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Abstract— We study a concentration phenomenon in a gossip
model that evolves over a stochastic block model (SBM)
with two communities. We study the conditional mean of the
stationary distribution of the gossip model over the SBM, and
show that it is close to the mean of the stationary distribution of
the gossip model over an averaged graph, with high probability.
As a consequence, regular (non-stubborn) agents in the same
community of the gossip model over the SBM have stationary
states with similar expectations. The results show that it is
possible to use the gossip model over the averaged graph to
approximate and analyze the gossip model over the SBM, and
establish a correspondence between agent states and community
structure of a network. We present numerical simulations to
illustrate the results.

I. INTRODUCTION

A crucial problem in community detection is whether
community structure of a network corresponds to labels
that come from non-topological information [1]. For large-
scale networks, research finds that the correspondence hardly
holds [2]. To deal with the disagreement of community struc-
ture and non-topological labels, most existing papers focus
on developing approaches that integrate both information.
The papers [3], [4] utilize Bayesian methods for the inte-
gration, which compute the correlation between community
structure and non-topological labels, and use the labels when
the correlation is high. The authors in [5] further introduce
statistical techniques to exploit non-topological labels when
the labels correlate only weakly with community structure.
However, it should be noted that many realistic networks
have labels that are possibly generated from underlying
dynamics. For example, in Zachary’s karate club network [6],
the labels of agents come from a group fission, which
could be a consequence of an opinion formation process.
Ignorant of complex dynamics evolving over a network, we
may fail to predict non-topological labels, even when we
have the complete knowledge of the network. Thus, there
is a need to investigate behavior of complex dynamics over
networks with community structure. This type of results may
deepen our understanding of how community structure links
to labels with non-topological information and how to make
predictions from the community structure.

A related problem in the field of opinion dynamics is
how to theoretically characterize large-scale opinion land-
scapes [7], [8]. Many papers use statistical indices such as the
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variance of agent states, and local and global disagreement,
to characterize the separation of agent states [9], [10], [11],
but these indices can provide only vague descriptions. The
paper [12] is one of the earliest researches endeavoring
to establish more precise characterizations of agent states
(i.e., an entry-wise description of the agent-state vector).
The authors study a gossip model with stubborn agents, and
show that, if the network is highly fluid and the size of the
network is large, almost all regular (non-stubborn) agents
have stationary states with similar expectations. The paper
[13] studies the DeGroot model (a deterministic counterpart
of the gossip model) with stubborn agents over a weighted
complete graph, and provides conditions for agent states
gathering around two extreme points. However, there is still
a need to establish a precise characterization of agent states
for this type of models over general graphs.

In this paper, we study a concentration phenomenon in
the gossip model that evolves over a stochastic block model
(SBM) with two communities. In the literature, concentration
means that a random variable that smoothly depends on the
equal influence of many independent variables is close to
a constant with high probability [14]. Here we borrow the
term to refer to the phenomenon that an agent-state vector
depending on the SBM is close to a constant vector with high
probability. Our contributions are summarized as follows.

We show that the conditional mean of the stationary
distribution of the gossip model over the SBM is close to
that of the gossip model over an averaged graph with high
probability (Theorem 1), by using concentration inequalities
of random variables and random matrices. As a consequence
of this result, we show that regular agents in the same com-
munity of the gossip model over the SBM have stationary
states with similar expectations (Corollary 1).

The studied model captures random opinion evolution
over a network with community structure. The obtained
results provide a possible explanation of how community
structure influences group dynamics, which assign agents
with non-topological labels. Also, the analysis shows that
it is possible to use the gossip model over an averaged
graph to approximate and study the gossip model over
the SBM. Since it is much easier to analyze the former
model, this finding provides insight into studying precise
characterization of agent states for complex dynamics. The
discovered correspondence between community structure and
agent states can also inspire the design of online community-
detection algorithm based on state observations [15].
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A. Outline

The rest of the paper is organized as follows. In Section II,
we introduce the definitions and properties of the SBM
and the gossip model, and in Section III we formulate the
problem. Section IV presents our main results. We provide
numerical experiments in Section V and conclude the paper
in Section VI.

B. Notation

Denote the n-dimensional Euclidean space by Rn, the set
of n × m real matrices by Rn×m, the set of nonnegative
integers by N, and N+ = N \ {0}. Let 1n be the all-one
vector with dimension n, e1, . . . , en be the canonical basis of
Rn, In be the n×n identity matrix (we omit n if there is no
confusion). Denote both the Euclidean norm of a vector and
the spectral norm of a matrix by ‖ · ‖. For a vector x ∈ Rn,
denote its i-th entry by xi, and for a matrix A ∈ Rn×n,
denote its (i, j)-th entry by aij or [A]ij . The cardinality of a
set Ω is denoted by |Ω|. For two sequences of real numbers
{ak} and {bk} with bk 6= 0, k ∈ N+, we denote ak ∼ bk
if limk→∞ ak/bk = 1, ak = O(bk) if |ak/bk| ≤ C for
all k ∈ N+ and some positive constant C, ak = o(bk) if
limk→∞ |ak/bk| = 0, and ak = ω(bk) if bk = o(ak). We
call an event happens almost surely (a.s.) if it happens with
probability one, and call an event depending on a parameter
n ∈ N happens with high probability, if the probability that
this event happens tends to one as n → ∞. Denote the
expectation of a random vector X by E{X}. Denote an
undirected graph by G = (V, E , A), where V is the agent
set, E is the edge set, and A = [aij ] is the adjacency matrix
(i.e., aij = aji = 1 if {i, j} ∈ E , and aij = aji = 0
otherwise).

II. PRELIMINARIES

In this section, we introduce the definitions of the SBM
and the gossip model.

A. Stochastic Block Model

The SBM is a canonical model studied in the statistical
framework for community detection [16]. It is a random
graph model with community labels. In this paper we con-
sider a simplified two-community version of the SBM:

Definition 1 (Stochastic block model): A stochastic block
model is a random graph model with parameters n, ls, and ld,
denoted by SBM(n, l), where l = [ls ld]T . Here n is an even
number, and ls and ld are parameters in (0, 1) depending on
n. SBM(n, l) generates an undirected graph G = (V, E , A)
without self-loops, where |V| = n, according to the following
rule: in the first step, the model assigns half of the agents
with community label 1, and the other half with label 2 (we
denote the community label of agent i by Ci, 1 ≤ i ≤ n); in
the second step, for all i, j ∈ V with i 6= j, the model adds
edge {i, j} to E with probability pij independently of other
edges, where pij = ls if Ci = Cj and pij = ld if Ci 6= Cj .

B. Gossip Model with Stubborn Agents

The gossip model with stubborn agents is a random pro-
cess evolving over a graph G = (V, E , A) with |V| = n ≥ 2.

The underlying graph G = (V, E , A) of the gossip model
is undirected and has no self-loops. In addition, V contains
two types of agents, regular and stubborn, denoted by Vr
and Vs, respectively (V = Vr ∪ Vs and Vr ∩ Vs = ∅). Each
agent i in the graph possesses a state Zi(t) ∈ R, t ∈ N.
Stacking all agent states, we denote the state vector at time
t by Z(t) ∈ Rn. We assume that the model starts with a
deterministic initial vector Z(0) for simplicity.

The random interaction of the gossip model is captured by
an interaction probability matrix W = [wij ] ∈ Rn×n satisfy-
ing that wij = wji = aij/α, where α =

∑n
i=1

∑n
j=i+1 aij .

Hence 1TW1/2 = 1.
At time t, edge {i, j} is selected with probability wij

independently of previous updates, and agents update as
follows,

Zk(t+ 1) =

{
1
2 (Zi(t) + Zj(t)), if k ∈ Vr ∩ {i, j},
Zk(t), otherwise.

(1)

The averaging weight is assumed to be 1/2, but general
weights can be considered. For 1 ≤ i < j ≤ n, define

V ij =


I − 1

2 (ei − ej)(ei − ej)T , if i, j ∈ Vr,
I − 1

2ei(ei − ej)T , if i ∈ Vr, j ∈ Vs,
I − 1

2ej(ej − ei)T , if i ∈ Vs, j ∈ Vr,
I, if i, j ∈ Vs,

and a sequence of independent and identically distributed
(i.i.d.) n-dimensional random matrices {V (t), t ∈ N} such
that P{V (t) = V ij} = wij , 1 ≤ i < j ≤ n. The compact
form of update rule (1) is

Z(t+ 1) = V (t)Z(t). (2)

Since stubborn agents never change their states during the
process, we rewrite (2) and obtain the following compact
form of the gossip model:

X(t+ 1) = Q(t)X(t) +R(t)zs, (3)

where X(t) and zs are the state vectors obtained by stacking
the states of regular and stubborn agents, respectively, and
[Q(t) R(t)] is the matrix obtained by stacking rows of V (t)
corresponding to regular agents.

Denote Q̄ := E{Q(t)} and R̄ := E{R(t)}. We here
present some basic properties of the gossip model for com-
pleteness:

Proposition 1: (Stability and limit theorems) Suppose that
G is connected and there exists at least one stubborn agent
in the network. The following results hold for the gossip
model (3).
(i) The model has a unique stationary distribution π with
mean x, and X(t) converges in distribution to π, as t→∞.
(ii) The expectation of the regular-agent state vector con-
verges to the mean of the stationary distribution π, namely,

x = lim
t→∞

E{X(t)} = (I − Q̄)−1R̄zs. (4)
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(iii) Denote S(t) := 1
t

∑t−1
i=0X(i). Then

lim
t→∞

S(t) = x a.s. (5)
Proofs of the preceding results can be found in [12], and [15]
provides an analysis for the case where the graph G is a
weighted complete graph. In short, the results show that,
although agent states may not reach a consensus or converge
to a fixed value (instead, they may fluctuate a.s. [12]), they
converge in distribution to a stationary distribution. Also,
if we compute the time average of the agent states, then
it converges to the same limit x. This vector x can be
considered as a characterization of the final positions of
regular agents on average.

III. PROBLEM FORMULATION

In this paper we study the gossip model evolving over
an SBM. We define it in Section III-A, and in Section III-
B we define the gossip model over an averaged graph. In
Section III-C we formulate the considered problem.

A. Gossip Model over SBM

In this paper we study the gossip model evolving over an
SBM. To include stubborn agents in the SBM, we assume
that there is a portion s0 of agents being stubborn:

Definition 2 (SBM with stubborn agents):
A stochastic block model with a portion s0 of agents being
stubborn, denoted by SBM(n, l, s0), is a random graph
model with parameters n, l = [ls ld]T , and s0 ∈ (0, 1).
Here n is an even number, ls and ld are parameters in (0, 1)
depending on n, and we assume that s0n/2 is an integer. The
model constructs a graph with stubborn agents according to
the following rule: in the first step, a graph G = (V, E , A) is
generated from SBM(n, l); in the second step, s0n/2 agents
in each community are labeled as stubborn.

Without loss of generality, we sort the agents in any graph
generated from SBM(n, l, s0) as follows: agents 1,. . . , r0n/2
(resp. 1+r0n/2, . . . , r0n) are regular agents in community 1
(resp. community 2), and agents r0n+ 1, . . . , r0n+ s0n/2
(resp. 1 + r0n + s0n/2, . . . , n) are stubborn agents in
community 1 (resp. community 2), where r0 is the portion
of regular agents and satisfies that r0 + s0 = 1.

We define the gossip model over SBM(n, l, s0) as follows.
Definition 3 (Gossip model over SBM):

The gossip model over SBM(n, l, s0) (the gossip model over
the SBM, for short) is the gossip model (3) that evolves over
a graph G = (V, E , A) generated from SBM(n, l, s0).

Remark 1: The gossip model over the SBM consists of
two random components: the random generation of a graph
from SBM(n, l, s0) and random interactions between agents
in the gossip model (3). We use (Ω,F ,P) to denote the
entire probability space defined by the two components, and
use P{·|G} = PG{·} and E{·|G} = EG{·} to represent
the conditional probability and expectation with respect to
a graph G generated from SBM(n, l, s0).

Since the underlying graph G = (V, E , A) of the gossip
model over the SBM is random, we now use Q̄ and R̄ to
represent the conditional expectation of Q(t) and R(t) with

respect to G, respectively; that is, Q̄ := EG{Q(t)} and R̄ :=
EG{R(t)}. From (3), it follows that PG{[Q(t)]ii = 1/2} =∑n

j=1 aij/α = 1 − PG{[Q(t)]ii = 1}, 1 ≤ i ≤ r0n, where
α =

∑n
i=1

∑n
j=i+1 aij . Similarly, PG{[Q(t)]ij = 1/2} =

aij/α = 1 − PG{[Q(t)]ij = 0} for 1 ≤ i 6= j ≤ r0n, and
PG{[R(t)]ij = 1/2} = ai,r0n+j/α = 1 − PG{[R(t)]ij = 0}
for 1 ≤ i ≤ r0n and 1 ≤ j ≤ s0n. Hence,

Q̄ = EG{Q(t)} = Ir0n −
1

2α
M̄, (6)

R̄ = EG{R(t)} =
1

2α
Ū, (7)

where

M̄ :=



n∑
j=1

a1j −a12 . . . −a1,r0n

−a21

n∑
j=1

a2j . . . −a2,r0n

...
. . .

...

−ar0n,1 . . . −ar0n,r0n−1

n∑
j=1

ar0n,j


,

Ū :=

 a1,r0n+1 . . . a1,n

...
...

ar0n,r0n+1 . . . ar0n,n

 .

From the preceding discussion, we see that Q̄ and R̄ are
random matrices depending on G = (V, E , A), which is
generated by SBM(n, l, s0). If (I − Q̄)−1 exists, then we
use

xG,n = (I − Q̄)−1R̄zs (8)

to represent the mean of the stationary distribution of the
gossip model over the graph G = (V, E , A) (it is a condi-
tional expectation with respect to G). Otherwise we define
xG,n = +∞. Note that xG,n is a random vector depending
on G, and the superscript n emphasizes the dependence of
the considered vector on the network size.

B. Gossip Model over Averaged Graph

In the study of SBMs, the expectation of the adjacency
matrix A of a graph G, generated from an SBM, plays a
crucial role (see e.g., Section 4.5 of [17]). Note that by
averaging all possible graphs generated from SBM(n, l, s0),
we can obtain a weighted complete graph with weighted
adjacency matrix E{A}. We define the gossip model over
the averaged graph as follows.

Definition 4 (Gossip model over averaged graph):
The gossip model over the averaged graph is the gos-
sip model (3) that evolves over the complete graph with
weighted adjacency matrix E{A}, which is obtained from
averaging all graphs generated from SBM(n, l, s0).

In the gossip model over the averaged graph, the inter-
action probability matrix is W := E{A}/E{α}, which is
defined by E{A}, the expectation of the adjacency matrix A
of the SBM. So W can be considered as an approximation
of the interaction probability matrix W of the gossip model
over the SBM.
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Define Q̄ := I − E{M̄}/(2E{α}) and R̄ := E{U}/
(2E{α}), which are the counterparts of Q̄ in (6) and R̄ in (7),
respectively. It is not hard to see that the matricesW , Q̄, and
R̄ all have block structure corresponding to the community
structure, and it is shown in [15] that (I − Q̄)−1 exists and
the conclusions of Proposition 1 hold for the gossip model
over the averaged graph. Thus we use

x∗,n := (I − Q̄)−1R̄zs (9)

to represent the mean of the stationary distribution of the
gossip model over the averaged graph. It is verified in
Proposition 2 of [15] that x∗,n = [χ11r0n/2 χ21r0n/2] for
some constants χ1 and χ2 (these constants are weighted
averages of the stubborn-agent states). In other words, agents
in the same community have stationary states with the same
expectation, in the gossip model over the averaged graph.

C. Concentration Problem

In this paper, we study the relationship between xG,n and
x∗,n, given by the gossip model over the SBM and the gossip
model over the averaged graph, respectively. More precisely,
we are interested in whether there exists a concentration
phenomenon for xG,n. We state the considered problem as
follows:

Problem. Provide a high-probability bound for the
difference of xG,n and x∗,n, ‖xG,n − x∗,n‖.

The problem is related to whether we can use the gossip
model over the averaged graph to approximate the gossip
model over a network with community structure. Since it
could be simpler to analyze the gossip model over the
averaged graph, the approximation is useful for studying
behavior of the gossip model over the considered network.

IV. MAIN RESULTS

In this section we study the problem introduced in Sec-
tion III-C. We show that the mean of the stationary distri-
bution of the gossip model over the SBM is close to that of
the gossip model over the averaged graph.

Our main result given in the following shows the differ-
ence of xG,n and x∗,n is an infinitesimal of ‖zs‖ with high
probability.

Theorem 1: Suppose that the gossip model over the SBM
and the gossip model over the averaged graph start with the
same stubborn-agent state vector zs. If ls = ω((log n)/n)
and ld = ω((log n)/n), then

P
{
‖xG,n − x∗,n‖ = O

(√
log n

n(ls + ld)

)
‖zs‖

}
≥ 1− n−c,

where xG,n and x∗,n are given in (8) and (9), respectively,
and c is a positive constant.

Proof: Due to page limit, we provide a proof sketch.
Note that

‖xG,n − x∗,n‖
= ‖(I − Q̄)−1R̄zs − (I − Q̄)−1R̄zs‖

=

∥∥∥∥[(nM̄α
)−1

nŪ

α
−
(
nE{M̄}
E{α}

)−1
nE{Ū}
E{α}

]
zs
∥∥∥∥,

so it suffices to bound∥∥∥∥(nM̄α
)−1

nŪ

α
−
(
nE{M̄}
E{α}

)−1
nE{Ū}
E{α}

∥∥∥∥
≤
∥∥∥∥(nM̄α

)−1∥∥∥∥∥∥∥∥nŪα − nE{Ū}
E{α}

∥∥∥∥
+

∥∥∥∥(nM̄α
)−1

−
(
nE{M̄}
E{α}

)−1∥∥∥∥∥∥∥∥nE{Ū}E{α}

∥∥∥∥. (10)

To bound the first term, we need analyze ‖nM̄/α −
nE{M̄}/E{α}‖), which can be decomposed as∥∥∥∥nαM̄ − n

E{α}
E{M̄}

∥∥∥∥
≤
∥∥∥∥nαM̄

(
1− α

E{α}

)∥∥∥∥+

∥∥∥∥ n

E{α}
(M̄ − E{M̄})

∥∥∥∥
=: (I) + (II).

Utilizing the Chernoff inequality [17] and the Gershgorin
circle theorem, we can show that (I) ≤ C/

√
n with

high probability for some positive constant C. The matrix
Bernstein inequality [17] yields that

(II) = O

(√
log n

n(ls + ld)

)
,

with probability at least 1 − n−c, where c is a positive
constant. Therefore, with high probability,∥∥∥∥nαM̄ − n

E{α}
E{M̄}

∥∥∥∥ = O

(√
log n

n(ls + ld)

)
.

Note that, if (nM̄/α)−1 and (nE{M̄}/E{α})−1 exist,
then it follows from (5.8.1) of [18] that∥∥∥∥(nM̄α

)−1
−
(
nE{M̄}
E{α}

)−1∥∥∥∥
≤
∥∥∥∥(nM̄α

)−1∥∥∥∥∥∥∥∥(nE{M̄}E{α}

)−1∥∥∥∥∥∥∥∥nαM̄ − n

E{α}
E{M̄}

∥∥∥∥.
Utilizing the Chernoff inequality and the Gershgorin
circle theorem, we know that both ‖(nM̄/α)−1‖ and
‖(nE{M̄}/E{α})−1‖ can be upper bounded by some pos-
itive constants. In this way, we obtain a high-probability
bound for the first term of (10).

Similarly, it is able to use the Chernoff inequality and
the Matrix Bernstein inequality for rectangular matrices [17]
to analyze the second term of (10). The conclusion follows
from combining the bounds of the two terms.

Remark 2: If ls = as(log n)/n and ld = ad(log n)/n (we
refer to it as the critical case), then when (as + ad)/2 > 1,
SBM(n, l) is connected with high probability (i.e., it gener-
ates a connected graph with high probability) [16], [19]. So
our assumption in Theorem 1 requires the graph generated
from SBM(n, l) is slightly denser than a random graph
with expected degree of order O(log n). It can be shown
that ‖xG,n − x∗,n‖ = O(1)‖zs‖ in the critical case. In
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Defintion 2 we assume that the stubborn agents constitute
a linear fraction of both communities, but in practice there
could be only a few stubborn agents in a social network. One
way to capture this situation is to set s0 given in Definition 2
to be small enough. Another way is to assume that the
number of stubborn agents is o(n). We will study this case
in the future.

Remark 3: Note that
√

(log n)/[n(ls + ld)] = o(1) from
the assumptions of Theorem 1, so the inequality in the
theorem reveals a concentration phenomenon in the gossip
model over the SBM. It shows that xG,n lies in a neigh-
borhood of its expected version, x∗,n. If the entries of zs

is uniformly bounded, then ‖zs‖ = O(
√
n), and hence

‖xG,n − x∗,n‖ = o(
√
n). If xG,n and x∗,n have uniformly

bounded entries, then a trivial bound for their difference is
‖xG,n − x∗,n‖ = O(

√
n). Therefore, Theorem 1 indicates

that most entries of xG,n must be not too far away from those
of x∗,n. In particular, the difference between 1T

nx
G,n/n and

1T
nx
∗,n/n is o(1). That is, the mean of xG,n is close to that

of x∗,n.
With the help of Theorem 1, it is able to approximate

the entries of xG,n by using x∗,n, as the following corollary
shows.

Corollary 1: For all ε > 0, denote Vε,n := {i ∈ V :
|xG,ni −x∗,ni | > ε}. Under the same conditions of Theorem 1,
if all entries of zs are uniformly bounded by some constant
C not depending on n, then it holds for all ε > 0 that

P
{
|Vε,n| = O

(√
n log n

(ls + ld)

)}
≥ 1− n−c,

where c is a positive constant.
Remark 4: The corollary indicates that for all agents but a

small part of them with size of order o(n), xG,ni is very close
to its expected version x∗,ni with high probability. Since,
from [15], x∗,ni = χk for all 1 ≤ i ≤ r0n and k = 1, 2
such that Ci = k, this result establishes a correspondence
between stationary agent states and community labels. The
result also shows that it is possible to use the gossip model
over the averaged graph, which is much easier to analyze, to
study behavior of the gossip model over the SBM.

V. NUMERICAL SIMULATION

In this section, we present numerical experiments to il-
lustrate the obtained results. The first numerical experiment
demonstrates the concentration phenomenon in the gossip
model over the SBM: the mean of the stationary distribution
of the gossip model over the SBM, xG,n, is close to that
of the gossip model over the averaged graph, x∗,n, and their
difference can be upper-bounded by o(1)‖zs‖, where n is the
number of agents and zs is the stubborn-agent state vector.
This experiment also shows that most entries of xG,n is close
to x∗,n for large enough n. The second experiment illustrates
that a similar concentration phenomenon also appears in the
critical case, in which the parameters ls and ld of the SBM
are of order O((log n)/n)).

In both numerical experiments, the portion of stubborn
agents, s0, in SBM(n, l, s0) is set to be 0.2, and the states

0 2000 4000 6000 8000 10000

0.1

0.15

0.2

Fig. 1. The ratio ‖xG,n − x∗,n‖/‖zs‖ decreases as n increases.

of stubborn agents in community 1 (resp. community 2) are
generated independently from uniform distribution (0.9, 1)
(resp. from uniform distribution (0, 0.1)).

In the first experiment, we set ls = (log n)2/n and
ld = (log n)(log log n)/n. For a given n, we generate a graph
G from SBM(n, l, s0), and compute ‖xG,n − x∗,n‖/‖zs‖.
Fig. 1 shows that this ratio decreases as n increases. This
observation validates the concentration result given in The-
orem 1, and implies that xG,n lies in a neighborhood of its
expected version x∗,n for large n.

We further draw the histogram of xG,n for n = 500, 1000,
and 5000 in Fig. 2. This figure shows that, as n grows, the
entries of xG,n become closer to the corresponding entries
of x∗,n, as Corollary 1 states. As discussed in Remark 4,
x∗,n has two distinct values, χ1 and χ2. Thus, for regular
agent i, xG,ni is close to one of these two values that
corresponds to agent i’s community. The results indicate
that the correspondence between agent states and community
labels emerges for large networks, and we can use the gossip
model over the averaged graph to characterize the positions
of agent states in the gossip model over the SBM.

In the second experiment, we set ls = 60(log n)/n and
ld = 20(log n)/n, which is an example of the critical case
discussed in Remark 2. We draw the histogram of xG,n

for n = 100, 500, and 1000 in Fig. 3. The result also
shows that more and more entries of xG,n gather around
the entries of x∗,n as n grows. This observation indicates
that the concentration phenomenon still exists in the critical
case.

VI. CONCLUSION

In this paper we studied a concentration phenomenon in
a gossip model with stubborn agents over an SBM. We
obtained a concentration result for the conditional mean of
the stationary distribution of the gossip model over the SBM.
It is shown that this conditional mean is close to the mean
of the stationary distribution of the gossip model over an
averaged graph. As a result, most entries of the two vectors
are close. This result establishes a correspondence between
the stationary agent states of the gossip model over the SBM
and the community labels of the agents, and indicates that it
is possible to use the gossip model over the averaged graph
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(a) n = 500 (b) n = 1000 (c) n = 5000

Fig. 2. Concentration phenomenon for ls = (logn)2/n and ld = (logn)(log logn)/n. The subfigures show the histogram of xG,n with n = 500,
1000, and 5000, respectively. The red dotted lines represent the two distinct values of x∗,n.

(a) n = 100 (b) n = 500 (c) n = 1000

Fig. 3. Concentration phenomenon for ls = 60(logn)/n and ld = 20(logn)/n. The subfigures show the histogram of xG,n with n = 100, 500, and
1000, respectively. The red dotted lines represent the two distinct values of x∗,n.

to approximate behavior of the gossip model over the SBM.
Future work includes to study the critical case of Theorem 1
and to investigate the gossip model over general SBMs.
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