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Abstract— One of the intensely studied concepts of net-
work robustness is r-robustness, which is a network topology
property quantified by an integer r. It is required by mean
subsequence reduced (MSR) algorithms and their variants to
achieve resilient consensus. However, determining r-robustness
is intractable for large networks. In this paper, we propose a
sample-based algorithm to approximately test r-robustness of
a digraph with n vertices and m edges. For a digraph with a
moderate assumption on the minimum in-degree, and an error
parameter 0 < ε ≤ 1, the proposed algorithm distinguishes
(r+εn)-robust graphs from graphs which are not r-robust with
probability (1−δ). Our algorithm runs in exp(O((ln 1

εδ
)/ε2))·m

time. The running time is linear in the number of edges if ε is
a constant.

I. INTRODUCTION

Consensus is the cornerstone of cooperative distributed
systems as a mechanism to share information among agents.
Due to its wide applications, the safety aspects of the prob-
lem have been considered intensively. One of the essential
problems is to design consensus algorithms that tolerate
a locally or globally bounded number of faulty agents or
adversaries. In this context, consensus is achieved if the
honest agents agree on a value which is justified by their
initial values. These algorithms are also called resilient
consensus algorithms.

The history of distributed systems and multi-agent systems
has witnessed the development of a whole spectrum of
consensus algorithms against adversaries: the seminal pa-
per [1] and its explanatory version [2] which study the binary
consensus; the paper addressing incomplete networks [3] for
the binary case; more recent development on scalar consen-
sus in incomplete networks [4], [5]; and multi-agent vector
consensus [6], [7], [8]. The applications of fault tolerant
consensus algorithms are beyond enumeration. Examples
of recent applications include distributed optimization [9],
[10], rendezvous of robots [11], hypothesis testing [12], and
distributed estimation [13], [14].

Some examples in [4], [15] show that network connectivity
is insufficient for resilient consensus. Therefore the new
notion of r-robustness has been proposed [4] and used as
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sufficient conditions for many algorithms to achieve con-
sensus among honest agents, for example, the W-MSR [4],
SW-MSR [16], and DP-MSR [17] algorithms. r-robustness
imposes connectivity constraints on vertex set pairs of the
network. Loosely speaking, for the MSR algorithms in an r-
robust network, each honest vertex updates its state while
ignoring at most b(r − 1)/2c smallest and largest values
from its neighbors. Then, if each honest vertex has at
most b(r−1)/2c malicious in-neighbors, asymptotic resilient
consensus is achieved.

Despite the fact that many resilient consensus algorithms
require an r-robust network, determining if a network is r-
robust or not has been proven to be coNP-complete [15].
Therefore, no polynomial time algorithm exists for the
problem unless P=NP. A known algorithm which solves
the problem for arbitrary digraphs is proposed in [18]. It
enumerates all subset pairs of the digraph, which has a
running time exponential in the number of vertices n. Since
then, efforts have been made to either improve the efficiency
of the algorithm, or circumvent the problem. A notable
work is the recent paper [19], in which the problems are
formulated as integer linear programs (ILP). ILP solvers are
used to improve the speed of searching. The reformulation
brings practical improvement but does not give provable
improvement on complexity. To bypass the problem, network
construction methods are investigated to grow a network with
given r [4], [20], [21]. Estimation of r is also studied for
special classes of networks, such as random networks [15]
and random interdependent networks [22]. In these special
networks, r is bounded by spectral and structural properties
of the network and can be efficiently estimated. However,
we note that these estimations are not necessarily tight in
arbitrary networks. To the best of our knowledge, no existing
work has been done to rigorously study the approximation
of r in arbitrary digraphs.

The main contribution of this paper is an algorithm for
approximately testing r-robustness with provable guarantees.
By setting an error bound, we study the problem of dis-
tinguishing (r + εn)-robust networks from networks that
are not r-robust. We devise a randomized (Monte Carlo)
algorithm that solves the problem with probability (1 − δ)
for an error parameter ε > 0, and a digraph satisfying a
moderate assumption about the minimum degree. We prove
the performance guarantee of the proposed algorithm and
show the trade off between precision and running time.

Our algorithm is based on random sampling of vertices and
has a Enforce-and-Test flavor that is seen in graph property
testing [23], [24]. Random sampling has been shown to
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be successful in property testing [23] and the design of
approximation algorithms [25] for dense graphs. We extend
the technique to approximately determining r-robustness in
digraphs, which is a new type of problem compared with its
traditional applications.

Outline: The remainder of the paper is structured as
follows. In Section II we introduce some basic definitions.
In Section III we give the definition of the considered
problem. In Section IV we describe the proposed algorithm,
which is analyzed in Section V. Some discussion is given in
Section VI, followed by the conclusion.

Missing Proofs, discussion about practical implementa-
tion, and numerical examples are shown in a technical
report [26].

II. PRELIMINARIES

A. Concepts and Notations

A directed graph (digraph) G is defined as a pair (V,E),
where V and E are the vertex set and the edge set. We let
|V | = n and |E| = m. We let e = (u, v) be the directed
edge from vertex v to vertex u. We denote by N ↓u the set of
in-neighbors of vertex u and

∣∣N ↓u ∣∣ the in-degree of u. For a
subset of vertices V ′ ⊂ V , we define the subgraph supported
on V ′ as G[V ′] = (V ′, E′) where E′ = {(u, v) ∈ E : u, v ∈
V ′}. Undirected graphs are viewed as bidirectional digraphs.

Definition 1 (r-reachable set [4]): Given a digraph G =
(V,E), a nonempty set S ⊂ V , an integer r ≥ 0, S is
an r-reachable set if there exists a vertex u ∈ S satisfying∣∣N ↓u\S∣∣ ≥ r.

Definition 2 (r-robustness [4]): A digraph is r-robust, if
for every pair of nonempty, disjoint A ⊂ V and B ⊂ V , at
least one of A and B is r-reachable.

B. r-robust Graph and the Condition for Resilient Consensus

We recall the condition for resilient consensus in a time-
invariant synchronous network [4]. Each honest vertex in
the network updates its value using a W-MSR algorithm.
Each malicious vertex is allowed to send arbitrary but the
same value to its out neighbors in each time step. A set
of malicious vertices is said to be F -locally bounded if
any honest vertex in the network has at most F malicious
in-neighbors. r-robustness is the key to attain a guarantee
for a consensus among honest vertices. It has been shown
that in a synchronous system with a b(r − 1)/2c-locally
bounded malicious set, the honest vertices in a r-robust
network eventually agree on a value in the convex hull of
their initial values. Then we say that the system facilitates
resilient asymptotic consensus [4].

III. PROBLEM FORMULATION

In this section we formulate the problem that we consider.
Recall that exactly determining the robustness of a graph is
coNP-complete. In this paper we consider the following ap-
proximation problem to trade off precision for improvement
in running time.

Problem 1: Given a digraph G = (V,E), two integers
r > 0, 0 ≤ ∆ ≤ n, find an algorithm which 1) certifies

r-robustness if G is (r + ∆)-robust; 2) refutes (r + ∆)-
robustness if G is NOT r-robust.

If ∆ = 0, Problem 1 recovers the decision problem of
determining whether or not a given digraph is r-robust [18],
[15], [19].

We let the algorithm output accept to certify r-robustness,
and output reject to refute (r+ ∆)-robustness. An algorithm
solves Problem 1 if the map between input and output
satisfies Fig. 1. We note that the algorithm can output
either accept or reject for instances that are r-robust but not
(r + ∆)-robust by definition of Problem 1. An (additive)
approximation algorithm with parameters r and ∆ is not
required to distinguish the instances in this category from
instances in the other two categories. This is the limitation
of the approximation approach.

input: G, r,∆

(r +∆)-robust

r-robust,
NOT (r +∆)-robust

NOT r-robust

output

accept

reject

Fig. 1. The map between input and output given by an algorithm that
solves Problem 1.

An algorithm that solves Problem 1 is a pessimistic testing
algorithm for r-robustness in the sense that it produces no
false answers but false negatives: it may reject r-robust
networks but never accepts networks which are not r-robust.
However it is not overly pessimistic since the rejected
instances are not robust for a larger number (r + ∆).
Alternatively, an algorithm that solves Problem 1 can also
be viewed as an optimistic testing algorithm for (r + ∆)-
robustness. Then the algorithm produces false positive an-
swers but no false negative answers: it may accept networks
that are not (r + ∆)-robust but never rejects (r + ∆)-
robust networks. However it is not overly optimistic since the
accepted instances are guaranteed to be robust for a smaller
number r.

A Monte Carlo Algorithm: In this paper, we devise a
Monte Carlo (MC) algorithm that behaves as follows: 1)
certifies r-robustness, if G is (r + ∆)-robust; 2) refutes
(r + ∆)-robustness with probability at least (1 − δ), if G
is not r-robust.

In practice, we let δ = 1/3. Then for a network that is
not r-robust, it is rejected with probability at least 2/3 in
each independent run of the algorithm. We can amplify the
probability of rejecting the instance to at least (1 − σ) for
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any 0 < σ < 1 by running the algorithm d ln (1/σ)
ln 3 e times1.

If the network is rejected in any one run, then it is rejected
by the MC algorithm. On the other hand, networks that are
(r + ∆)-robust are always accepted by the MC algorithm.

IV. ALGORITHM

In this section we introduce an assumption for the min-
imum in-degree of the graph and discuss the implication
of the assumption. Then we describe the approximation
algorithm and provide its performance guarantee.

A. An Assumption for the Minimum In-Degree
We make an assumption for the minimum in-degree of

the digraph. We show that the condition in the assumption is
easy to check and is indispensable for a network to tolerate
a naive attack that searches for a vertex with small in-degree
and tampers with the value of half of its neighbors. Results
without the assumption are left for discussion in Section VI-
B.

Assumption 1: The minimum in-degree dmin of the di-
graph G, defined as dmin

def
= minv∈V {

∣∣N ↓v ∣∣}, is greater than
2r + ∆.
By checking

∣∣N ↓v ∣∣ for all v ∈ V , an algorithm with running
time2 O(m) determines whether or not Assumption 1 holds.

The robustness of a network can be interpreted as the
minimum cost that a computationally unconstrained attacker
has to pay to drive the system to undesired states. If we also
consider the complexity of the problem, a computationally
efficient strategy with a slightly larger cost could be in favor
of the attacker. We show that if Assumption 1 does not hold,
it only takes O(m) running time for an attacker to find an
attack strategy with a reasonable cost.

Lemma 1: Given G, r, and ε, if Assumption 1 does not
hold, there exists an O(m)-time algorithm ExamDegree
which, by checking the degree of each vertex u ∈ V , finds a
partition3 ({v}, V \{v}) of G such that {v} and V \{v} are
not (2r + ∆)-reachable.
The proof of Lemma 1 is given in the technical report [26].

If Assumption 1 is violated, then ExamDegree returns a
vertex u with minimum in-degree. For the W-MSR algorithm
discussed in [4], by attacking at least half of the in-neighbors
of u, an attacker is able to prevent the honest vertex u
from reaching resilient asymptotic consensus. In particular,
the vertex u cannot remove all malicious messages without
separating itself from all other honest vertices.

Given Lemma 1, we argue that to prevent a naive attack, it
is necessary for the defender (or system designer) to ensure
that Assumption 1 is satisfied. In the remainder of the paper
we will assume that Assumption 1 holds. We revisit this issue
and discuss arbitrary digraphs in Section VI-B.

1The probability that all runs fail is at most (1/3)d
ln (1/σ)

ln 3
e ≤ σ.

Therefore the instance is rejected in at least one run with probability at
least (1− σ).

2For two positive functions f and g of the variable n, we denote f =
O(g) if there exist constants n0 > 0 and c > 0, such that for all n > n0,
f ≤ c · g. We denote f = Ω(g) if g = O(f).

3A 3-tuple (X,Y, Z) is said to be a partition of the graph G = (V,E)
if min{|X| , |Y |} ≥ 1, X ∩ Y = ∅, X ∩ Z = ∅, Y ∩ Z = ∅, and
X ∪ Y ∪ Z = V . We also denote (X,Y,∅) as (X,Y ).

B. Reachability of Small Subsets

Under Assumption 1, we propose an MC algorithm to
solve Problem 1. We will use the following concept of
robustness in our analysis.

Definition 3 (β-close r-robustness): For a given β ∈
[1/n, 1], a digraph G = (V,E) is β-close to r-robustness ,
denoted rβ-robustness, if for every pair of nonempty, disjoint
A ⊂ V and B ⊂ V with min{|A| , |B|} ≥ βn, at least one
of A and B is r-reachable.
We note that the definition itself provides a weaker concept
for network robustness.

To simplify notations we let ε def
= ∆/n. If Assumption 1

holds, we attain the following result:
Lemma 2: For a graph G that satisfies Assumption 1, the

graph is r-robust if and only if it is rε-robust.
The proof of Lemma 2 is shown in the technical report [26].

Lemma 2 shows that under Assumption 1, sets with sizes
less than εn are always r-reachable. Therefore to solve
Problem 1, it suffices to approximately test rε-robustness
of the network, by examining partitions (A,B,C) in which
min{|A| , |B|} ≥ εn. In particular, an algorithm solves
Problem 1 if it rejects instances which are NOT rε-robust,
and accepts instances which are (r + ∆)ε-robust.

C. Algorithm Outline

Before diving into the details, we describe the overall
process of the algorithm. Our algorithm is based on vertex
sampling. For any fixed partition of the network, random
sampling provides statistical information for the partition. If
the network is not rε-robust, we seek to construct a partition
(A,B,C) that violates r-robustness. We can only reconstruct
it approximately. We prove that if there exists a partition
(A,B,C) in which min{|A| , |B|} ≥ εn, and none of A
and B is r-reachable, then the proposed algorithm finds a
partition (A′, B′, C ′) in which none of A′ and B′ is (r+εn)-
reachable, with probability4 at least (1 − δ). The number
of vertices that need to be sampled is a function of the
parameters ε and δ, but independent of n, if ε and δ are
positive constants. The function will be specified later in the
paper.

The algorithm first randomly samples a set U of ver-
tices from the graph. The size of U should be suffi-
ciently large 5 for estimating the number of vertices in
N ↓v that are also in subsets A ∪ C and B ∪ C. For a
partition (A,B,C) where A and B are not r-reachable,
and min{|A| , |B|} ≥ εn, then with high probability there
exists a partition π(U) = (UA, UB , UC) of U , such
that UA ⊂ A. UB ⊂ B, UC ⊂ C. In addition, we
can estimate

∣∣N ↓v ∩ (A ∪ C)
∣∣ and

∣∣N ↓v ∩ (B ∪ C)
∣∣ using∣∣N ↓v ∩ (UA ∪ UC)

∣∣ and
∣∣N ↓v ∩ (UB ∪ UC)

∣∣ for all v ∈
(V \U). Then there are constraints based on the sizes of
the intersections that help us assign the rest of the vertices
to their corresponding subsets. Specifically, if a vertex v is

4The probability can be further amplified by repetition, as we have
explained in Section III.

5A lower bound of |U | will be later given as a function of ε and δ.
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estimated to have a large number of in-neighbors in (A∪C),
it is not likely that v belongs to B; if a vertex v is estimated
to have a large number of in-neighbors in B ∪ C, it is not
likely that v belongs to A. By utilizing these constraints we
attain a partition (A′, B′, C ′). Let ΓA′ (resp. ΓB′ ) be the
set of vertices in A′ (resp. B′) such that each vertex in ΓA′

(resp. ΓB′ ) has the number of in-neighbors from B′ ∪ C ′
(resp. A′ ∪C ′) greater or equal to a threshold of r+O(εn).
The attained partition (A′, B′, C ′) is constructed such that
|ΓA′ | + |ΓB′ | is O(εn) with probability (1 − δ). Then we
run one pass of updates to correct the assignments of the
misclassified vertices. In this pass at most O(εn) vertices
are moved between A′, B′, and C ′, therefore the pass does
not change the number of neighbors of any vertices in A′,
B′, or C ′ by more than O(εn). Then we attain a partition
(A′, B′, C ′) in which both A′ and B′ are not r + O(εn)
reachable.

Since we do not know which partition π(U) of the sampled
vertices U corresponds to the partition (A,B,C) that violates
rε-robustness, we simply try all partitions of the sampled
vertices.

D. The Sample-Based Algorithm

The algorithm SampledRbstTst(G, ε, δ, r) outputs accept
if the network is (r + εn)-robust. It outputs reject with
probability (1 − δ) if the network is not r-robust. The
algorithm samples a set U of t(ε, δ) vertices and examine
all partitions of the set U . For each partition (UA, UB , UC)
of U , the algorithm calls 3 subroutines Restrict, Move, and
TestReach. The algorithm Restrict is a one-pass algorithm
that takes all vertices V \U and add the vertices to the
partition (A′, B′, C ′). The algorithm Move is a one-pass
algorithm that refines (A′, B′, C ′) based on the partition
returned by Restrict. The algorithm TestReach checks if
a refutation of (r + εn)-robustness is found.

The key to the approximation is the Restrict subroutine.
The algorithm takes as input the graph G and all the parame-
ters from SampledRbstTst, and a partition (UA, UB , UC) of
the sampled vertices U . A′, B′, and C ′ are initialized to be
equal to UA, UB , and UC respectively. Then the subroutine
designates the rest of the vertices to one of A′, B′, and C ′.
We will analyze the algorithm in the next section.

V. ALGORITHM ANALYSIS

We show a Monte Carlo algorithm that solves Problem 1
with probability at least (1−δ) for any 0 < ε ≤ 1 and δ > 0
in exp(Õ(1/ε2))m running time6. Proofs of all lemmas in
this section are given in the technical report [26].

Theorem 1: Given a graph G, two integers r > 0, ε def
=

∆/n (ε ∈ (0, 1]), under Assumption 1, Algorithm 1
1) certifies r-robustness if G is (r + εn)-robust;
2) refutes (r + εn)-robustness, with probability at least

(1− δ), if G is NOT r-robust;
3) runs in exp(Õ(1/ε2)) ·m time.

6The notation Õ(·) hides factors of polynomials of ln (1/(εδ)).

Algorithm 1: SampledRbstTst(G, ε, δ, r)
Input : G = (V,E), an error bound ε > 0,

an error probability δ, a parameter r
Output: TestRslt: accept (a certificate for

r-robustness) or reject (a refutation of
(r + εn)-robustness)

1 p← r/n;
2 Sample a set U of size t(ε, δ) uniformly at random;
3 TestRslt←accept;
4 for each 3-partition π(U) = (UA, UB , UC) where

UA 6= ∅ and UB 6= ∅ do
5 # Algorithm 2

(A′, B′, C ′)← Restrict(G,UA, UB , UC , p, ε, t);
6 # Algorithm 3

(A′, B′, C ′)← Move(G,A′, B′, C ′, p, ε);
7 # Algorithm 4

Rslt← TestReach(G,A′, B′, C ′, p, ε);
8 if Rslt = 0 then
9 TestRslt←reject;

10 Break;
11 end
12 end

Algorithm 2: Restrict(G,UA, UB , UC , p, ε, t)
Input : G,UA, UB , UC , p, ε, t
Output: a partition of all vertices

π′(V ) = (A′, B′, C ′)
1 A′ ← UA, B′ ← UB , C ′ ← UC ;
2 for each vertex v ∈ V \U do

3 if |N
↓
v ∩(UA∪UC)|

t > (p+ ε/4) &
|N↓

v ∩(UB∪UC)|
t > (p+ ε/4) then

4 C ′ ← C ′ ∪ {v};
5 else if |N

↓
v ∩(UA∪UC)|

t > (p+ ε/4) then
6 A′ ← A′ ∪ {v};
7 else if |N

↓
v ∩(UB∪UC)|

t > (p+ ε/4) then
8 B′ ← B′ ∪ {v};
9 else

10 add v to one of A′, B′, or C ′ arbitrarily;
11 end

Before we start proving Theorem 1, we explain the sam-
pling method and prepare lemmas that provide guarantees to
the subroutines of Algorithm 1.

Sampling: There are several ways to sample vertices from
the network. One way is to assign independent Bernoulli
random variables to each vertex and sample each vertex with
the same probability of O(Poly(1/ε)) 1

n . The other two ways
are to sample a fixed number of t = O(Poly(1/ε)) vertices
uniformly at random with and without replacement.

The analysis given in this paper is based on the scheme of
uniformly sampling a fixed number of vertices with replace-
ment. Technically speaking the outcomes of the sampling
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Algorithm 3: Move(G,A′, B′, C ′, p, ε)
Input : G,A′, B′, C ′, p, ε
Output: a partition of all vertices

π′(V ) = (A′, B′, C ′)
1 (A′′, B′′, C ′′)← (A′, B′, C ′);
2 for each vertex v ∈ (V \U) do
3 if v ∈ A′ &

∣∣N ↓v ∩ (B′ ∪ C ′)
∣∣ > (pn+ 3εn/4)

then
4 if

∣∣N ↓v ∩ (A′ ∪ C ′)
∣∣ > (pn+ 3εn/4) then

5 A′′ ← A′′\{v}, C ′′ ← C ′′ ∪ {v};
6 else
7 A′′ ← A′′\{v}, B′′ ← B′′ ∪ {v}
8 else if

v ∈ B′ &
∣∣N ↓v ∩ (A′ ∪ C ′)

∣∣ > (pn+ 3εn/4)
then

9 if |Nv ∩ (B′ ∪ C ′)| > (pn+ 3εn/4) then
10 B′′ ← B′′\{v}, C ′′ ← C ′′ ∪ {v};
11 else
12 B′′ ← B′′\{v}, A′′ ← A′′ ∪ {v}
13 end
14 (A′, B′, C ′)← (A′′, B′′, C ′′);

Algorithm 4: TestReach(G,A′, B′, C ′, p, ε)
Input : G,A′, B′, C ′, p, ε
Output: Rslt: 1 if A′ or B′ are (pn+ εn)-reachable,

0 if both are not
1 Rslt← 0;
2 for each vertex v ∈ V do
3 if v ∈ A′ &

∣∣N ↓v ∩ (B′ ∪ C ′)
∣∣ ≥ (pn+ εn) then

4 Rslt← 1;
5 else if v ∈ B′ &

∣∣N ↓v ∩ (A′ ∪ C ′)
∣∣ ≥ (pn+ εn)

then
6 Rslt← 1;
7 end

procedure are multisets. The intersection of the sampled
multiset U and any set S is defined as a new multiset with
support set support(U)∩S and occurence number φ(u) the
same as in U for any u ∈ support(U) ∩ S. We ignore this
point in the presentation of analysis as it is treated in the
literature [23].

Approximating Number of Neighbors in Subsets: We begin
by showing that A ∪ U and B ∪ U are non-empty with
bounded probability:

Lemma 3: If t ≥ 1
ε ln 16

δ , with probability at least 1−δ/8,
for A and B with sizes min{|A| , |B|} ≥ εn, A∩U and B∩U
are non-empty.

Then we show the following result for the Restrict
algorithm.

Lemma 4: Let (A,B,C) be a partition of G,
min{|A| , |B|} ≥ εn, and both A and B are not r-
reachable. Let U be a set of vertices sampled uniformly at
random, with |U | ≥ 8

ε2 ln 32
εδ . Let π(U) = (UA, UB , UC)

be a partition of U which satisfies UA ⊂ A, UB ⊂ B,

UC ⊂ C. Then under Assumption 1, the Restrict algorithm,
which takes as input G, π(U), p, ε, and δ, outputs a partition
(A′, B′, C ′) which satisfies the following property with
probability (1− δ):

(*) Let ΓA′ (resp. ΓB′) be the set of vertices in A′

(resp. B′) which consists of vertices v such that∣∣N ↓v ∩ (V \A′)
∣∣ ≥ r + 3ε/4 (resp.

∣∣N ↓v ∩ (V \B′)
∣∣ ≥

r + 3ε/4), then |ΓA′ | ≤ εn/4 (resp. |ΓB′ | ≤ εn/4).
Correcting Large Violations: The Move algorithm up-

dates (A′, B′, C ′) with the guarantee given by the following
lemma.

Lemma 5: If Assumption 1 holds, then given a par-
tition (A′, B′, C ′) which satisfies property (*) described
in Lemma 4, the Move algorithm returns an updated
(A′, B′, C ′) in which A′ and B′ are both not (r + εn)-
reachable.

UA

A

A′

V

Fig. 2. The relationships between the subsets UA, A, A′, and V .

The relationships between the subsets UA, A and A′ are
shown in Fig. 2. The proposed algorithm ensures that A′

and B′ are disjoint. The sets A′ ∩ B and B′ ∩ A can be
non-empty, but include O(εn) vertices. The sizes of the set
A′\A and B′\B are not necessarily small. We do not show
the details of the analysis because they are irrelevant to the
correctness of the algorithm.

Complexity: Next we analyze the running time of the
proposed algorithm.

Lemma 6: The running time of the SampledRbstTst algo-
rithm is exp(Õ(1/ε2))m.
Next, we prove Theorem 1.

Proof: Suppose Assumption 1 holds. By combining
Lemmas 2, 3, 4, and 5, we know that if there exists a
partition (A,B,C) where A and B are not r-reachable, we
obtain a partition (A′, B′, C ′) in which A′ and B′ are not
(r + ∆)-reachable with probability at least (1 − δ). Then
Algorithm 4 will return 0 for such a partition (A′, B′, C ′).
Therefore Algorithm 1 returns reject for such instances with
probability (1− δ).

Algorithm 1 never rejects G that is (r+∆)-robust because
such partitions (A′, B′, C ′) in which A′ and B′ are not (r+
∆)-reachable does not exist. Therefore Algorithm 1 returns
accept for such instances.

By combining the two properties stated above and
Lemma 6, we attain Theorem 1.
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VI. DISCUSSION

A. Estimating the Interval for Robustness

Given Algorithm 1, we can easily construct an algorithm
that finds an interval of length at most (1 + β)∆ for any
constant β > 0, which includes the maximal r̄ such that
the digraph is r̄-robust. The algorithm is a modified binary
search. The lower bound ` and upper bound ` of the interval
are initialized as 0 and n/2, respectively. In each round, if
`−` ≥ (1+β)∆, we run Algorithm 1 with p = (`−∆+`)/2n
and ε = ∆/n. If the algorithm returns accept, we let ` ←
(` − ∆ + `)/2, else we let ` ← (` + ∆ + `)/2. We stop
once ` − ` ≤ (1 + β)∆ is satisfied. The interval [`, `) is
then returned as an estimation of the interval that includes r̄.
We note that the success probability of Algorithm 1 needs
to be amplified to guarantee the overall success probability
of the binary search. We omit the analysis since it follows
straightforwardly by a union bound.

B. Without Assuming Minimum In-Degree

Throughout our analysis we assume that Assumption 1
holds. On the other hand, by combining the ExamDegree
algorithm and the SampledRbstTst algorithm, we attain the
following corollary for an arbitrary digraph.

Corollary 1: Given a digraph G = (V,E), two integers
r > 0, ∆ > 0, there exists an algorithm that runs in
exp(Õ(1/ε2))m time which 1) outputs accept to certify r-
robustness if G is (2r + ∆ + 1)-robust; 2) outputs reject to
refute (2r + ∆ + 1)-robustness if G is not r-robust, with
probability (1− δ).

Proof: We first run ExamDegree to calculate dmin.
If dmin ≤ 2r + ∆, we let the algorithm output reject; if
dmin > 2r + ∆, then we let the algorithm output the result
returned by SampledRbstTst(G, ε

def
= ∆/n, δ, r).

C. Limitation of the Algorithm

The algorithm cannot be applied to cases where ε = 0
regardless of the running time. In addition, if ε is O(n−1/2),
the running time is worse than the exp(O(n))m time exact
algorithm [18]. The gain in efficiency is attained if ε is
Ω(n−

1
2+c) for a constant c > 0. If ε > 0 is a fixed con-

stant (independent of n), the algorithm is a fixed parameter
algorithm with running time linear in m, although it also
depends on the fixed parameter ε. We note that arbitrary
dependency only on the parameter is allowed for fixed pa-
rameter algorithms. Similar dependency appears in property
testing algorithms [23] and approximation algorithms [25]
for dense graphs.

VII. CONCLUSION AND FUTURE WORK

We have proposed an sample-based algorithm to ap-
proximately test r-robustness of a network. Computational
complexity of the algorithm is investigated. The algorithm
shows a trade off between precision and running time. Future
work includes improving the running time of the algorithm,
discussing the impact of regularity conditions in graphs, and
investigating other approaches of approximation.
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