
Design of Attack-Resilient Consensus Dynamics:
A Game-Theoretic Approach

Mohammad Pirani, Ehsan Nekouei, Seyed Mehran Dibaji, Henrik Sandberg and Karl Henrik Johansson

Abstract— We propose a game-theoretic framework for im-
proving the resilience of multi-agent consensus dynamics in
the presence of a strategic attacker. In this game, the attacker
selects a set of network nodes to inject the attack signals.
The attacker’s objective is to minimize the required energy for
steering the consensus towards its desired direction. This energy
is captured by the trace of controllability Gramian of the system
when the input is the attack signal. The defender improves the
resilience of dynamics by adding self-feedback loops to certain
nodes of the system and its objective is to maximize the trace
of controllability Gramian. The Stackelberg equilibrium of the
game is studied with the defender as the game leader. When
the underlying network topology is a tree and the defender can
select only one node, we show that the optimal strategy of the
defender is determined by a specific distance-based network
centrality measure, called network’s f -center. In addition, we
show that the degree-based centralities solutions may lead to
undesirable payoffs for the defender. At the end, we discuss the
case of multiple attack and defense nodes on general graphs.

I. INTRODUCTION

A. Motivation

As the scale of network control systems becomes larger
and interactions between different parts become more sophis-
ticated, vulnerability of the system to unexpected faults and
attacks comes as a side effect. There exists a vast literature
on various methods to encounter, in both forms of mitigation
or bypassing, such unexpected and undesirable events which
are mostly referred to as fault-tolerant or resilient distributed
control [1]–[4]. However, the subtle difference between faults
and attacks is that in the latter case, the attacker uses a
knowledge she has about the vulnerabilities of the victim
system and targets its attack in such a way to maximize
its effect and/or minimize its visibility or effort to attack
[5], [6]. When the attacker uses such a level of intelligence
to steer the system to its desired direction, the defending
mechanism has to adopt an intelligent strategy to encounter
the attacker. One of the approaches to model such battles
between intelligent attacker and defender is via game theory.
In this direction, a large body of research is dedicated to
discuss game-theoretic methods to the security of cyber-
physical systems . A branch of such research pertains to
study the effect of the network structure on the game value
and the equilibrium strategies [7], [8].

The role of network structure on the robustness, resilience,
and fault tolerance of network control systems has been
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investigated in the past decade [9], [10]. Most of such works
belong to characterizing the effect of network connectivity
in damping the disturbances or faults, which are sometimes
referred to as network coherence. However, some researches
have been dedicated to identify the most effective nodes
(or a set of nodes) for placing controllers to maximize the
robustness of the network control system. The counterpart
of this problem is to look at these effective nodes as the
most vulnerable nodes to be attacked. In both cases, the
key approach is to relate such nodes to specific well-known
network centrality metrics [11], [12]. In this direction, our
approach in this paper is to relate the best actions of the
defender (and consequently the attacker) to some network
centrality metrics.

B. Related Work

There is a vast literature on resilient distributed algorithms
in the presence of adversarial agents [13]. Among them,
resilient consensus has attracted attentions in recent years.
One approach to resilient consensus problems was to obtain
(or recover) the initial values of all agents in the network
(despite the actions of malicious agents) and then compute
the function of initial values [10], [14]. The other approach
is to bypass the effects of malicious agents while doing the
averaging [15], [16]. The former method reaches to the exact
averaging of the initial conditions; however, demands large
computational cost. The latter requires much less computa-
tional cost; however, it only guarantees that the final value
will be in a convex hull of initial conditions (not necessarily
the average). Both approaches, however, require a large level
of connectivity for the underlying interaction network. In
many of the real-world applications of multi-agent systems,
e.g., networks of power generators, the underlying topology
is given and can not be changed. Hence, if the network
connectivity does not satisfy the requirements of the above-
mentioned resilient consensus algorithms, some other meth-
ods to overcome the actions of the malicious actions have to
be proposed.

C. Contributions

In this paper, we discuss a specific resilient distributed
consensus algorithm based on a game between the attacker
(which tries to steer the consensus to its desired direction
with minimum energy) and a defender (which tries to maxi-
mize this energy). More specifically, the contributions of the
paper are:
• We introduce an attacker-defender zero-sum game in

consensus dynamics of multi-agent systems where the
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game payoff is the trace of the controllability Gramian
(which captures the average energy needed to steer the
system over all controllable subspace). Moreover, we
discuss the Stackelberg game between the two players
when the defender is chosen as the leader.

• For the cases of single defender and f attackers, f > 1,
when the underlying network is a tree, we show that
the solution of the Stackelberg game for the defender
implies a specific network centrality, called f -center
of the graph. Moreover, we show that degree-based
centralities can exhibit bad performance if they are
chosen by the defender.

• We discuss these results to the general case of multiple
defense and attacked nodes on general weighted undi-
rected graphs.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notations and Definitions

We use G = {V, E} to denote a weighted undirected graph
where V is the set of vertices (or nodes) and E is the set of
undirected edges where (vi, vj) ∈ E if an only if there exists
a weighted undirected edge between vi and vj . Let |V| = n
and define the adjacency matrix for G, denoted by An×n, to
be a matrix where Aij = wij if and only if there is an edge
with weight wij between vj and vi in G (the adjacency matrix
will be a symmetric matrix when the graph is undirected).
The neighbors of vertex vi ∈ V in the graph G are denoted
by the set Ni = {vj ∈ V | (vj , vi) ∈ E}. We define the
degree for node vi as di =

∑
vj∈Ni

Aij . The Laplacian
matrix of an undirected graph is denoted by L = D − A,
where D = diag(d1, d2, ..., dn). We use ei to indicate the
i-th vector of the canonical basis. The eccentricity ε(v) of a
vertex v in a connected weighted graph G is the maximum
graph distance (or weighted distance) between v and any
other vertex u of G. The center of a graph is a set of vertices
with minimum (weighted) eccentricity. The f -eccentricity,
εf (v), of a vertex v in a connected weighted graph G is the
maximum sum of graph distances (or weighted distances)
between v and any combination of f vertices u1, u2, ..., uf
in G. The f -center of a graph is a set of vertices with
minimum (weighted) f -eccentricity. The effective resistance,
Rij , between two vertices vi and vj in a graph is the
equivalent resistance between these two vertices when we
treat the resistance of each edge e as 1

we
, where we is its

weight.

B. Consensus Model

Consider a connected undirected network G = {V, E}. The
state of each agent vj ∈ V evolves based on the interactions
with its neighbors as

ẋi(t) =
∑
j∈Ni

wij (xj(t)− xi(t)) , (1)

where wij > 0 is a positive weight representing the commu-
nication strength. There are some agents who add a feedback

from their own state and initial condition and evolve as1

ẋi(t) =
∑
j∈Ni

wij (xj(t)− xi(t))− k (xi(t)− xi(0)) , (2)

where k is the gain of the self-feedback.2 The reason for
adding such pure state feedbacks to some agents’ dynamics
is to make the consensus resilient to attack signals, as will be
discussed in the next subsection. Aggregating the dynamics
of agents into a matrix form yields the following linear time-
invariant networked dynamical system

ẋ(t) = −L̄x(t) +Kx(0), (3)

where L̄ = L + K, K = kDy and Dy = diag(y) in which
y is a binary vector. The i-th element of y, i.e., yi ∈ {0, 1},
indicates that node i has a self feedback if yi = 1 and it
does not have a self-feedback loop if yi = 0. It is well
known that in the absence of self-feedback loops, dynamics
(3) converges to the average of the initial conditions [18].
If there exists at least one defense node, then matrix L̄ is
invertible [19]. The following proposition indicates that in the
absence of attack (and when the self feedback loops exist),
the above dynamics converges to a convex combination of
agents’ initial conditions (but not necessarily to the average
of initial conditions).

Proposition 1: Each component of the steady-state solu-
tion of (3) lies in the convex hull of the agents’ initial
conditions.

Proof: We have L̄ = L + K and by multiplying both
sides with vector 1, we get L1 = (L̄ − K)1 = 0 which
results in L̄−1K1 = 1. This implies that L̄−1K is a row
stochastic matrix. For the steady-state solution, xss, of (3) we
have −L̄xss +Kx(0) = 0 which yields xss = L̄−1Kx(0)
and based on the fact the L̄−1K is row stochastic, we
conclude that xss will be some convex combination of the
elements of x(0).

C. Attack Model

To examine the resilience of the dynamic (2) against cyber-
physical attacks, we assume that an attacker injects attack
signals to a set of nodes in the network. Let B denote the
set of nodes under attack. Thus, the dynamic of the node
vi ∈ B will evolve according to

ẋi(t) =
∑
j∈Ni

wij (xj(t)− xi(t))− k (xi(t)− xi(0)) + ζi(t),

(4)
where ζi(t) represents the attack signal on node vi. In this
paper we assume that ζi(t) = ζ(t), ∀i ∈ B. Aggregating the
dynamics of agents into a matrix form yields the following
linear time-invariant network dynamical system

ẋ(t) = −L̄x(t) +Kx(0) +Bζ(t), (5)

where matrix B = [e1, e2, ..., ef ] specifies the selected nodes
by attacker. Note that the attacker selects the columns of the

1This type of state evolution where agents used their initial states as
feedbacks is used in opinion dynamics literature [17].

2Here, we assume that the gain values k are fixed and same for all agents
which have self-feedback.
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matrix B and the value of the attack signal ζ(t) is not a
decision variable. We assume that the value of the feedback
parameter k is private and is unknown to the attacker.3

In the presence of an attack, dynamics (5) can be poten-
tially deviated from the convex hull of the initial conditions,
unless the underlying network is sufficiently connected [15],
[16]. However, having a highly connected network is a
demanding condition for many applications. In this case, we
have to adopt an alternative strategy to prohibit or mitigate
the effect of the attack even when the underlying network
topology is sparse as it will be discussed in the following
section.

III. ATTACKER-DEFENDER GAME

In this section, we propose a game-theoretic framework for
designing secure consensus algorithms. More formally, we
pose the problem as a zero-sum game between an attacker
and a defender. The objective of the game is the energy that
the attacker requires to steer the consensus to its desired
direction. This energy is captured via the spectrum of the
controllability Gramian of the system. What we use is the
trace of the controllability Gramian which is inversely related
to the average energy and can be interpreted as the average
controllability in all directions in the state space [20]. The
attacker selects a set of network nodes, to inject the attack
signals, such that the average energy is minimized (the trace
of controllability Gramian is maximized). The defender se-
lects a set of nodes to place self-feedback loops such that this
energy is maximized (the trace of controllability Gramian is
minimized). Mathematically speaking, the decision variable
of the attacker is matrix B and the decision variable of the
defender is matrix Dy . The notion of average energy here is
captured by the trace of the controllability Gramian matrix,
associated with the dynamics in (5), which can be written as

Wc =

∫ ∞
0

eL̄τBBTeL̄
T τdτ. (6)

Based on the following calculations, the trace of the control-
lability Gramian of (5) has a closed form

tr (Wc) = tr

(∫ ∞
0

eL̄τBBTeL̄
T τdτ

)
=

∫ ∞
0

tr
(
BTe2L̄τB

)
dτ = tr

(
BT

∫ ∞
0

e2L̄τdτB

)
=

1

2
tr
(
BT L̄−1B

)
=
∑
i∈B

[L̄−1]ii, (7)

where [L̄−1]ii is the i-th diagonal element of L̄−1. Based on
the above closed form, the following game is defined.

3Otherwise the attacker can choose ζi(t) = k (xi(t)− xi(0)) and makes
the defender as an ordinary agent.
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Fig. 1: An example of the attacker-defender game.

Attacker and Defender Game: The attacker tries to
inject attack signal ζi(t) to f nodes in the network to
maximize the average controllability tr (Wc), while
the defender places the self feedbakcs to f̄ nodes to
minimize the average controllability of the system.
Thus the game payoff for this attacker-defender zero-
sum game is:

J(B,Dy) = tr

BT (L+ kDy︸ ︷︷ ︸
L̄

)−1B

 , (8)

where the attacker’s decision determines matrix B
to maximize J(B,Dy) and the defender’s decision
affects matrix Dy to minimize J(B,Dy).

Based on the actions of the attacker and the defender, when
f nodes are under attack and f̄ nodes are defended, matrix
game A(n

f̄)×(n
f) is formed where Aij = J(Bj , Dyi) in which

Bj corresponds to the set chosen by the attacker and Dyi

corresponds to the set chosen by the defender. The attacker,
which acts as the maximizer, chooses columns of matrix A
and the defender, the minimizer, chooses the rows. Fig. 1
shows an example of the attacker defender game. Based on
this figure, the attacker chooses nodes 1 and 3, while the
defender chooses nodes 1 and 2. For this example, the game
value is a12 = L̄−1

11 + L̄−1
33 .

Through the rest of the paper, we investigate the equilib-
rium of the above game for the case of single (and multiple)
attacker and defender. Note that the equilibrium strategy of
the game determines the optimal location of self-feedback
loops.

Remark 1: It is known that optimizing the trace of con-
trollability Gramian does not preserve the controllability of
the system, e.g., having Wc � 0 [20]. If minimizing tr(Wc)
(from defender’s perspective) yields to an uncontrollable
system, then the action of the defender can be interpreted
as maximizing the energy of steering the system over the
controllable subspace, which is the range space of Wc.

IV. EQUILIBRIUM ANALYSIS: SINGLE ATTACK SINGLE
DEFENSE NODES ON TREES

In this section, we investigate the attacker-defender game
when the attacker and the defender choose single nodes and
the underlying network is a tree. The reason of choosing trees
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is that it provides insights about the role of network topology
on the game strategy. We will discuss more general graphs
in Section VI.

For the single attack-single defense nodes case, the game
payoff will simply become

J(B,Dy) = [(L+ keje
T
j )−1]ii, (9)

where vi, and vj are the node under attack and the node
with the self-feedback, respectively. We need the following
lemma to further study the game value and the equilibrium
strategies. The proof of this lemma is postponed to Section
VI.

Lemma 1: Suppose that G is an undirected tree and there
exists a single defense node vj (which has a self loop with
weight k). Then we have

[L̄−1]ii =
1

k
+
∑
h∈Pij

1

wh
, (10)

where Pij is the set of edges in the (unique) path from vi
to vj and wh is the weight of edge h.

We next show that the attacker defender game does not
admit a Nash equilibrium.

Proposition 2: The single attacker-single defender game
with a single attack and single defense node does not admit
a Nash equilibrium.

Proof: The proof is based on the fact that the value of
all diagonal elements of the game matrix A is Aii = 1

k and
each off-diagonal element is Aij = 1

k +
∑
h∈Pij

1
wh

. Thus,
each diagonal element is strictly less than the elements of
its corresponding row and column. Now assume that a NE
exists and let (i∗, j∗) denote the equilibrium strategies of the
attacker and defender. Thus, we should have

[A]i∗j 6 [A]i∗j∗ 6 [A]ij∗ (11)

for all i 6= i∗ and j 6= j∗. If element [A]i∗j∗ is in one of the
diagonal elements then the left inequality will be violated
and if it is in one of the non-diagonal elements, the right
inequality will be violated.

Although the attacker-defender game does not admit a
Nash equilibrium, the optimal defense strategy can be de-
termined by finding the solution of the Stackelberg game
between the attacker and defender. In the Stackelberg game
formulation, the defender acts as the game leader, i.e., the
leader solves the following optimization problem

J∗(Dy) = min
Dy

tr
(
B∗

T

(Dy)L̄−1B∗(Dy)
)
. (12)

where Dy is chosen over all f̄ defense nodes (here f̄ = 1) in
V and B∗(Dy) is the best response of the attacker when the
strategy of the defender is Dy , i.e., B∗(Dy) is the solution
of the following optimization problem

B∗(Dy) = arg max
B

tr
(
BT L̄−1B

)
, (13)

where B is chosen over all f attacked nodes (here f = 1) in
V . In particular, for a given strategy of the defender, i.e., Dy ,
the attacker finds its best response strategy to the defender’s

decision, which is given by arg maxB tr
(
BT L̄−1B

)
. Then,

the defender optimizes its decision based on all possible best
response strategies of the attacker. Unlike Nash equilibrium,
a Stackelberg game always admits an equilibrium strategy.

Based on the above discussion and the definition of graph
center presented in Section II-A, we have the following
theorem.

Theorem 1: Consider the Stackelberg attacker-defender
game, with the defender as the game leader, over the
connected undirected tree G. Then, a solution of the game
happens when the defender chooses the weighted center of
the graph and the attacker chooses the node with longest
(weighted) distance from the center.

Proof: We know that for the game matrix A we have
Aij = 1

k +
∑
h∈Pij

1
wh

. As the defender is the leader of the
Stackelberg game, it minimizes (over all rows) the maximum
element of each row of A. Since the term 1

k is shared over
all elements of A, then the optimal place for the defender
is v∗ = arg mini maxj

∑
h∈Pij

1
wh

and this is the center of
the graph, whose (weighted) eccentricity is minimized. Note
that this solution (strategies of the defender and attacker)
may not be unique since the center of the network may not
be a single node. However, the value of the game is unique.

V. EQUILIBRIUM ANALYSIS: MULTIPLE ATTACK NODES,
SINGLE DEFENSE NODE ON TREES

In this section, we analyze the attacker-defender game with
multiple attack nodes and a single defense node. One can
interpret this as the lack of knowledge about the number of
attacks to the network. In this case, if the defender knows an
upper bound on the number of attacks f , then it can choose
a strategy which corresponds to the worst case scenario, i.e.,
f nodes are under attack. The following remark discusses
this worst case more formally.

Remark 2: (Effect of Adding Attackers): By increasing
the number of attackers, the game payoff will increase (the
energy required to attack the system will decrease). More
formally, since L̄−1 is a positive matrix, for two attack sets B
and B̄ where B ⊆ B̄ , we have

∑
i∈B[L̄−1]ii 6

∑
i∈B̄[L̄−1]ii.

For this scenario, the optimal strategy of the single de-
fender depends on the number of nodes under attack. The
following theorem characterizes the equilibrium solution of
the game with multiple attack nodes and a single defense
node. The proof of this theorem follows a similar logic to that
of Theorem 1. The notion of graph’s f -center was defined
in Section II-A.

Theorem 2: Consider the Stackelberg attacker-defender
game with single defender and f attacks, f > 1, with the
defender as the game leader, over the connected undirected
tree G. Then, a solution of the game is when the defender
chooses the weighted f -center of the graph and the attackers
choose the farthest f nodes from the f -center.
It should be noted that the graph’s closeness central node (the
node whose summation of its distances to all other nodes is
minimized) is equivalent to (n− 1)-center node. In general,
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Fig. 2: An example of a graph showing that the f -center of
a graph can change with f .

the location of graph’s f -center in the network changes by
changing f . This is discussed in the following example.

Example 1: A broom tree is a graph which is formed by a
star, comprised of m nodes connected to the center, followed
by a tail of length m. In the broom tree shown in Fig. 2 (a),
the closeness central node of the graph always is in the center
of the star; however, the center (and in general its f -center)
will go left through the tail as m increases.

Theorem 2 together with Example 1 show that in the ab-
sence of knowledge of the number of attacks on the system,
choosing one of f -centers of the graph results in a sub-
optimal solution. However, it gives a message that centralities
which are distance-based (like f -centrlities mentioned above)
are among appropriate choices for the defender. In other
words, degree-based centralities, such as degree central node
and eigenvector central node [21], can reach to inappropriate
decisions, as discussed in the following example.

Example 2: In Fig. 2 (b), the degree and eigenvector
central nodes are the two nodes in the end of the line;
however, the f -central node, for any f 6 n−1, is located in
the middle of the line. By increasing the length of the line,
the f -central node becomes arbitrarily far from the degree
(and eigenvector) central nodes.

VI. MULTIPLE ATTACK, MULTIPLE DEFENSE NODES ON
GENERAL GRAPHS

In this section, we discuss the case where there are f
attack and f̄ defense (self-feedback loops) in the general
network where f, f̄ > 1. In order to tackle this problem,
we need to reinterpret the self-feedback loops in terms of
connections to some virtual agent as shown in Fig. 3. We
call the graph including such a virtual agent the extended
graph and its Laplacian is denoted by Lext. Any defense
node is connected to that virtual agent with an edge of weight
k (the self-feedback). This virtual agent is interpreted as a
grounded node if we interpret the network as a circuit. Thus,
it does not have any effect on the dynamics and exists only
to facilitate the graph-theoretic interpretation of the attacker-
defender game.

Here we relax the assumption of acyclic networks and
solve the game on general graphs. In this case, as there

1
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Fig. 3: Extended graph and the virtual leader.

may be multiple paths between each couple of nodes, each
element of the game matrix aij will be the sum of effective
resistances (instead of the physical distance) between nodes
in the i-th attack set (consists of f attacks) when the node
set j (consists of f̄ defenders) is chosen to be the defender
set.

If we treat L̄ as a grounded Laplacian matrix (grounded
at the virtual node `), it is known that the i-th diagonal
element of L̄−1 is the effective resistance from node vi and
the virtual node ` [22]. 4 With this in mind, consider nodes
1 and 2 in Fig. 3 which are chosen as defenders and nodes
1 and 3 which are under attack. In this case, element a12 in
matrix game A determines the game value which is equal to
a12 =

∑
i∈B[L̄−1]ii = R1` + R3`. Based on this fact, the

following theorem discusses the equilibrium of Stackelberg
game for general case of f attack nodes and f̄ defense nodes
on connected undirected networks.

Theorem 3: Consider the Stackelberg attacker-defender
game with f̄ defense nodes and f attack nodes, f, f̄ > 1,
with the defender as the game leader, over the connected
undirected graph G. Let’s denote the virtual agent corre-
sponding to a set of f̄ defense nodes D by `(D). Then, a
solution of the game is when the defender chooses f̄ nodes D
in which the maximum sum of effective resistances between
`(D) and all combinations of f nodes in the network is
minimized, i.e., D∗ = arg minD⊆V max,B⊆V

∑
j∈B R`(D)j .

Moreover, the attacker chooses the set of f attack nodes as
B∗(D) = arg maxB⊆V

∑
j∈B R`(D∗)j .

Remark 3: (The Effect of Increasing Connectivity):
Since the effective resistance between two nodes in the graph
is an increasing function of edge weights (or decreasing
function of edge conductance, as mentioned in [22]), adding
extra edges to the network (or increasing the weight of edges)
will decrease the diagonal elements of L̄−1 and consequently
decreases the trace of the controllability Gramian which
results in increasing the attack energy. Hence, it would be
beneficial from the defender’s perspective. With the same
reasoning, removing edges (or weights) from the network
results in a less secure system.

Remark 4: (The Effect of Adding defense nodes): In
the extended graph, adding a self-feedback loop to node vi is
equivalent to adding an edge from vi to the virtual agent with

4When the graph is a tree, the effective resistance and physical distance
become the same and this proves the statement of Lemma 1.
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Fig. 4: single attacker-single defender, (Top) Effect of choos-
ing the center of the graph as the defender, (b) comparing
degree-based centralities with the center of the graph.

weight k. Hence, similar to what was discussed in Remark
3, adding extra defense node results in decreasing the game
value; thus, it is beneficial for the security of the system.

VII. SIMULATIONS

In this section, we present simulation results for an
attacker-defender game over a graph with single attack-single
defense nodes. Fig. 4 (top) shows the game payoffs for four
sample defense nodes (nodes 8, 9, 10, and 11) each of which
for all possible choices of the attack nodes (the horizontal
axis belongs to the attacker’s label). According to this figure,
the best response of the attacker to each strategy of the
defender is to select the end of the line (node 15) as the attack
node. Thus, the optimal value from the defender’s perspective
(leader of the Stackelberg game) is to choose node 11 whose
attacker’s best response (node 15) is less than the other four
(black star in node 15). As another example, we look at the
structure which was discussed in Fig. 3 as well where there
are two stars linked with a line. In this case, similar to the
previous example, the game payoff for three sample nodes
(6, 7, and 8) as defenders is depicted for all possible choices
of the attack nodes (horizontal axis) and the best response of
the attacker is node 1.5 Hence, the minimum of these values
belongs to the case where the defender is located in node 6.

VIII. CONCLUSION

A game-theoretic approach to the resilience of consensus
problems in the presence of attacks was proposed. The
motivation behind this work was to come up with a method
to increase the cost of attack for the case where the under-
lying network is not highly connected (large connectivity is
necessity for previous methods in the literature to mitigate

5The best attacker’s response it not unique since nodes 2 and 3 are also
best responses.

the effect of attacks). It was shown that the optimal solution
of the Stackelberg attacker-defender game on trees (from a
single defender’s perspective) in the presence of f attackers
is to choose a specific centrality metric, called f -center of
the graph. The results of Stackelberg game were extended
to general connected graphs and multiple attackers and
defenders.
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