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Abstract— In this paper we investigate estimating the param-
eters of a discrete time networked virus spread model from
time series data. We explore the effect of multiple challenges
on the estimation process including system noise, missing
data, time-varying network structure, and quantization of the
measurements. We also demonstrate how well a heterogeneous
model can be captured by homogeneous model parameters.
We further illustrate these challenges by employing recent data
collected from the ongoing 2019 novel coronavirus (2019-nCoV)
outbreak, motivating future work.

I. INTRODUCTION

Understanding virus spread dynamics over network sys-
tems is a vital problem, punctuated by the ongoing outbreak
of the 2019 novel coronavirus (2019-nCoV) originating in
Wuhan, China [1]. The data available from the outbreak
is limited and not clean; further efforts are required to
effectively combine the real data with mathematical models
in order to be able to implement, and justify implement-
ing, preventative measures. The model considered here is
the susceptible-infected-susceptible (SIS) model, where each
node can transition from being infected to healthy according
to a healing rate δ and can become infected according to
an infection rate β scaled by the node’s connections to its
infected neighbors and their infection levels.

Discrete time SIS models have been studied in the liter-
ature [2]–[9]. The authors of [2] introduce a discrete-time
homogeneous1 virus spread model over an undirected graph
and provide a condition that ensures convergence to the
healthy state, that is, where the virus is eradicated. In [3],
the authors explore in more detail the model from [2]. In [4],
the authors consider the healthy and the endemic (nonzero)
states of several models, providing a sufficient condition for
global stability of the endemic state for the model in [2], [3]
and existence, uniqueness, and stability conditions for special
cases of the endemic state. In [5], [6], existence and stability
of the healthy and endemic states are provided for a more
general model than those considered before. We employ the
same model here.

In [5]–[8] the identification of the discrete time spread
process we consider here was investigated. In [5], [6],
conditions for recovering the the spread parameters from
data are presented and real data is used to validate the
model. However, several strong assumptions are made for
the identification results, such as no noise in the system or
measurements and full knowledge of the graph structure. In
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1Homogeneous means β and δ are the same for every node in the network.

[8], the assumption on the knowledge of the graph structure
is relaxed (however assumptions are still made on the graph
such that it be undirected) and, in addition to recovering
the homogeneous spread parameters, the authors studied
recovering the network structure of the model. In [5]–[7],
[10], validation work was carried out using real data. In [10],
Ebola data was used to fit a continuous time SID/S (where
‘D’ stands for dead or removed) model. Similar ideas were
recently applied to the 2019-nCoV data [11].

In this paper we explore how parameter estimation tech-
niques perform when the assumptions on the data are not
met. These challenges include additive system noise, missing
data, time-varying network structure, and quantized measure-
ments. We also demonstrate, when there is not enough data to
learn heterogeneous spread parameters, how well the spread
process can be captured by homogeneous parameters. Fi-
nally, as a case study, we employ real data from the ongoing
outbreak of 2019-nCoV in Wuhan, Hubei, China collected
by JHU CSSE [12] from the World Health Organization [1],
the CDC [13], the National Health Commission of the PRC,
and DXY.cn; see Figure 1. We estimate homogeneous spread
parameters of the outbreak in China and use the resulting
model to project when the outbreak may have begun. While
insightful, the results show that, given the limited, corrupted
data available at the beginning of an outbreak, further work
is required to overcome all of the challenges necessary to
effectively estimate virus spread dynamics from data.

In Section II, we present the model and several assump-
tions required for the model to be well defined. In Section
III we provide several results on estimating the spreading
parameters of the model from time series data, improving on
the results in [5], [6]. The results in Section III appear in [14]
and were derived from the efforts in this paper. In Section
IV, we explore via simulations the effect of system noise,
missing data, time-varying network structure, and quanti-
zation of the measurements. We also illustrate how well
a heterogeneous model can be captured by homogeneous
model parameters. Some of these ideas are also explored in
[15] in the competing virus setting. In Section V we apply
the results to the 2019-nCoV dataset.

A. Notation

Given a vector function of continuous time x, ẋ indicates
the time-derivative. Given a vector function of discrete time
xk, k is the time index. Given a vector x ∈ Rn, the 2-norm
is denoted by ‖x‖ and the transpose by x>. The vector of all
equal zeros is denoted by 0. Given two vectors x1, x2 ∈ Rn,
x1 > x2 indicates each element of x1 is greater than or
equal to the corresponding element of x2 and x1 6= x2, and



Fig. 1: [12] Spread of 2019-nCoV per province in China, as
of January 30, 2020.

x1 � x2 indicates each element of x1 is strictly greater than
the corresponding element of x2. Given a matrix A ∈ Rn×n,
the spectral radius is ρ(A). Also, aij indicates the i, jth entry
of the matrix A, and ‖A‖F indicates the Frobenius norm of
A. The notation diag(·) refers to a diagonal matrix with the
argument(s) on the diagonal; the argument can be a vector
x or its elements xi. For n ∈ Z+, [n] := {1, ..., n}.

II. MODEL OF SPREADING PROCESS

The state of the model xi is the adoption or infection
level of the ith node. The state of can be considered as the
probability of node i having adopted or being infected, or the
proportion of subpopulation i that has adopted or is infected.
For each node i the dynamics evolve as

xk+1
i = xki + h

(
(1− xki )βi

∑
j

aijx
k
j − δixki

)
, (1)

where k is the time index, βi > 0 is the susceptibility rate,
aij are the non-negative, edge weights between the nodes,
δi > 0 is the healing rate, for node i, and h > 0 is the
sampling parameter. In matrix form, (1) becomes

xk+1 = xk + h((I −Xk)BA−D)xk, (2)

where Xk = diag(xk), B = diag(βi), A is the matrix of
aij , and D = diag(δi).

For the model to be well-posed we need the following
assumptions.

Assumption 1. For all i ∈ [n], we have x0i ∈ [0, 1].

Assumption 2. For all i ∈ [n], we have δi ≥ 0, βi ≥ 0,
and, for all j ∈ [n], aij ≥ 0.

Assumption 3. For all i ∈ [n], we have hδi ≤ 1 and
h
∑n

j=1 βiaij ≤ 1.

Lemma 1. [6] For the system in (2), under the conditions
of Assumptions 1, 2, and 3, xki ∈ [0, 1] for all i ∈ [n], and
k ≥ 0.

Lemma 1 implies that the set

D = {x | 0 ≤ x ≤ 1} (3)

is positively invariant with respect to the system defined by
(2). Since xi denotes the probability of infection of individual
i, or the fraction of group i infected, and 1 − xi denotes
the probability of individual i being healthy, or the fraction
of group i that is healthy, it is natural to assume that their
initial values are in the interval [0, 1], since otherwise the
values will lack any physical meaning for the epidemic
model considered here. Therefore, we focus on the analysis
of (2) only on the domain D.

We need an assumption to ensure non-trivial spread.

Assumption 4. We have B,A 6= 0, h 6= 0, and n > 1.

III. LEARNING SPREAD PARAMETERS

In this section, we clearly lay out the assumptions and
the identification techniques for the model of spreading
processes. We present several results on learning the spread
parameters of the model in (1) from data.

Theorem 1. Consider the model in (2) under Assumptions 1-
4 with homogeneous spread, that is, β and δ are the same for
all nodes. Assume that A, xk, for all k ∈ [T ]∪{0}, and h are
known. Then, β and δ can be identified uniquely if and only
if T > 0, and there exist i, j ∈ [n] and k1, k2 ∈ [T −1]∪{0}
such that

xk1
i gj(x

k2) 6= xk2
j gi(x

k1), (4)

where g(xk) := (I −Xk)Axk.

Proof: Since xk, for all k ∈ [T − 1] ∪ {0}, and A are
known, using (2) we can construct the matrix Φ, defined as,

Φ :=

 (I −X0)Ax0 −x0
...

...
(I −XT−1)AxT−1 −xT−1

 . (5)

Therefore, since we also know xT and h, we can rewrite (2)
as  x1 − x0

...
xT − xT−1

 = hΦ

[
β
δ

]
. (6)

Since n > 1, Φ has at least two rows. By the assumption
that there exist i, j ∈ [n] and k1, k2 ∈ [T − 1] ∪ {0} such
that (4) holds, Φ has column rank equal to two, with two
unknowns. Therefore there exists a unique solution to (6)
using the inverse or pseudoinverse.



If there do not exist i, j ∈ [n] and k1, k2 ∈ [T − 1] ∪
{0} such that (4) holds, then Φ has a nontrivial nullspace.
Therefore (8) does not have a unique solution.

Now we present two corollaries where hβ and hδ, denoted
by βh and δh, respectively, can be recovered.

Corollary 1. Consider the model in (2) under Assumptions
1-4 with homogeneous spread. Assume that A and xk, for all
k ∈ [T ]∪{0}, are known. Then, βh and δh can be identified
uniquely if and only if T > 0 and there exist i, j ∈ [n] and
k1, k2 ∈ [T − 1] ∪ {0} such that xk1

i gj(x
k2) 6= xk2

j gi(x
k1).

Proof. Since h factors out of the right hand side of (6) and
is nonzero by Assumption 4, even if h is not known, a scaled
version of β and δ can be recovered exactly. Therefore the
proportion of the two parameters can be found.

If the assumption is made that the underlying spread
process is heterogeneous, we have a similar condition.
Theorem 2. Consider the model in (1) under Assumptions
1-4. Assume that xk, for all k ∈ [T − 1] ∪ {0}, xTi , A, and
h are known. Then, the parameters of the spreading process
for node i can be identified uniquely if and only if T > 1,
and there exist k1, k2 ∈ [T − 1] ∪ {0} such that

xk1
i (1− xk2

i )

n∑
j=1

aijx
k2
j 6= xk2

i (1− xk1
i )

n∑
j=1

aijx
k1
j . (7)

Proof. Since xk, for all k ∈ [T −1]∪{0}, and A are known,
we can construct the matrix Φi, defined as,

Φi :=


(1− x0i )

n∑
j=1

aijx
0
j −x0i

...
...

(1− xT−1
i )

n∑
j=1

aijx
T−1
j −xT−1

i

 .
Then, since we also know xTi and h, we have x1i − x0i

...
xTi − xT−1i

 = hΦi

[
βi
δi

]
. (8)

Since T > 1, Φi has at least two rows. By the assumption
that there exist k1, k2 ∈ [T −1]∪{0} such that (7) holds, Φi

has column rank equal to two, with two unknowns. Therefore
there exists a unique solution to (8) using the inverse or
pseudoinverse.

If there do not exist k1, k2 ∈ [T − 1] ∪ {0} such that (7)
holds, then Φi has a nontrivial nullspace. Therefore (8) does
not have a unique solution.

IV. SIMULATIONS

In this section, we present a number of illustrative simu-
lations and a corollary based off those simulations. Unless
otherwise stated, we use the following parameters in our
simulations
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(b) σ = 0.05

Fig. 2: Simulation of the epidemic states of a heterogeneous
system with additive i.i.d. Gaussian noise and recovered
states using recovered heterogeneous spread parameters.

x0 = [0.3 0.0 1.0]
>
,

β = [1.5 1.1 0.8] ,

δ = [0.8 0.4 0.2] , and

A =

0 1 1
1 0 1
1 1 0

 .
We estimate the spread parameters using the pseudo-inverse
with either (6) or (8) to recover homogeneous or hetero-
geneous spread parameters, β̂, δ̂ or β̂i, δ̂i, respectively. The
recovered states, x̂, are simulated as

x̂k+1
i = x̂ki + h

(
(1− x̂ki )β̂i

∑
j

aij x̂
k
j − δ̂ix̂ki

)
, (9)

and unless otherwise stated, is assumed the aij’s and the
initial condition are known.

A. Recovering from Noisy Data

Additive system noise can be used to take into account
the effect of external impacts on the spread of a virus [16].
To investigate the usefulness of the discrete-time spread
model for applications, we ran simulations with additive
i.i.d. Gaussian system noise. Figure 2 shows simulations of
a heterogeneous system with the states generated by

xk+1
i = xki + h

(
(1− xki )βi

∑
j

aijx
k
j − δixki

)
+ εi, (10)

where εi ∼ N (0, σ2) are i.i.d for all i ∈ [n] and a floor and
ceiling function are used to ensure that each state remains
in [0, 1]. The simulations in Figure 2 demonstrate that even
in the presence of noise, the behavior of the spread process
can be captured quite well.
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Fig. 3: Simulating data loss in the epidemic states of a
heterogeneous system with additive i.i.d. Gaussian noise and
a variance of 0.03 . Recovering heterogeneous parameters
using the data points marked by circles.
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Fig. 4: Simulation of the epidemic states of a heterogeneous
system with time-varying graph and additive i.i.d. Gaussian
noise with a variance of 0.03, and recovered states using
recovered heterogeneous spread parameters.

B. Recovering with Data Loss

In most cases when applying the model to a real world
dataset, the dataset has some data loss and therefore it
is important to investigate how well the recovery process
performs in that case. To test the effect of data loss on the
model, we simulated a dataset, removed some of the data,
and used linear interpolation to fill in the missing data points.
The model did very well recovering the states that were
generated with no data loss, x, by using the interpolated
dataset considering the number of data points that were
used for recovery. The simulation is illustrated in Figure 3.
We also see that the recovery becomes less accurate as σ
increases and that the recovery is significantly worse for
σ = 0.1 compared to the case where σ = 0.03. However,
the decreased performance is due more to the increase in
the variance of the noise than the data loss. Therefore, we
conclude that the recovery process is relatively insensitive to
data loss compared to the noise, indicating that the recovery
process can be effective for systems where lots of data loss
may occur as long as the system noise is not too large.

C. Recovering with Time-varying Graph

In a human social network, the interconnection structure
is often dynamic and usually changes from day to day, week
to week or month to month [16]. If one is able to measure
the changes in the network, the recovered states, x̂, can be
improved upon by incorporating this information.

Therefore, there are cases where it might be more interest-
ing to use a dynamic graph rather than a static one. With a
time-varying graph the SIS model with noise in (10) becomes

xk+1
i = xki + h

(
(1− xki )βi

∑
j

akijx
k
j − δixki

)
+ εi (11)

where εi ∈ N (0, σ2 are i.i.d. for all i ∈ [n]. We use
(8) for recovery but incorporating the time-varying network
structure information by modifying Φi to become

h(1− x0i )

n∑
j=1

a0ijx
0
j −hx0i

...
...

h(1− xT−1i )

n∑
j=1

aT−1ij xT−1j −hxT−1i


. (12)

This formulation leads to the following corollary of Theo-
rem 2.

Corollary 2. Consider the model in (1) under Assumptions
1-4 with a possible time-varying network, denoted by Ak.
Assume that xk, for all k ∈ [T − 1] ∪ {0}, xTi , Ak, and h
are known. Then, the parameters of the spreading process
for node i can be identified uniquely if and only if T > 1,
and there exist k1, k2 ∈ [T − 1] ∪ {0} such that

xk1
i (1− xk2

i )

n∑
j=1

ak2
ij x

k2
j 6= xk2

i (1− xk1
i )

n∑
j=1

ak1
ij x

k1
j .

Proof. The result follows directly the same as the proof of
Theorem 2 after replacing Φi in (8) with (12).

We simulated this system in Figure 4 where the edge be-
tween Agent 1 and Agent 2 was removed from the complete
graph at time step k = 3. From the simulations we see that
the recovery works very well even when there is noise in
the system, assuming we know the graph structure exactly
for each time step. Consequently, the simulations indicate
that the model can capture the progress of the states well,
even when the network graph changes over time, which is
common in human social networks, and this observation is
important for many practical applications. However, it may
be difficult to accurately measure time-varying graphs in
some cases.

D. Recovering with Quantized States

When collecting data, it is often binned, allowing for
respondents to choose a certain level of pain or sickness,
such as from one to ten. To further investigate the usefulness
of the SIS model in applications we performed simulations
recovering the spread parameters from observed states that
had been quantized. The simulations were carried out by
generating states, x using (10) which were quantized into five
evenly distributed values between 0 and 1, x̃. The quantized
states, x̃ were then used in (8) to recover the spreading
parameters. Clearly, the accuracy of the recovered states, x̂
depends on the number of quantized states that are chosen,
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Fig. 5: Simulation of the SIS model with quantized states
which were evenly distributed between 0 and 1. The variance
of the noise in x was 0.003.
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Fig. 6: Simulation of the epidemic states of a heterogeneous
system with additive i.i.d. Gaussian noise and a variance of
0.03 and recovered states using a homogeneous approxima-
tion of the system.

however, here we show, in Figure 5, that five quantized
states makes the recovered states fairly accurate and might
be enough for many applications.

E. Heterogeneous Spread Approximated by Homogeneous
Model

At times there may not be rich enough data to satisfy the
requirements of Theorem 2 or it may be assumed incorrectly
that a heterogeneous system is homogeneous. To understand
how accurately a heterogeneous system can be approximated
by a homogeneous model we use T = 4 to learn homo-
geneous spread parameters. A simulation of a system with
heterogeneous disease parameters, x, and recovered states, x̂,
is shown in Figure 6. The recovered states, x̂, was generated
by recovering a homogeneous approximation of the spread
parameters, β̂ and δ̂. To generate x we use β = [0.4 0.8 0.8]
and δ = [0.5 0.5 0.5]. The learned parameters are[

δ̂

β̂

]
=

[
0.6223
0.4980

]
. (13)

One can see that the error between the recovered states,
x̂1 and the original system, x1, is higher than the errors
for Agent 2 and 3. The decreased accuracy of x̂1 can be
explained by the difference in magnitude of β1 from the
infection rates of the other agents. The simulations suggest
that in many cases we may be able to effectively approximate
a heterogeneous system with homogeneous spread param-
eters, and that the individual characteristics of each node
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Fig. 7: Data fitting results using the parameters in (14), which
were estimated with constraints on the parameters to assure
Assumptions 2 and 3 were met.

could be approximated by some sort of average susceptibility
and healing strength. The spreading would then be fully
determined by the graph structure and the two estimated
homogeneous disease parameters.

V. CORONAVIRUS DATASET

In this section we illustrate the challenges of using real
data by implementing the estimation technique on the 2019-
nCoV dataset collected in [12], from January 22, 2020 until
January 30, 2020. We treat the subpopulation of each Chinese
provincial-level entity (including Hong Kong, Taiwan, and
Macau) as a node in the network. The state of the model
is the proportion of current confirmed cases of 2019-nCoV
in each subpopulation for each day. The number of current
confirmed cases is calculated by subtracting the number of
recovered cases from the total number of confirmed cases.
While it is clear that the confirmed cases are being under-
reported, the number of recovered cases is drastically below
what we believe to be the real number. This deficiency
presents difficulties when trying to accurately estimate the
healing rate.

We factor the adjacency matrix into several parts: 1) self
loops, that is, interactions inside each province, 2) passenger
trains between provinces (scaled by speed: 3 High-Speed
Railway, 2 Rapid Railway, 1 Regular Train [17]), 3) borders
(reflecting travel between provinces on roads), and 4) flights
(number of daily flights between the capitals of each node
[18]). To each of the four adjacency matrices we assign an
infection parameter, labeled βs, βt, βb, and βf , respectively.

Estimating the parameters using (6) resulted in parameter
values that did not satisfy Assumptions 2 and 3, which results
in the states leaving the sensible domain of the model, as
defined in (3). Therefore we found parameters to minimize



the error in (6) using a convex solver, while constraining
the parameters to meet Assumptions 2 and 3 and to keep δ̂
small, giving 

β̂s
β̂t
β̂b
β̂f
δ̂

 =


0.372

4.64× 10−9

1.46× 10−9

1.17× 10−10

5.00× 10−5

 . (14)

The overall error, measured as the Frobenius norm of the dif-
ference between the simulations using (14) and the real data,
is 2.73×10−5. This error is skewed by the small magnitude
of the states, given the large population sizes. Dividing by
the Frobenius norm of the data increases the error to 0.262,
showing that the system has approximately 26% error. To
illustrate the accuracy of the estimation technique we depict
the times series from the data (x) and the simulations (x̂) for
the provinces with the highest number of confirmed cases:
Hubei (HB), Zhejiang (ZJ), Guangdong (GD), Hunan (HN),
and Henan (HA); see Figure 7. In order to estimate when
the outbreak began, we used the parameters from (14) and
initialized the system with one resident of Hubei infected. We
then found the day when x̂HB was equal to double of the
initial xHB from January 22, 2020, therefore assuming that
half of the cases were not reported/confirmed. Subtracting
the number of days until that point indicated that, according
to this model, the first human became sick in December.

The results do not capture the behavior of the outbreak
very well using homogeneous parameters. The results from
Section IV-E indicate that the heterogeneous parameters are
most likely very different between provinces. Further, the
limited number of datapoints restrict our ability to learn
all of the heterogeneous spread behaviors. As noted earlier,
another major challenge of this dataset is the incompleteness
of the measurements. In order to correctly estimate the
spreading parameters, better measurements of the confirmed
and recovered cases are required. Alternatively, new data
processing techniques can be developed in future work to
deal with these issues.

VI. CONCLUSION

In this paper we presented how to employ time series
data to estimate the spreading parameters of a discrete time
networked virus spread model. We explored the effect of
system noise, missing data, time-varying network structure,
and quantization of the measurements. We presented a corol-
lary as a result of the simulations. We also illustrated how
well the behavior of a heterogeneous model can be captured
by a homogeneous model, which is useful if there is not
enough data to learn the heterogeneous spreading parameters.
Finally, we highlighted the practical importance of this work
by studying the ongoing coronavirus outbreak in China.
Through our estimation of the virus spread dynamics we
projected that the outbreak may have begun in December. For
future work, we would like to further develop data processing
techniques for this type of data and these models. We also

hope to further analyze this outbreak as more, and cleaner,
data becomes avaliable.
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