
Fig. 4 for η = 0.0005. The simulation is done for logarith-
mic and uniform quantization (with μ = 0.5) as compared to
the single-bit protocol [4] (with single bit of data exchange),
protocol subject to saturation [27] with sat level equal to 1,
classic linear solution [43], and signum-based solution for
faster convergence [27], [31] with g(z) = sgnν1 (z) + sgnν2 (z)
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FIGURE 4. (TopLeft) Different allocation strategies to optimize
non-quadratic cost model (46) over undirected cyclic networks changing
every 20 steps and uniformly connected over every B = 80 steps. The
horizontal axis shows the iterations over B time scale, i.e., kB = � k

B �.
Saturated [27], single-bit [4], linear [43], and signum-based [27], [31]
solutions are also given for comparison. (TopRight) The steady-state
residuals under different quantization levels. (BottomLeft) Convergence
under different quantization levels μ. (BottomRight) Convergence under
different condition numbers of the objective function (via parameter σ)

with sgnν (z) := z‖z‖ν−1 for ν1 = 0.5, ν2 = 1.5, since the
sign-based nonlinearity is not upper-sector-bounded we con-
sider small values of η to resemble continuous-time dynamics,
see [27] for details. We further compared the residuals un-
der different quantization levels μ for both logarithmic and
uniform quantization. From the figure, for larger μ uniform
quantization results in larger steady-state residual (Remark
3-(v) and (29)) while logarithmic quantization gives faster
convergence. For the logarithmic quantization, we further
compared the convergence rate for different condition num-
bers by tuning σ . The simulation parameters are: b = 10,
random αi ∈ [−5 5], random ωi ∈ [0 0.5], μ = 1 (i.e., κ =
0.5 and K = 1.5), mi = 0, Mi = 5, η = 0.0005. The network
is considered as an undirected cycle with λ2 = 0.38, λn = 4.
We change the factor as σ = [0.05, 0.25, 0.5, 1] which results
in different condition numbers u

v
shown in the figure. In this

example, for larger condition numbers the convergence is
faster.

VI. CONCLUSION
The optimal allocation of resources over a weight-balanced
directed network is addressed. Our nonlinear solution can
provide quantized coordination with resource-demand feasi-
bility at all times. The solution advances the state-of-the-
art by simultaneously addressing (i) anytime-feasibility, (ii)
quantization and ε-accuracy, (iii) latency, and (iv) uniform-
connectivity. The results, therefore, allow for the design of
algorithms for limited (or more cost-efficient) bandwidth by
proper quantization over the dynamic networks (with inter-
mittent connectivity). Overall, the solution is applicable in

more general nonlinear setups to address convergence rate and
robustness in future directions. Further, the weight-balance
and uniform-connectivity assumption (in contrast to weight-
stochasticity and all-time connectivity) allow for convergence
under link removal and packet drops over switching networks,
which is worth investigating.

Recall that, as discussed in [18] and our previous work [27],
the sum-preserving problem formulation (2) (and (1)) can
be extended to yi ∈ Rm,b ∈ Rp with p,m > 1 in general
and a coupling-constraint in the form

∑n
i=1 Aiyi = b with

Ai ∈ Rp×m. Using the notion of slack variables, it is possible
to address inequality coupling-constraints

∑n
i=1 Aiyi ≤ b as

in [23], [55]. This is by defining n additional (auxiliary) slack
variables si ∈ Rp such that

∑n
i=1(Aiyi + si ) = b with 0 �

si � s as extra box constraints, see [23, Eq. (16)]. Each node
(and local constraint) is associated with one slack variable,
and the new state changes to ỹ = [y; s] with new constraint∑n

i=1 Ãĩyi = b and Ãi := [Ai Ip] ∈ Rp×(m+p). Certain con-
vexity and connectivity assumptions need to be addressed for
this formulation; see details in [23], [55]. This is one direction
of our future research.
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