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Abstract— In this paper, we focus on the problem of data
sharing over a wireless computer network (i.e., a wireless
grid). Given a set of available data, we present a distributed
algorithm, which operates over a dynamically changing network
and allows each node to calculate the optimal allocation of data
in a finite number of time steps. We show that our proposed
algorithm (i) converges to the optimal solution in finite time
with very high probability, and (ii) once the optimal solution
is reached, each node is able to cease transmissions without
needing knowledge of a global parameter such as the network
diameter. Furthermore, our algorithm (i) operates exclusively
with quantized values (i.e., each node processes and transmits
quantized information), (ii) relies on event-driven updates, and
(iii) calculates the optimal solution in the form of a quantized
fraction which avoids errors due to quantization. Finally,
we demonstrate the operation, performance, and potential
advantages of our algorithm over random dynamic networks.

I. INTRODUCTION

Wireless computer networks (or wireless grids) comprise
of different electronic devices (or nodes), which share their
resources with other devices in a distributed manner. Various
users or devices may request access to stored data in other
devices. In order to reduce the average waiting time for
users or devices who request access, data allocation is
the procedure of allocating the available data to different
nodes according to their available memory capacity such that
specific performance objectives are achieved.

In wireless computer networks, data comprise an impor-
tant resource that needs to be managed efficiently. Optimal
allocation of data can heavily influence the operational per-
formance of the network [1]. In general, resource allocation
can be formulated as an optimization problem but solving
the optimal allocation problem over dynamic networks with
quantized communication is challenging due to the hetero-
geneity of the network and the nonlinear nature of the
communication constraints. Centralized solutions consider
gathering the available data to a central scheduler; however,
these solutions are not ideal as they lack scalability and
they impose heavy computational and storage requirements
on the central scheduler. For this reason, there has been
interest towards distributed algorithms that solve the optimal
allocation problem [2]–[5].
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Distributed optimization has received significant attention
recently due to its wide variety of applications [6]–[14].
Most works in the current literature assume that network
devices process and exchange real values and are able to
reach asymptotic convergence within some error [2], [5]. In
practical applications of wireless computer networks, devices
need to exchange information messages with finite length
(i.e., quantized messages) which allows for more efficient
usage of the available network resources (e.g., energy, pro-
cessing power, etc.). Also, they need to operate over networks
which may be dynamic due to changes over the sensing
radius of the various devices [3], [4]. Additionally, in order
to preserve available energy resources, it is desirable for
devices to converge in finite time and to stop transmitting
once convergence has been achieved [2], [4]. In this paper we
propose an algorithm that combines all previously mentioned
characteristics: it solves the optimal allocation problem over
dynamic networks in finite time, while exhibiting transmis-
sion stopping capabilities.

Main Contributions. We focus on the problem of data
sharing over a wireless computer network (i.e., a wireless
grid). We aim to balance the data storage between nodes
by distributively allocating the available data per available
memory in the network. We consider the realistic scenario
where nodes process and exchange quantized information.
We also consider that various changes of each node’s sens-
ing radius result in dynamically changing connections in
the communication network. Our algorithm is analyzed for
optimal data allocation over a wireless computer network.
In this scenario, we want to reduce the average waiting time
for users or devices who request access to the stored data.
However, please note that the proposed algorithm could be
adopted in a wide variety of other related applications. The
main contributions of the paper are the following.
A. We present a distributed algorithm which solves the
optimal data allocation problem over a dynamic network;
see Algorithm 1.
B. We show that our algorithm converges in a finite number
of time steps, and each node is able to calculate the exact
solution without introducing errors due to quantization; see
Section IV-B.
C. Once our algorithm converges to the optimal solution,
each node ceases transmissions without needing knowledge
of a global network parameter (e.g., the diameter of the
network). Note that this means that our algorithm does
not require reinitialization when there is a change over the
network (e.g., when a node enters or leaves the network or
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when the diameter changes); see Section IV-A.
D. We analyze the convergence time of the algorithm and
show that it relies on the time-varying connectivity (which is
determined by the time needed to communicate among pairs
of nodes), rather than the size of the network; see Theorem 1.
E. We present simulations of our algorithm where we show
its finite time convergence to the exact solution and its
transmission stopping capabilities; see Section V.

Unlike our work in this paper, most of the current literature
considers algorithms which operate with real values and
converge asymptotically within some error [2], [5]. This
paper, along with [3], [4], aims to pave the way for finite
time algorithms, that operate solely with quantized values
and address resource allocation problems. To the authors’
knowledge, the proposed algorithm is the first algorithm
in the current literature which guarantees finite time con-
vergence and transmission stopping for the case where the
underlying network is dynamic, without needing knowledge
of a global parameter such as the diameter of the network
(e.g., see [4]).

II. NOTATION AND BACKGROUND

The sets of real, rational, integer and natural numbers are
denoted by R,Q,Z and N, respectively. The symbol Z+

denotes the set of nonnegative integers. For any real number
a ∈ R, the floor ⌊a⌋ denotes the greatest integer less than
or equal to a while the ceiling ⌈a⌉ denotes the least integer
greater than or equal to a.

Graph-Theoretic Notions. Consider a dynamic network of
n (n ≥ 2) nodes communicating only with their immediate
neighbors. The communication topology can be captured by
a dynamic undirected graph, called dynamic communication
graph. A dynamic graph is defined as a sequence of undi-
rected graphs G[k] = (V, E [k]), where V = {v1, v2, . . . , vn}
is the set of nodes and E [k] ⊆ V × V − {(vj , vj) | vj ∈ V}
is the set of edges (self-edges excluded). An edge between
node vi and node vj is denoted by mji[k] ≜ (vj , vi) ∈ E [k],
and captures the fact that node vj and node vi can exchange
information (vj can transmit to vi and vi can transmit to
vj) at time step k. Note here that if (vj , vi) ∈ E [k] then
(vi, vj) ∈ E [k]. At time step k, the subset of nodes that
can directly transmit information to node vj is called the set
of neighbors of vj and is represented by Nj [k] = {vi ∈
V | (vj , vi) ∈ E [k]}. The cardinality of Nj [k] at time step
k, is called the degree of vj and is denoted by Dj [k] =
|Nj [k]|. Given a collection of graphs G[k] = (V, E [k])
for k = 1, 2, ...,m, where m ∈ N, the union graph is
defined as G1,2,...,m

d = (V,∪m
k=1E [k]). A collection of graphs

is said to be jointly connected, if its corresponding union
graph G1,2,...,m forms a connected graph (i.e., for each pair
vj , vi ∈ V , vj ̸= vi, there exists a path1 from vi to vj).

Node Operation. The operation of each node vj ∈ V
respects the quantization of information flow. At time step

1A path from vi to vj in the union graph G1,2,...,m
d exists if we can find a

sequence of vertices vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1
, vlτ ) ∈⋃m

k=1 E[k + τ ] for τ = 0, 1, . . . , t− 1.

k ∈ Z+ (where Z+ is the set of nonnegative integers), each
node vj : maintains the mass variables yj [k] ∈ Z and zj [k] ∈
Z+, which are used to communicate with other nodes by
either transmitting or receiving messages; the state variables
ysj [k] ∈ Z, zsj [k] ∈ Z+ and qsj [k] =

ys
j [k]

zs
j [k]

, which are used to
store the received messages and calculate the result of the
optimization operation; the transmission variables S brj ∈ N
and M trj ∈ N, which are used to decide whether vj will
broadcast its state variables or transmit its mass variables via
a direct transmission.

For the case where each node vj is required to perform a
direct transmission, we assume that vj is aware of its out-
neighbors and can directly transmit messages to each out-
neighbor separately. In the proposed distributed algorithm,
in order to randomly choose an out-neighbor to transmit to,
each node vj assigns a nonzero probability blj [k] to each of
its edges mlj where vl ∈ Nj [k] (note that there is always a
virtual self-edge which means that the probability assigned to
the self-edge is nonzero). This probability assignment can be
captured for all nodes by an n×n column stochastic matrix
B[k] = [blj [k]]. A simple choice is to set these probabilities
to be equal, i.e.,

blj [k] =

{ 1
Dj [k]+1 , if l = j or vl ∈ Nj [k],
0, otherwise.

Each nonzero entry blj [k] of matrix B[k] represents the
probability of node vj transmitting towards neighbor vl ∈
Nj [k] through the edge mlj .

Modelling of Wireless Grid and Database. A wireless
grid is modeled as a set of V nodes (or wireless sensors)
and each node is denoted as vj ∈ V . In most data grids,
all participating nodes are interconnected with undirected
communication links. Furthermore, various changes over the
sensing range of each node impose a dynamic nature to
the network topology. This means that the network topology
forms a dynamic undirected graph.

For modelling databases, we borrow notation from [4].
Specifically, the data to be allocated in the network is Ddat.
The data sets which comprise the database are dj ∈ Ddat

(where j ∈ {1, . . . , |Ddat|}). The required memory for each
data set dj to be stored is µj and is assumed to be known
before the optimization operation. Thus, the total required
memory for database Ddat is µ :=

∑
vj∈V µj . The total

load of data at each node vj , due to incoming data in the
network is lj . The time period for which the optimization
operation is executed (before the next optimization operation)
is To. The total memory of node vj is νmax

j , so that the total
memory in the network is νmax :=

∑
vj∈V νmax

j . The amount
of unavailable memory at node vj due to previously stored
data is δj [m], and the total amount of unavailable memory
in the network is δtot[m] =

∑
vj∈V δj [m]. The amount of

available memory of node vj at optimization step m (i.e., at
time step mTo) is νavailj [m] := νmax

j −δj [m], so that the total
amount of available memory in the network is νavail[m] :=∑

vj∈V νavailj [m].
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III. PROBLEM FORMULATION

Let us consider a wireless computer network modeled as
a dynamic graph G[k] = (V, E [k]) with n = |V| nodes. Each
node vi has a scalar quadratic local cost function fi : R

n 7→
R (see [8] and references therein) defined as:

fi(z) =
1

2
αi(z − µi)

2, (1)

where αi > 0, µi ∈ R is the demand of node vi and z is
a global optimization variable which determines the data to
be stored at each node. The global cost function is the sum
of every local cost function fi (see (1)) in the network, i.e.,

F (z) =
∑
vi∈V

fi(z). (2)

The main goal of the nodes is to distributively allocate the
available data in order to calculate z∗, which minimizes the
global cost function in (2) and is defined as

z∗ = argmin
z∈Z

∑
vi∈V

fi(z), (3)

where Z is the set of feasible values of parameter z. Note
that the solution z∗ in (3) can be given in closed form as

z∗ =

∑
vi∈V αiµi∑
vi∈V αi

. (4)

Also, note here that if αi = 1 for all vi ∈ V , the solution is
the average.

The problem we present in this paper is borrowed from
[2], [4], but is adjusted in the context of data allocation over
dynamic wireless computer networks. Specifically, each node
vi aims to calculate the optimal amount of data to receive
w∗

i [m] at each optimization step m, which fulfills

w∗
i [m] + δi[m]

νmax
i

=
w∗

j [m] + δj [m]

νmax
j

(5)

=
µ[m] + δtot[m]

νmax
, ∀vi, vj ∈ V.

This means that every node aims to balance its data stor-
age (i.e., maintain the same percentage of stored data per
available memory) during the algorithm’s execution. In the
remainder of this paper, we consider a single optimization
step (i.e., without loss of generality, we drop index m). From
[2], in order to fulfill (5), we need

z∗ =

∑
vi∈V νmax

i
µi+δi
νmax
i∑

vi∈V νmax
i

=
µ+ δtot
νmax

. (6)

Thus, the cost function fi(z) in (1) is given by

fi(z) =
1

2
νmax
i

(
z − µi + δi

νmax
i

)2

. (7)

This means that each node computes the optimal amount of
data to store and then it is able to find the amount of data
w∗

i to receive, i.e.,

w∗
i =

µ+ δtot
νmax

νmax
i − δi. (8)

In this paper we develop a distributed algorithm which
operates over dynamic networks and the following features:

• It allows each node vi to calculate the optimal solution
w∗

i in (5) (at every optimization step m).
• Nodes converge to the optimal solution after a finite

number of time steps while processing and transmitting
quantized values.

• Nodes cease transmissions once convergence has been
achieved in order to preserve the available resources at
each node without having knowledge of global param-
eters.

IV. QUANTIZED DATA ALLOCATION ALGORITHM WITH
FINITE TRANSMISSION CAPABILITIES

In this section we present a distributed algorithm which
solves the problem described in Section III. The distributed
algorithm is detailed below as Algorithm 1. In order to
solve the finite time data allocation problem, we make the
following assumptions.

Assumption 1. Let us consider an infinite sequence of
undirected graphs G[0],G[1], G[2], ..., G[k], ..., describing
a dynamic graph. There is a finite window length l ∈ N

and an infinite sequence of time instants t0, t1, ..., tm,
..., where t0 = 0, such that for any m ∈ Z+, we have
0 < tm+1−tm < l < ∞ and the union graph Gtm,...,tm+1−1,
is equal to the nominal undirected graph G which is assumed
to be connected. Furthermore, the diameter of the connected
union graph Gtm,...,tm+1−1 is denoted as Dun and is the
longest shortest path between any two nodes vj , vi ∈ V (note
that Dun is also the diameter of the nominal graph G).

Assumption 2. Each node vj has a unique ID. This ID is
used to distinguish node vj from other nodes in the network.

Assumption 3. The time horizon To at step m is chosen such
that µ[m] ≤ νavail[m]. This means that the total amount
of data to be allocated at a specific optimization step m
is smaller or equal to the total available memory of the
network.

Assumption 1 allows each node to compute the quantized
average of the nodes’ quantized states, in a finite number of
time steps. Assumption 2 is a necessary condition in order for
each node to cease transmissions once the optimal allocation
is calculated after a finite number of time steps. Assump-
tion 3 is a necessary condition so that the total demand
of data storage does not exceed the total available memory
in the network. Note that To can be chosen appropriately
to fulfill this requirement. Furthermore, note that in case
Assumption 3 does not hold, some data will not be allocated
due to the lack of available storage in the system.

We now describe the main operations of Algorithm 1. The
initialization involves the following steps:

Initialization: Each node vj ∈ V does the following: (i) it
initializes its mass variables, (ii) it initializes its transmission
variables, and (iii) it sets its state variables to be equal to the
mass variables. Then, it broadcasts the values of its state
variables to every neighbor. Finally, it initializes set Sj , to
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contain the out-neighbors to which it transmitted its state
variables at time step k = 0.

The iteration involves the following steps:
Iteration - Step 1. Probability Assignment and Receiv-

ing: Each node vj ∈ V assigns a nonzero probability to its
self-edge and to each of its outgoing edges available at time
step k. The assigned probabilities have equal values, and their
sum is equal to one, at each step k. Then, it receives from
every neighbor (i) the transmitted set of state variables, and
(ii) the transmitted set of mass variables (if no set of mass
variables is received from a specific neighbor, vj assumes it
received mass variables equal to zero from this neighbor).

Iteration - Step 2. Transmission Conditions According
to Mass and State Variables: If node vj received at least
one set of mass variables or state variables during Iteration -
Step 1, each node vj checks the following conditions:
• If the received set of state variables is “greater” (in the

way clarified later in this section) than the current set of
state variables, it sets its state variables to be equal to
the received (greater) set of state variables and decides to
broadcast its updated state variables.

• If the stored set of mass variables is “greater” than the
state variables, it sets its state variables equal to the
mass variables and decides to broadcast its updated state
variables.

• If the set of state variables is “greater” than the set of
mass variables and the fraction of its mass variables is not
equal to the fraction of its state variables, then it decides to
directly transmit its mass variables to a randomly chosen
neighbor.

Then, if node vj decided to broadcast its state variables, it
updates the stored set Sj to be equal to the current set of
neighbors (in order to remember which neighbors received
the current state variables).

Iteration - Step 3. Transmission Conditions According
to Dynamic Network: At each time step k, each node vj
checks whether the current set of neighbors is not included in
the stored set Sj . Note here that the stored set Sj denotes the
neighbors which have received (or will receive) the current
set of state variables. In case there is one (or multiple)
neighbor(s) who is (are) not included in the set Sj , node
vj decides to broadcast its state variables so that this one
neighbor (or multiple neighbors) receives the updated set of
state variables.

Iteration - Step 4. Transmitting: Each node vj checks
its transmission variables. It transmits its mass variables via
a direct transmission, or broadcasts its state variables. Then,
it sets its transmission variables equal to zero and repeats the
operation.

The details of the dynamic algorithm with transmission
stopping capabilities can be seen in Algorithm 1.

Remark 1. Assumption 2 requires that each node vj has
a unique ID. This is used by Algorithm 1 in order to
cease transmissions once the optimal allocation is calculated
after a finite number of time steps. In particular, node
IDs are used by node vj in order to update the set Sj

Algorithm 1 Optimal Data Allocation Algorithm with Effi-
cient Communication and Transmission Stopping
Input: A set of graphs G[k] = (V, E [k]) with n = |V| nodes
and m[k] = |E [k]| edges for which Assumption 1 holds.
Initialization: Each node vj ∈ V does the following:
1) Sets zj [0] := lj+δj , yj [0] = νmax

j , zsj [0] = zj [0], ysj [0] =
yj [0], qsj [0] = ysj [0]/z

s
j [0] and S brj = 0, M trj = 0.

2) Broadcasts zsj [0], y
s
j [0] to every vl ∈ Nj [0].

3) Sets S = Nj [0].
Iteration: For k = 0, 1, 2, . . . , each node vj ∈ V does the
following:
1) Assigns a nonzero probability blj [k] to each of its edges

mlj , where vl ∈ Nj [k], as follows

blj [k] =

{ 1
Dj [k]+1 , if l = j or vl ∈ Nj [k],
0, if l ̸= j and vl /∈ Nj [k].

2) Receives ysi [k], zsi [k] from every vi ∈ Nj [k] (if no
message is received, it sets ysi [k] = 0, zsi [k] = 0).

3) Receives yi[k], zi[k] from each vi ∈ Nj [k] and sets

yj [k + 1] = yj [k] +
∑

vi∈Nj [k]

wji[k]yi[k],

zj [k + 1] = zj [k] +
∑

vi∈Nj [k]

wji[k]zi[k],

where wji[k] = 1 if a message with yi[k], zi[k] is received
from neighbor vi, otherwise wji[k] = 0.

4) If wji[k] ̸= 0 or zsi [k] ̸= 0 for some vi ∈ Nj [k] then
4a) Calls Algorithm 1.A.
4b) Event Trigger Conditions 1: If Sj ∩ Nj [k] ̸= ∅,

then node vj sets S brj = 1, and Sj = Sj ∪Nj [k].
4c) If M trj = 1 then node vj chooses vl ∈ Nj [k]

randomly according to blj [k] and transmits yj [k], zj [k].
Then, node vj sets yj [k] = 0, zj [k] = 0, M trj = 0.

4d) If S brj = 1 then, node vj broadcasts zsj [k + 1],
ysj [k + 1] to every vl ∈ Nj . Then, it sets S brj = 0.

5) Repeats (increases k to k + 1 and goes back to Step 1).
Output: Sets w∗

j + δj = (νmax
j /qsj [k]) and (5) holds for

every vj ∈ V .

and determine whether to broadcast its state variables. To
the authors’ knowledge, this is the first algorithm which
operates over dynamic networks in which nodes are able
to cease transmissions without any global parameter, such
as the network diameter. However, note that if nodes have
knowledge of the parameter l in Definition 1, then they do
not need to have unique IDs (Assumption 2 is not needed).
Specifically, every time their state variables are updated (see
Algorithm 1.A) they can broadcast their state variables for l
time steps. From Definition 1, every l time steps, there is a
link from node vj to every neighboring node. As a result, if
nodes broadcast their state variables for l time steps, every
neighbor will receive the updated states at least once and
the algorithm will converge to the optimal solution in finite
time.
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Algorithm 1.A Event-Triggered Conditions for Algorithm 1
(for each node vj)
Input
ysj [k], z

s
j [k], q

s
j [k], yj [k + 1], zj [k + 1], S brj , M trj , Sj ,

Nj [k], and the received ysi [k], z
s
i [k] from every vi ∈ Nj [k].

Execution
• Event Trigger Conditions 1: If

Condition (i): zsi [k] > zsj [k], or
Condition (ii): zsi [k] = zsj [k] and ysi [k] > ysj [k],
then node vj sets

zsj [k + 1] = max
vi∈Nj [k]

zsi [k], and

ysj [k + 1] = max
vi∈{vi′∈Nj [k]|zs

i′ [k]=zs
j [k+1]}

ysi [k],

and also sets qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] , and S brj = 1.

• Event Trigger Conditions 2: If
Condition (i): zj [k + 1] > zsj [k + 1], or
Condition (ii): zj [k + 1] = zsj [k + 1] and yj [k + 1] >
ysj [k + 1],
then node vj sets zsj [k + 1] = zj [k + 1], ysj [k + 1] =

yj [k + 1], and qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] and S brj = 1.

• Event Trigger Conditions 3: If
Condition (i): 0 < zj [k + 1] < zsj [k + 1] or
Condition (ii): zj [k + 1] = zsj [k + 1] and yj [k + 1] <
ysj [k + 1],
then node vj sets M trj = 1.

• Event Trigger Conditions 4: If 0 < zj [k + 1] and

yj [k + 1]

zj [k + 1]
=

ysj [k + 1]

zsj [k + 1]
,

then node vj sets M trj = 0.
• Event Trigger Conditions 5: If S brj = 1

then node vj sets Sj = Nj [k].
Output
ysj [k], z

s
j [k], q

s
j [k], S brj , M trj , Sj .

A. Operation over Dynamic Graphs

We now analyze the functionality of Algorithm 1 over
dynamic networks. We consider the following two definitions
which are important for our subsequent development.

Definition 1. Consider a set of graphs G[k] = (V, E [k]),
k = 0, 1, 2, ..., with n = |V| nodes and m[k] = |E [k]|
edges for which Assumption 1 holds. During the execution
of Algorithm 1, at time step k0, there is at least one node
vj′ ∈ V , for which

zj′ [k0] ≥ zi[k0], ∀vi ∈ V. (9)

Then, among the nodes vj′ for which (9) holds, there is at
least one node vj for which

yj [k0] ≥ yl[k0], where vj , vl ∈ {vj′ ∈ V | (9) holds}. (10)

For notational convenience we will call the pair of mass
variables of node vj for which (9) and (10) hold as the

“leading mass” (or “leading masses” if multiple nodes hold
such a pair of values) and the pairs of mass variables of a
node vl for which zl[k0] > 0 but (9) and (10) do not hold
as the “follower mass” (or “follower masses”).

Definition 2. Consider a set of graphs G[k] = (V, E [k]),
k = 0, 1, 2, ..., with n = |V| nodes and m[k] = |E [k]|
edges for which Assumption 1 holds. During the execution
of Algorithm 1, at time step k0, if two (or more) masses (for
which z ̸= 0) reach a node simultaneously then we say that
they “merge”. This means that the receiving node “merges”
the mass variables it receives by summing their numerators
and their denominators (according to Step 3 of the Iteration
of Algorithm 1). This way a set of mass variables with a
greater denominator is created.

The intuition behind Algorithm 1 can be described through
the following three stages.
Stage 1: Initially every node assumes that its mass variables
are the leading mass and broadcasts its state variables. After a
finite number of time steps, the state variables of every node
in the network are equal to the leading mass. Note that we
consider the simple scenario where no mass variables merged
until the state variables of every node in the network become
equal to the leading mass, (thus the leading mass does not
change until the state variables of every node in the network
become equal to the leading mass). The scenario where two
or more mass variables merge and the leading mass changes
until the state variables of every node in the network become
equal to the leading mass, can be proved identically.
Stage 2: Once the state variables of every node become equal
to the leading mass, every node transmits its mass variables
towards a randomly chosen neighbor. This means that the
mass variables of every node (except the node whose mass
variables are the leading mass) perform a random walk.
During their random walk, the mass variables either merge
with the leading mass (which is not transmitted), or merge
between them (if they visit a common node). In the first
case, the leading mass is updated and the corresponding
node broadcasts its updated state variables. In the second
case, if two mass variables visit a common node, the node
checks if the merged mass variables are now the leading
mass (note that the node’s state variables are equal to the
leading mass from Stage 1). If the merged mass variables
are the leading mass, then the corresponding node broadcasts
its state variables and does not transmit its mass variables.
However, if the merged mass mass variables are not the
leading mass, then they are transmitted to a randomly chosen
neighbor.
Stage 3: Once the leading mass is updated (i.e., the mass
variables either merge with the leading mass, or merge
between them), the corresponding node broadcasts its state
variables. Thus, after a finite number of time steps, the state
variables of every node in the network become equal to the
updated leading mass, and then Stage 2 is repeated.

Note here that during the operation of Algorithm 1, there
is always a set of mass variables which is the leading mass.
The follower masses perform random walks until they merge
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with the leading mass or they merge between them and
become the leading mass. Once the leading mass is updated
(i.e., either a follower mass merges with the leading mass
or two follower masses merge between them and become
the leading mass), every node in the network receives the
updated state variables of the node whose mass variables are
the leading mass (see Stage 1). As a result, after a finite
number of time steps (i) the leading mass becomes equal to
the quantized average of the initial states, (ii) each node sets
its state variables equal to the leading mass (i.e., the average
of the initial states), and (iii) once each node’s state becomes
equal to the average of the initial states, transmissions are
ceased (since there are no more updates of the leading mass).

B. Convergence of Algorithm 1

We now analyze the convergence time of Algorithm 1. We
first consider Lemma 1, mutatis mutandis, which is necessary
for our subsequent development.

Lemma 1 ([15]). Consider a sequence of graphs G[k] =
(V, E [k]), k = 0, 1, 2, ..., with n = |V| nodes and m[k] =
|E [k]| edges for which Assumption 1 holds. At each time step
k, suppose that each node vj assigns a nonzero probability
blj [k] to each of its edges mlj [k], where vl ∈ Nj [k] ∪ {vj},
as

blj =

{ 1
1+Dj [k]

, if l = j or vl ∈ Nj [k],
0, if l ̸= j and vl /∈ Nj [k].

At time step k = 0, node vj holds a “token” while the
other nodes vl ∈ V − {vj} do not. At each time step k,
each node vj transmits the “token” (if it has the token,
otherwise it performs no transmission) according to the
nonzero probability blj [k] it assigned to its edges mlj [k].
The probability PDun

DTi
that the token is at node vi after lDun

time steps satisfies

P lDun

DTi
≥ (1 +Dmax)

−(lDun) > 0,

where l is the time window defined in Assumption 1 (for
which the union graph Gtm,...,tm+1−1

d is equal to the nominal
graph G which is connected), and Dmax is the maximum
degree of every node in the nominal graph G.

We now consider Lemma 2, which analyzes the probability
according to which a token performing a random walk visits
a specific node. Then, we present Theorem 1 which analyzes
the finite time convergence of Algorithm 1. Due to space
limitations we omit the proof of Lemma 2, and Theorem 1;
they will be available in an extended version of our paper.

Lemma 2. Consider a sequence of graphs G[k] = (V, E [k]),
k = 0, 1, 2, ..., with n = |V| nodes and m[k] = |E [k]| edges
for which Assumption 1 holds. At each time step k, suppose
that each node vj assigns a nonzero probability blj [k] to each
of its edges mlj [k], where vl ∈ Nj [k] ∪ {vj}, as follows

blj =

{ 1
1+Dj [k]

, if l = j or vl ∈ Nj [k],
0, if l ̸= j and vl /∈ Nj [k].

At time step k = 0, node vj holds a “token” while the
other nodes vl ∈ V − {vj} do not. At each time step k,
each node vj transmits the “token” (if it has the token,
otherwise it performs no transmission) according to the
nonzero probability blj [k] it assigned to its edges mlj [k]. For
any probability p0, where 0 < p0 < 1, there exists k0 ∈ Z+,
so that with probability at least p0, the token has visited
a specific node vi, (where l is the time window defined in
Assumption 1 for which the union graph Gtm,...,tm+1−1 is
equal to the nominal graph G which is connected).

Theorem 1. Consider a sequence of graphs G[k] =
(V, E [k]), k = 0, 1, 2, ..., with n = |V| nodes and m[k] =
|E [k]| edges for which Assumption 1, Assumption 2, and As-
sumption 3 hold. Suppose that each node vj ∈ V follows the
Initialization and Iteration steps as described in Algorithm 1,
where lj , δj , ν

max
j ∈ N for every node vj ∈ V at time

step k = 0. During the operation of Algorithm 1, for any
probability p′0 (where 0 < p′0 < 1) there exists k′0 ∈ Z+, so
that with probability at least p′0 each node vj is able to (i)
calculate the optimal amount of data w∗

j (shown in (8)) after
a finite number of time steps k0, and (ii) cease transmissions
after calculating w∗

j .

V. SIMULATION RESULTS

In this section, we present simulation results in order to
demonstrate the operation of Algorithm 1 and its potential
advantages. We focus on a random graph of 20 nodes and
show how the nodes’ states converge to the optimal solution.
Furthermore, we show the total accumulated number of
transmissions and the number transmissions at every time
step.

Evaluation over a Dynamic Network of 20 Nodes. The
dynamic network comprises 20 nodes and the union of the
dynamic networks is equal to the nominal graph after l = 5
time steps. The nominal graph is assumed to be connected
and has a diameter equal to 3. At each node vj , the total load
of data lj was generated via a random distribution uniformly
picked within the range [1, 50]. The total load of data in
the network is equal to 504 (i.e.,

∑
vj∈V lj = 504). For a

randomly chosen set of seven nodes the total memory was
set to be 31752, for a randomly chosen set of seven nodes
the total memory was set to be 63504, and for a randomly
chosen set of six nodes the total memory was set to be 95256.
Our simulation results are shown in Fig. 1 and Fig. 2.

In Fig. 1 (A), we can see that each node vj is able to
calculate the exact ratio of memory per data after 29 time
steps. The ratio is equal to 504/20 and and is calculated
exactly in the form of a quantized fraction without any
errors due to quantized communication and processing. In
Fig. 1 (B), we can see that each node vj is able to calculate
the optimal amount of data to receive after 29 time steps.
The amount of data is proportional to the node’s memory
capacity. Specifically, from the result of Fig. 1, each node
calculates the ratio of data per memory and then scales with
its available memory capacity. Specifically, the 7 nodes with
total memory equal to 31752, receive 1260 amount of data.
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Fig. 1. Execution of Algorithm 1 over a random dynamic graph comprised
of 20 nodes where the union of the dynamic graphs is equal to the
nominal graph after l = 5 time steps. (A): Following Algorithm 1, each
node calculates the amount of data per memory after 29 time steps. (B):
Algorithm 1 converges to the optimal solution after 29 time steps.

The 7 nodes with total memory equal to 63504, receive 2520
amount of data (double the amount received by the nodes
with 31752). Finally, the 6 nodes with total memory equal
to 95256, receive 3780 amount of data.

In Fig. 2 (A), we can see the accumulated total number of
transmissions performed from nodes in the network during
the operation of Algorithm 1. The total number of transmis-
sions performed is equal to 291 during 29 time steps. In
Fig. 2 (B), we can see the number of transmissions during
the operation of Algorithm 1 at every time step k. We can
see, that in the beginning, the number of transmissions is
high. However, after 10 time steps, it decreases and only
increases at specific instances due to the dynamic nature of
the communication network. The number of transmissions
performed becomes equal to 0 after 29 time steps.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we focused on the problem of optimal data
scheduling over a wireless computing network. We proposed
a distributed algorithm which operates over dynamic net-
works and converges in finite time. We showed that our
algorithm converges to the exact optimal solution in finite
time. Our algorithm operates with quantized values (i.e.,
each node processes and transmits quantized values) and,
once it converges to the optimal solution, each node ceases
transmissions. Finally, we have demonstrated the operation of
our algorithm over random dynamic networks and exhorted
its finite time convergence.
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