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Abstract— This paper presents the notion of stochastic phase-
cohesiveness based on the concept of recurrent Markov chains
and studies the conditions under which a discrete-time stochas-
tic Kuramoto model is phase-cohesive. It is assumed that the
exogenous frequencies of the oscillators are combined with
random variables representing uncertainties. A bidirectional
tree network is considered such that each oscillator is coupled
to its neighbors with a coupling law which depends on its
own noisy exogenous frequency. In addition, an undirected tree
network is studied. For both cases, a sufficient condition for
the common coupling strength (κ) and a necessary condition
for the sampling-period are derived such that the stochastic
phase-cohesiveness is achieved. The analysis is performed within
the stochastic systems framework and validated by means of
numerical simulations.

I. INTRODUCTION

Synchronization is among the key collective behavior of
many complex networks, including biological and neural
networks. The well-celebrated Kuramoto model [1], [2] has
been a paradigm for studying interconnected oscillators.

Kuramoto network has been considered in both
continuous-time and discrete-time settings. Considering
the continuous-time deterministic dynamics, the current
literature has addressed various problems [3]–[8], for
instance conditions on the critical coupling for phase
and frequency synchronization [3], [4]. The problem of
explosive synchronization in large scale networks has
also been studied using Kuramoto model by incorporating
a correlation between the structural and the dynamical
properties of the network [9] as well as assuming coupling
strength as a function of exogenous frequencies [10].

Besides the continuous-time analysis, discrete-time syn-
chronization is another interesting direction specially that
estimation of the behavior of natural/man-made systems
are mainly done in a discrete-time fashion. Deterministic
discrete-time Kuramoto models have been studied in e.g.
[11], [12]. A bound for the product of coupling term and
sampling period has been presented in [11] in order to
achieve phase-synchronization, which is a specific form of
phase-cohesiveness, where the underlying graph has been
either a complete or a star graph with a common and constant
coupling strength and zero exogenous frequencies.
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In addition to deterministic models, stochastic Kuramoto
network has also been studied using a continuous-time
Fokker-Planck model to analyze the network behavior where
a noise was added to the dynamics of each oscillator,
e.g., [13]–[15]. Also, Markov chains have been utilized for
the analysis of the effects of phase discretization on the
synchronization [16].

Kuramoto model has been widely used to study synchro-
nization in several disciplines including neural networks [15],
[17]. The model has been utilized to study the behavior of
spiking neurons represented by conductance-based models
[18]. In such models, the coupling conductance can be
subject to fluctuations due to noises [19].

Motivated by noisy interconnections in neural networks as
well as considering the explosive synchronization behavior
modeled by frequency-dependent coupling, the main contri-
bution of the paper is to present a notion of stochastic cohe-
sive behavior for such a network and characterize conditions
under which this behavior is achieved for stochastic discrete-
time Kuramoto oscillators. We consider both bidirectional
frequency-dependent tree networks as well as undirected tree
networks. Our choice of studying tree networks is encour-
aged by observations that large-scale inter-areal connectivity
in the brain can be approximated as a tree network [20].

We use the term stochastic phase-cohesiveness to refer to
a probabilistic counterpart (employing the concept of recur-
rent Markov chains), of the standard deterministic phase-
cohesiveness. We assume that all exogenous frequencies
are uncertain. The oscillators’ exogenous frequencies are
modeled as the sum of a constant value and a random
variable. We first consider a network of oscillators with
a bidirectional graph topology such that each oscillator is
coupled to its neighbors with a coupling term equal to the
product of a common coupling term, namely κ, and its own
uncertain exogenous frequency. As a result, considering a
frequency-dependent network, the weights of all edges of
the graph are affected by the uncertain exogenous signals.
We derive a sufficient condition on the bound of κ and
a necessary condition for the sampling-time such that the
discrete-time network achieves stochastic phase-cohesiveness
assuming that the expectation of the minimum eigenvalue of
the graph weighted edge Laplacian is positive. Analogously,
we perform the analysis for the undirected tree graphs, i.e.
all edges have a common and constant positive coupling
strength κ, and provide conditions for the stochastic phase-
cohesiveness. Compared to our previous work [21], which
studied frequency synchronization in a continuous-time bidi-
rectional tree network with constant and positive exogenous
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frequencies, this paper studies a stochastic discrete-time
network where each exogenous frequency is modeled as the
sum of a constant-value and a random variable which may
also take negative values. Thus, the weights of the graph
edges are not always positive. The latter makes the analysis
of such a network more challenging. We use a probabilistic
measure, the expectation of the minimum eigenvalue of the
weighted Laplacian, to tackle this problem.

To the best of our knowledge, stability of uncertain param-
eter Kuramoto models, where the uncertainty has a random
nature, have not been considered in the existing literature. In
particular, the case of frequency-dependent networks where
the interconnection of each two oscillators is subject to
random uncertainties has not been studied.

The paper is organized as follows. Section II presents
preliminaries and problem formulation. Section III presents
the notion of stochatic phase-cohesiveness and studies the
conditions under which this behavior is achieved for a
frequency-dependent network. The analysis of the undirected
graph is presented in Section IV. Section V presents simu-
lation results and Section VI concludes the paper.
Notation: Symbol 1n is a n-dimensional vector. The empty
set is denoted by ∅. The notations xi,j and xk are equiva-
lently used for xi−xj and x(k), respectively. The symbol S1

denotes the unit circle. The term |θi−θj | denotes the geodesic
distance between two angles θi ∈ S1, θj ∈ S1 defined as
the minimum of the counter-clockwise and the clockwise
arc lengths connecting θi and θj [4]. A random variable x
selected from an arbitrary distribution X with mean µ and
variance Σ is denoted by x ∼ X (µ,Σ). The expected value
and conditional expected value operators are denoted by E[·]
and E[·|·], respectively.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first revisit some preliminaries of the
graph theory and Markov chains (MC), and then we state
the problem formulation.
Graph theory preliminaries: For a connected undirected
graph G(V, E), the node-set V corresponds to n nodes and
the edge-set E ⊂V×V corresponds to m edges. The incidence
matrix Bn×m associated to G(V, E) describes which nodes
are coupled by an edge. The matrix L = BBT is called
the graph Laplacian and Lg = BTB is the edge Laplacian.
For any undirected tree graph, all eigenvalues of Lg are
equal to the nonzero eigenvalues of L [22]. In this paper,
we consider trees which are a subclass of connected graphs
without cycles, i.e., any two nodes are connected by exactly
one unique path. The edge Laplacian of a tree graph is
invertible [22].
Stochastic processes: The three-tuple (Ω,F ,P) defines a
probability space, where Ω (sample space) is the set of all
possible outcomes, F is a σ-algebra1 of events with associ-
ated probabilities determined by the probability measure P.
The following definitions are mainly borrowed from [23].

1A σ-algebra F defined on a set Ω is a set containing subsets of Ω
including the empty set.

Definition 1 [23, Ch.3] Let Ω be a sample space, and F any
σ-algebra on Ω, i.e. the pair (Ω,F) is a measurable space.
We call Ω an uncountable space if it is assigned a countably
generated σ-algebra2 F(Ω).

We say (Ω,F) is a measurable space if the σ-algebra F
on Ω satisfies the following properties: (a) ∅ ∈ F , (b) If
B ∈ F , then Bc ∈ F , where Bc = Ω \ B, (c) If B1 ∈ F
and B2 ∈ F , then B1 ∪B2 ∈ F .

The probability measure P : F → [0, 1] is a measure on
(Ω,F) that assigns a probability to each outcome of F .

Definition 2 A stochastic process Φ = {Φ0,Φ1, . . .} evolv-
ing on a sample space Ω associated by a probability law P is
a time homogeneous Markov chain if for some sets B a set
of transition probabilities {Pn(ω,B), ω ∈ Ω,B ⊂ Ω} exist
such that for n,m in Z+

P(Φn+m ∈ B|Φj , j ≤ m,Φm = ω) = Pn(ω,B).

The independence of the transition probability Pn(ω,B)
from j ≤ m is the Markov property, and its independence
from m is the time homogeneity property.

Definition 3 Let a MC Φ={Φ0,Φ1, . . .} evolves in general
sample space Ω equipped with σ-algebra F(Ω). Then:

1) for any B ∈ F(Ω), the measurable function τB : Ω →
Z+∪{∞} denotes the first return time to the set B, i.e.

τB , min{n ≥ 1 | Φn ∈ B}. (1)

2) for any measure ϕ on the σ-algebra F(Ω), Φ is said to
be ϕ-irreducible if ∀ ω ∈ Ω, and B ∈ F , ϕ(B) > 0
implies Pω(τB <∞) > 0.

According to the definition 3, the entire state space of a MC
is reachable, independent of the initial state, via finite number
of transitions only if the MC is ϕ-irreducible. Moreover, if
a MC is ϕ-irreducible, then a unique maximal irreducibility
measure ψ > ϕ exists on F(Ω) such that Φ is ϕ′-irreducible
for any other measure ϕ′ if and only if ψ > ϕ′. We say then
the MC Φ is ψ-irreducible.

A. Problem statement
We consider n discrete-time oscillators communicating

over a connected and bidirectional tree graph such that each
oscillator dynamics is obtained with a first order (zero-order
hold) discrete-time approximation of

θ̇i = (ωi + ni(t))(1− κ
∑
j∈Ni

sin(θi(t)− θj(t))), (2)

such that the discrete-time dynamics of oscillator i is 3

θi(k+1)=θi(k)+τ(ωi+ni(k))(1−κ
∑
j∈Ni

sin(θi(k)−θj(k))),

(3)

2Assume B is a random process (arbitrary family of subsets of Ω) defined
on a probability space (Ω,F ,P). Then, the smallest σ-algebra on which B is
measurable, i.e. the intersection of all σ-algebras on which B is measurable,
is called the generated σ-algebra by B.

3The model is motivated by a frequency-dependent neural network subject
to fluctuations in coupling strength (see Section I).
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where k > 0, θi(k) ∈ S1, ωi ∈ R, and τ > 0 represent
the time step, the phase and exogenous frequency of
oscillator i, and the sampling time, respectively. Symbol
Ni denotes the set of neighbors of node i. The parameter
κ > 0, κ ∈ R is the constant coefficient of the coupling
strength of all links of the graph. The disturbance process
ni, for all i ∈ {1, . . . , n}, is assumed to be an i.i.d random
sequence with the random realizations ni(k) selected from
an arbitrary continuous distribution with finite mean and
variance, at each k. This model can be interpreted as a
bidirectional communication where the weights of coupling
of each edge at each direction depends on the randomly
disturbed exogenous frequency of its head oscillator.
We define the augmented phase state θ(k) ,
[θ1(k), . . . , θn(k)]>. The compact form of the relative
phase dynamics can then be written as

BTθ(k + 1) = BTθ(k) + τBT ∼ω(k)1n

− κτBT ∼ω(k)B sin(BTθ(k)),
(4)

where θ(k) is the state vector at time step k, B is the graph
incidence matrix and ∼ω(k) is a diagonal random matrix at
time step k whose diagonal elements are equal to the noisy
exogenous frequency of the oscillators, i.e.,

∼ωn×n(k) =

ω1 + n1(k) . . . 0
...

. . .
...

0 . . . ωn + nn(k)

 . (5)

We also assume that the initial relative phase, i.e. θi(0) −
θj(0), is an arbitrary random variable, independent from the
noise realizations ni(k), selected from any finite moment
probability distribution with continuous density function
such that |θi(0)−θj(0)| ≤ γ, j ∈ Ni, where γ > 0, γ = π

2−ε
for some ε > 0, and |.| denotes the geodesic distance [4].
Thus, the set of randomly selected initial conditions is

SG(γ)=
{
θi(k)∈ S1, |θi,j(k)| ≤ γ, 0 <γ < π

2

}
. (6)

The noise process ni’s for all i ∈ {1, . . . , n} together
with the random initial relative phase θi,j(0) for all i and
j ∈ Ni generate a probability space (Ω,F ,P) where Ω
(sample space) is the set of all possible outcomes, F is a σ-
algebra of events with the associated probabilities determined
by the probability measure function P. It is straightforward
to conclude that the three-tuple (Ω,F ,P) represents an
uncountable probability space, because the noise distribution
has a continuous density function and the noise realizations
can take any values of their supporting range (−∞,+∞) at
any time instance k.

According to (4), dynamics of θ(k + 1) depends only
on the most recent state θ(k) and the noise variables
{n1(k), . . . , nn(k)}, therefore, we can conclude that θ(k)
is a Markov chain (MC) for all k ∈ {0, 1, 2, . . .} with its
dynamics evolving over the uncountable probability space
(Ω,F ,P). Based on the definitions 2 and 3, θ(k) is a
time homogeneous MC because the difference equation (4)
is time-invariant and the noise process ni’s are i.i.d. for
i ∈ {1, . . . , n} at every time-step k. This implies that θ(k)

evolves according to a stationary transition probability on
the sample space. Moreover, the chain is a ψ-irreducible,
with ψ a nontrivial measure on the σ-algebra, since the noise
distribution is absolutely continuous having a positive density
function at any state of the probability space.

Definition 4 [24] Let the ψ-irreducible MC Φ =
{Φ0,Φ1, . . .} be defined over the probability space (Ω,F ,P)
with random variables measurable with respect to some
known σ-algebra F(Ω). Then Φ is said to be recurrent if

Pω(τB <∞) = 1,∀ω ∈ Ω, B ∈ F .

Intuitively, definition 4 states that if a state of a recurrent
MC leaves a subset B ∈ F with non-zero probability, the
state returns to the set B with probability one.
Consider 0 < δ < π

2 . A deterministic phase-cohesiveness
implies that ∀i, j ∈ V, |θj(k) − θi(k)| < δ [4]. Inspired by
this, we now define the stochastic phase-cohesiveness. First,
let us define

Ω =
{
θi(k) ∈ S1, |θi,j(k)| ≤ π

2

}
. (7)

Definition 5 The relative phase process BTθ defined on the
probability space (Ω,F ,P) with Ω in (7) is phase-cohesive in
a stochastic sense if the process is recurrent having a desired
subset of the state space, namely SG(γ) defined in (6), i.e.
PBT θ(k)(τSG(γ) <∞) = 1,∀k,∀ θ(k) ∈ Ω, SG(γ) ∈ F .

Problem Our goal is to study conditions under which
the stochastic phase-cohesiveness can be achieved for the
relative-phase process in (4). In [21], a deterministic,
continuous-time and noise-free counterpart of (4) has been
analyzed. It was shown that for a sufficiently large κ, i.e.

κ >
|ωmax − ωmin|

λmin(BTωB) sin(γ)
, (8)

with ω being a noise-free positive diagonal matrix with a
similar structure as in (5), the deterministic, continuous-time
and noise-free network achieves phase-cohesiveness.
In this paper, we consider the case where the exogenous
frequencies, and hence the weights of edges, are combined
with random uncertainties which are not always positive,
hence, contrary to [21], this paper allows random zero and
negative edge weights as well. Notice that θi(k) ∈ S1,∀k
indicates that the dynamics is evolving on the n-Torus [7].
In this paper, we study the relative process (4) and restrict
the randomly selected initial conditions to SG(γ) which is
diffeomorphic to the Euclidean space and hence run our
analysis in the Euclidean space.

III. STOCHASTIC PHASE COHESIVENESS:
BIDIRECTIONAL ASYMMETRIC NETWORK

In this section, we derive a sufficient coupling condition
and a necessary sampling-time condition to achieve phase-
cohesiveness for stochastic oscillators modeled in (4). Our
results are based on the concept of recurrent MC for discrete-
time stochastic systems [23]. The following lemma which is
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directly inferred from Theorem 8.4.3 of [23] provides the
condition under which a ψ-irreducible MC is recurrent.

Lemma 1 Assume that Φ = {Φ0,Φ1, . . .} is a ψ-irreducible
MC evolving on a sample space Ω equipped with the σ-
algebra F , and V (Φ) : Ω → R+ is a monotonic function
such that V (Φ)→∞ as Φ→∞. The MC Φ is recurrent if
there exists a small set4 C ∈ F satisfying

E[V (Φk+1)|Φk = x]− V (x) < 0, ∀Φk ∈ Ω \ C.

Theorem 1 Consider the discrete-time stochas-
tic process in (4) with the set SG(γ) ={
θi(k) ∈ S1, |θi,j(k)| ≤ γ, 0 < γ < π

2

}
. Assume that

E[λmin(BT ∼ωB)] is strictly positive. Then, the process (4)
is recurrent if the two following conditions hold

κ >
(1− sin(γ)) π2τ +Emax|∆∼ω|
(sin2(γ))E[λmin(BT ∼ωB)]

τ <
(1 + sin(γ))γ

κE[λmax(BT ∼ωB)] +Emax|∆∼ω|
,

(9)

where Emax|∆∼ω| = i,j
maxE[|(ωi + ni(k))− (ωj + nj(k))|].

Proof: We prove (4) is recurrent w.r.t. SG(γ) by
taking radially unbounded function V = (sin γ)1Tm|BTθ| =
sin(γ)

∑
i,j |θi(k) − θj(k)| and showing that the one-step

drift of V, i.e.,

∆V (θ) =E[V (θ(k + 1))|θ(k)]− V (θ(k)),

=E[sin(γ)1Tm|BTθ(k + 1)| | θ(k)]−
sin(γ)1Tm|BTθ(k)|,

(10)

is negative if
{
∀i, j, γ ≤ |θi(k)− θj(k)| < π

2

}
. Consider

the relative phase dynamics as in (4) and let Ik denote the
right-hand side of equation (4). Then (sin γ)1Tm|BTθ(k +
1)| = (sin γ)1Tm|Ik|. Notice that for γ ≤ |θi − θj | < π

2 , we
have sin(γ) ≤ | sin(θi,j)| < 1, sin(γ) > 0. Thus,

(sin γ)1Tm|Ik| ≤ | sinT (BTθ(k))||Ik| < 1Tm|Ik|. (11)

Moreover, we have

| sinT (BTθ(k))||Ik| = | sinT (BTθ(k))Ik| =
| sinT (BTθ(k))BTθ(k) + τ sinT (BTθ(k))BT ∼ω(k)1n

− κτ sinT (BTθ(k))(BT ∼ω(k)B) sin(BTθ(k))|.
(12)

Denote sin(γ)1Tm by 1Tγ . We can write

sin(BTθ(k))BTθ(k) < (1Tγ + (1T − 1Tγ ))|BTθ(k)|
< 1Tγ |BTθ(k)|+ (1T − 1Tγ )|BTθ(k)|.

(13)
Combining (11), (12) and (13), we obtain

1Tγ |Ik| <|1Tγ |BTθ(k)|+ (1T − 1Tγ )|BTθ(k)|+
sinT (BTθ(k))[τBT ∼ω(k)1n−
κτBT ∼ω(k)B sin(BTθ(k))]|.

(14)

4Theorem 8.4.3. of [23] requires a petite set. Every small set is a petite
set and small sets always exist for ϕ-irreducible chains [23].

Now, in the view of (10), we can write

∆V (θ) < E[ | 1Tγ |BTθ(k)|︸ ︷︷ ︸
ā

+ (1T − 1Tγ )|BTθ(k)|︸ ︷︷ ︸
b̄

−

κτ sinT (BTθ(k))BT ∼ω(k)B sin(BTθ(k))︸ ︷︷ ︸
c

+

τ sinT (BTθ(k))BT ∼ω(k)1n︸ ︷︷ ︸
d

| ]− 1Tγ |BTθ(k)|,

(15)
where ā > 0, b̄ > 0 and c, d ∈ R. If E[|ā + b̄ − c + d|] <
ā holds, then we can conclude that ∆V < 0. Notice that
|ā+b̄−c+d| is either equal to ā+b̄−c+d (if ā+b̄−c+d > 0)
or equal to −ā − b̄ + c − d (if ā + b̄ − c + d < 0). Hence,
the following should hold

1) E[ā+ b̄− c+ d] < ā if ā+ b̄− c+ d > 0,
2) E[−ā− b̄+ c− d] < ā if ā+ b̄− c+ d < 0.

Notice that E[ā] = ā and E[b̄] = b̄. Hence, if
−2ā < b̄ + E[−c + d] < 0 holds, then ∆V <
0. Since, matrix BT ∼ω(k)B is symmetric (with the
same structure as in (11) in [21]), and we assume
that E[λmin(BT ∼ω(k)B)] > 0, then we have E[c] >
κτE[λmin(BT ∼ω(k)B)] sinT (BTθ(k)) sin(BTθ(k)) > 0.
Thus, the two following criteria should hold in order to obtain
∆V < 0:

min E[c] > max b̄+E[|d|],
max E[c+ |d|] < min (2ā+ b̄).

(16)

Recall that we are analyzing the system assuming
that

{
∀i, j, γ ≤ |θi − θj | < π

2

}
. Thus, |BTθ(k)| and

| sinT (BTθ(k))| are upper (lower) bounded by π
21m (γ1m)

and 1m (1Tγ ) respectively. Hence, from (16) we obtain

mκτ(sin2(γ))E[λmin(BT ∼ωB)] >(1− sin(γ))
mπ

2
+

mτEmax|∆∼ω|
mκτE[λmax(BT ∼ωB)] +mτEmax|∆∼ω| < m(1 + sin(γ))γ,

where m is the number of edges of the graph and Emax|∆∼ω|
is the maximum expectation of disturbed relative exogenous
frequencies over all edges. Finally, calculating κ and τ from
the above inequalities gives (9) which ends the proof.

Remark 1 Notice that the result in (9) provides a necessary
condition for the sampling time τ and a sufficient condition
for the coupling strength κ. If we choose γ sufficiently close
to π

2 , then the term (1−sin(γ)) is negligible and the sufficient
bound for κ is comparable with (8) which is obtained for the
continuous-time deterministic frequency-dependent network
(with a different choice of Lyapunov function) [21].

IV. STOCHASTIC PHASE COHESIVENESS: UNDIRECTED
NETWORK

In this section, we consider an undirected network such
that the coupling strength of all links is equal to κ > 0. We
assume that each oscillator dynamics follows

θi(k+1) = θi(k)+τ(ωi+ni(k))−κτ
∑
j∈Ni

sin(θi(k)−θj(k)).
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The compact network model is

BTθ(k + 1) =BTθ(k) + τBT ∼ω(k)1n

−κτBTB sin(BTθ(k)).
(17)

Corollary 1 Consider the discrete-time stochas-
tic process in (17) with the set SG(γ) ={
θi(k) ∈ S1, |θi,j(k)| ≤ γ, 0 < γ < π

2

}
. Then, the process

(17) is recurrent provided that the two following conditions
hold

κ >
(1− sin(γ)) π2τ +Emax|∆∼ω|

(sin2(γ))λmin(BTB)

τ <
(1 + sin(γ))γ

κλmax(BTB) +Emax|∆∼ω|
,

(18)

where Emax|∆∼ω| = i,j
maxE[|(ωi + ni(k))− (ωj + nj(k))|].

Proof of Corollary 1 follows a similar trend as the proof of
Theorem 1 and hence omitted. Note that the edge Laplacian
BTB is positive definite independent of random variables.

Remark 2 For a deterministic discrete-time Kuramoto
model with zero-exogenous frequencies, [11] proved that 0 <
nτκ < 2 should hold for a complete graph in order to achieve
phase-synchronization which is a specific form of phase-
cohesiveness. Assuming that both exogenous frequencies and
their corresponding random disturbances are zero (hence, a
similar problem setting as in [11]), for a two node graph,
which is both a complete and a tree graph, the result in [11]
gives 0 < τκ < 1 and Corollary 1 gives 0 < τκ < π

2 .

V. SIMULATION RESULTS

This section presents simulation results for a network
of five oscillators over a line graph. Figure 1 shows the
frequency-dependent network. The initial condition for the
oscillators is set to θ(0) = [π4 ,

π
8 ,
−π
8 , −π5 , π5 ]. The exogenous

frequencies are set to ω1 = 7, ω2 = 10, ω3 = 1, ω4 =
6, ω5 = 2. Gaussian random variables are considered with
variances equal to V1 = 3, V2 = 5, V3 = 0.5, V4 = 2, V5 = 1.
We first simulate the network in Figure 1 assuming random

 𝜿 (𝜔1 + 𝑛1(𝑘))

 𝜿 (𝜔2 + 𝑛2(𝑘))

 𝜿 (𝜔2 + 𝑛2(𝑘))

 𝜿 (𝜔3 + 𝑛3(𝑘))  𝜿 (𝜔4 + 𝑛4(𝑘))

 𝜿 (𝜔3 + 𝑛3(𝑘))

 𝜿 (𝜔5 + 𝑛5(𝑘))

 𝜿 (𝜔4 + 𝑛4(𝑘))

 𝜔1 + 𝑛1(𝑘)  𝜔2 + 𝑛2(𝑘)  𝜔3 + 𝑛3(𝑘)  𝜔4 + 𝑛4(𝑘)  𝜔5 + 𝑛5(𝑘)

Fig. 1. Frequency-dependent line network.

variables with zero mean. The value of κ and τ are calculated
based on (9). The values of E[λmin(BT ∼ωB)] = 1.197 and
E[λmax(BT ∼ωB)] = 25.35 are computed numerically. We
obtain κ > 8.16. We then adjust κ = 30 and calculate the
upper-bound of the sampling period which is τ(κ) < 0.004.
We adjust τ = 2 ms and κ = 30.
Figure 2 shows the plots of ωi + ni(k) for nodes 2, 3, 4,
together with the plot of relative phases and λmin(BT ∼ωB).
Notice that the weight of edge e2→3 = κ(ω2 +n2(k)), while
e3→2 = e3→4 = κ(ω3 + n3(k)) and e4→3 = κ(ω4 + n4(k)).

As shown the relative phases stay within the desired set
SG(γ) (γ is chosen very close to π

2 ).
We then, change the mean-value of n3 to −1.6. The result,

shown in Figure 3, is similar to Figure 2. Notice ω3 = 1 <
| − 1.6|. In this case, E[λmin(BT ∼ωB)] is positive. Notice
that the latter is positive despite having a negative weight on
one of the edges.

We then decrease the mean-value of n3 to −3. The result
is shown in Figure 4. As shown, the trajectories exit the set
SG(γ). For this case, E[λmin(BT ∼ωB)] is negative. Table
I shows the value of minimum and maximum expectations
of the eigenvalues of BT ∼ωB for four cases: no random
disturbance, Gaussian random disturbance with zero mean
for all nodes (Fig. 2), Gaussian random disturbance with
zero mean for nodes 1, 2, 4, 5 and negative mean for node 3
(Fig.3, Fig. 4).
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Fig. 2. Frequency-dependent network with zero-mean Gaussian noise.
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Fig. 3. Frequency-dependent network with zero-mean Gaussian noise for
nodes 1, 2, 4, 5 and mean-value −1.6 for n3.

Choice E[λmin(B
T

∼ωB)] E[λmax(B
T

∼ωB)]

Noise-free 1.31 24.46
E[ni] = 0,∀i 1.19 25.35
E[n3] = −1.6 0.34 24.05
E[n3] = −3 -1.17 23.669

Table 1

Finally, we examine the result of Corollary 1, and simulate

1991
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Fig. 4. Frequency-dependent network with zero-mean Gaussian noise for
nodes 1, 2, 4, 5 and mean-value −3 for n3.

a network as shown in Fig. 5 with constant weights. We con-
sider Gaussian distributions with zero mean for nodes 1, 4, 5,
negative mean values −20,−2 for nodes 2, 3, respectively.
The variances, κ and τ are set as before. Notice that negative
mean values do not change the result as long as the size of
variations is considered in the calculation of κ and τ .
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Fig. 5. Undirected line network.
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Fig. 6. Exogenous frequencies and relative phases for the undirected
network.

VI. CONCLUSIONS

This paper studied conditions under which stochastic
phase-cohesiveness is achieved for a number of Kuramoto
oscillators in a bidirectional network and an undirected net-
work. The exogenous frequencies have been assumed to be
combined with random disturbances representing uncertain-
ties. For the bidirectional network, a sufficient coupling and
a necessary sampling-time conditions have been obtained in
order to prove a recurrent property for the process provided
that the expected value of the minimum eigenvalue of the
random weighted edge Laplacian is strictly positive. Similar
results have been proved for the undirected network where
no assumption on the weighted edge Laplacian is required.
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