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Abstract— In this paper, we present a distributed version of
the k-means algorithm for multi-agent systems with directed
communication links. The goal of k-means is to partition
the network’s agents in mutually exclusive sets (groups) such
that agents in the same set have (and possibly share) similar
information and are able to calculate a representative value
for their group. Our distributed algorithm allows each node to
transmit quantized values in an event-driven fashion, and ex-
hibits distributed stopping capabilities. Transmitting quantized
values leads to more efficient usage of the available bandwidth
and reduces the communication bottleneck, whereas distributed
stopping preserves available resources. We characterize the
properties of the proposed distributed algorithm and show that
its execution (on any static and strongly connected digraph) will
partition all agents in mutually exclusive clusters in finite time.
We conclude with examples that illustrate the operation, per-
formance, and potential advantages of the proposed algorithm.

I. INTRODUCTION

Data clustering is a fundamental problem whereby data is
partitioned in groups and a representative value is identified
for each group. Such methods are adopted in a broad variety
of different applications, ranging from customer segmenta-
tion [1] to cybersecurity [2]. Notably, in the case of wireless
sensor networks, a large amount of data is typically generated
or sensed [3]. In this view, the ability of a set of agents to
collectively cluster their sensed data would allow them to
contain the overall amount of information and to establish
functional connections among the agents, e.g., by identifying
other agents with similar values. Establishing functional
connections among agents over a wireless sensor network
can enable interesting applications, such as coverage control,
where a network of mobile agents is in charge of covering
a finite set of points of interest [4].

In the literature, there have been various works on dis-
tributed clustering (e.g., see [5], [6] and references therein)
and recently on distributed algorithms such as k-means
clustering [7]–[9] and C-means clustering [10]. However,
most clustering algorithms feature message exchanges con-
sisting of floating point values, which leads to a significant
increase in computational and bandwidth requirements, and
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may be responsible for introducing quantization errors or
approximations.
Main Contributions. In this paper, we aim to analyze the
distributed k-means clustering problem while we reduce the
communication bottleneck between nodes. We focus on the
realistic scenario where a set of wireless sensor nodes, which
are spread over an area, collect data from the environment
and communicate with quantized messages. We present a
distributed algorithm which operates in an event-triggered
fashion and solves the k-means clustering problem in finite
time. Furthermore, in order to preserve available resources,
nodes are able to determine whether the algorithm converged
so as to terminate their operation. The main contributions of
our paper are the following.
A. We present a novel distributed algorithm for solving
the k-means clustering problem. During its operation, nodes
exchange quantized messages of finite length with their
neighboring nodes; see Algorithm 2.
B. We show that our proposed algorithm converges in a
deterministic manner after a finite number of time steps.
We calculate an explicit deterministic upper bound on the
required time steps for the convergence of our algorithm. Our
bound depends on the network structure and the number of
centroid calculations; see Theorem 2.

Current literature comprises centralized or distributed al-
gorithms whose operation with real values increases band-
width and processing requirements and leads to approximate
solutions. Our paper is a major departure from current
literature since the operation of each node relies on quan-
tized communication. Utilization of quantized values allows
more efficient usage of network resources, and leads to
the calculation in finite time of the exact solution without
any errors due to quantization. Therefore, our proposed
distributed algorithm introduces a novel approach for data
clustering with efficient (quantized) communication.

II. MATHEMATICAL NOTATION

The sets of real, rational, and integer numbers are denoted
by R,Q, and Z, respectively. The symbol Z≥0 (Z>0)
denotes the set of nonnegative (positive) integer numbers.
The set Z≤0 (Z<0) denotes the set of nonpositive (negative)
integer numbers. For any real number a ∈ R, ⌊a⌋ denotes
the greatest integer less than or equal to a (i.e., the floor of
a), and ⌈a⌉ denotes the least integer greater than or equal to
a (i.e., the ceiling of a). Vectors are denoted by small letters,
and matrices are denoted by capital letters. The transpose of
matrix A is denoted by AT . For matrix A ∈ Rn×n, A(ij)

denotes the entry at row i and column j. For a vector a ∈ Rn,
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a(i) denotes the entry at position i. The all-ones vector is
denoted as 1 and the identity matrix is denoted as I (of
appropriate dimensions).

Graph Theoretic Notions. Let us consider a network of
n nodes (n > 2) where each node can communicate only
with its immediate neighbors. The communication topology
is captured by a directed graph (digraph) defined as Gd =
(V, E). In digraph Gd, V = {v1, v2, . . . , vn} is the set of
nodes with cardinality n = |V| ≥ 2, and E ⊆ V × V −
{(vj , vj) | vj ∈ V} is the set of edges (self-edges excluded)
with cardinality m = |E|. A directed edge from node vi to
node vj is denoted by mji ≜ (vj , vi) ∈ E , and captures the
fact that node vj can receive information from node vi (but
not the other way around). We assume that the given digraph
Gd = (V, E) is strongly connected. This means that for each
pair of nodes vj , vi ∈ V , vj ̸= vi, there exists a directed
path1 from vi to vj . The diameter D of a digraph is the
longest shortest path between any two nodes vj , vi ∈ V .

The subset of nodes that can directly transmit information
to node vj is called the set of in-neighbors of vj and is
represented by N−

j = {vi ∈ V | (vj , vi) ∈ E}. The
cardinality of N−

j is called the in-degree of vj and is denoted
by D−

j = |N−
j |. The subset of nodes that can directly receive

information from node vj is called the set of out-neighbors
of vj and is represented by N+

j = {vl ∈ V | (vl, vj) ∈ E}.
The cardinality of N+

j is called the out-degree of vj and is
denoted by D+

j = |N+
j |.

Remark 1. Note that the communication topology (which is
captured by a directed graph) denotes that nodes are able
to wirelessly transmit/receive messages to their immediate
neighbors (i.e., receive messages from their in-neighbors and
transmit messages to their out-neighbors), thus exchanging
their stored information in a distributed fashion.

Node Operation. We assume that each node vj can
directly transmit messages to each out-neighbor; however,
it cannot necessarily receive messages (at least not directly)
from them. In the proposed distributed algorithm, each node
vj assigns a unique order in the set {0, 1, ...,D+

j − 1} to
each of its outgoing edges mlj , where vl ∈ N+

j . More
specifically, the order of link (vl, vj) for node vj is denoted
by Plj (such that {Plj | vl ∈ N+

j } = {0, 1, ...,D+
j − 1}).

This unique predetermined order is used during the execution
of the proposed algorithm as a way of allowing node vj
to transmit messages to its out-neighbors in a round-robin2

fashion.
Distributed Max- and Min-Consensus. The distributed

max-consensus algorithm calculates the maximum value of
the network in a finite number of time steps [11]. The

1A directed path from vi to vj exists if we can find a sequence of
nodes vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ ) ∈ E for τ =
0, 1, . . . , t− 1.

2When executing the deterministic protocol, each node vj transmits to its
out-neighbors, one at a time, by following the predetermined order. The next
time it transmits to an out-neighbor, it continues from the outgoing edge
it stopped the previous time and cycles through the edges in a round-robin
fashion.

intuition of the algorithm is the following: if every node vj
in the network performs the following update

xj [µ+ 1] = max
vi∈N−

j ∪{vj}
{xi[µ]}, µ = 0, 1, ..., s, (1)

then all nodes converge to the maximum value among the
initial values {xi[0] | vi ∈ V} of all nodes in a finite number
of steps s, where s ≤ D (see, e.g., [12, Theorem 5.4]).
Note here that similar results hold also for the min-consensus
algorithm, i.e., if the max operation is replaced by the min
operation.

III. PROBLEM FORMULATION

A. k-means Clustering

The problem we present in this paper is borrowed from [7],
but is adjusted in the context of quantized communication
over directed networks. Specifically, let us consider a set of n
observations x1, . . . , xn, where xi ∈ Rd for i ∈ {1, 2, ..., n}.
Each observation xi is assigned to each node vi, respectively.
In the k-means clustering problem, we want to partition the
n observations into k sets or clusters C = {C1, . . . , Ck}
(where k ≤ n) so we can minimize the sum of some measure
of distance of the elements within every cluster. Specifically,
we want to find a set of centroids c1, . . . , ck (where cγ ∈ Rd,
for γ ∈ {1, 2, ..., k}), each associated to a cluster, and a
clustering assignment rγj (where rγj = 1 means that node
vj belongs in cluster Cγ , rγj = 0 otherwise), which solves
the following optimization problem:

D = argmin
{rγj},{cγ}

k∑
γ=1

n∑
j=1

rγj ||xj − cγ ||2, (2)

s.t.
k∑

γ=1

rγj = 1, for all j = 1, 2, ..., n, (3)

rγj ∈ {0, 1}, for γ = 1, 2, ..., k, j = 1, 2, ..., n. (4)

The problem in (2)–(4) is hard to solve exactly when
n and k are large,3 thus calling for approximate solutions.
In particular, the k-means algorithm represents a successful
strategy to compute a locally optimal solution to the above
problem. The intuition of the k-means algorithm is that it
starts with a random set of k centroids c1(1), . . . , ck(1),
and alternates at each step T between an assignment and
a refinement phase.

Assignment phase: Each observation xλ is assigned to
the set characterized by the nearest centroid, i.e.:

Cγ(T ) =

= {xλ : ||xλ − cγ(T )||2 ≤ ||xλ − cγ′(T )||2, γ, γ′ ∈ [1, k]}.
(5)

Refinement phase: Each centroid ci(T +1) is updated as:

cγ(T + 1) =

∑
vj∈Cγ(T ) xj

|Cγ(T )|
(6)

3The problem is NP-hard in general Euclidean space Rd, even for 2
clusters [13] and for a general number of clusters k, even in the plane [14].
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(a) (b) (c) (d)

Fig. 1. Example of execution of k-means algorithm (source: Wikipedia
Commons available under GNU Free Documentation License v. 1.2).

The two steps are iterated until convergence (i.e., if the
centroids no longer change) or up to a maximum of M
iterations.

Fig. 1 is an example of an execution of the algorithm
for a set of n = 12 observations in R2 and for k = 3. In
this case, the observations coincide with the agent’s positions
(i.e., the agents are clustered according to their position).
Fig. 1 (a) shows with circles the initial centroids. Fig. 1 (b)
and Fig. 1 (c) report the assignment and refinement phases
for the first step. Fig. 1 (d) depicts the assignment phase for
the second step.

The k-means algorithm is known to converge to a local
optimum value, while there is no guarantee to converge to the
global optimum [15]. However, given the complexity of the
problem at hand, the k-means algorithm is de facto the most
diffused heuristic algorithm: indeed “ease of implementation,
simplicity, efficiency, and empirical success are the main
reasons for its popularity” [16]. Furthermore, note that the
convergence of the algorithm strongly depends on the initial
choice of the centroids. Therefore, a common practice is to
execute the algorithm several times – each time with different
initial conditions – and select the best solution.

B. Modification of k-means Clustering Problem: Finite-Time
k-means Clustering with Quantized Communication

In this paper, we develop a distributed algorithm that
allows nodes to find a locally optimal solution to the problem
P1 presented below, while transmitting quantized informa-
tion via available communication links. We assume that
the transmitted quantized messages are integer-valued (this
comprises a class of quantization effects such as uniform
quantization).

P1. Consider a static strongly connected digraph Gd, where
each node vj is endowed with a quantized state xj ∈ Rd.
We aim at developing an algorithm which calculates in
a distributed fashion a set of centroids c1, . . . , ck (where
cγ ∈ Rd, for γ ∈ {1, 2, ..., k}) and association variables rγj ,
which represent a locally optimal solution to the optimiza-
tion problem presented in (2)–(4). The proposed algorithm
converges in a finite number of time steps, upper bounded by
a polynomial function which depends on the communication
network. During the proposed algorithm each node transmits
quantized information and ceases transmissions once conver-
gence has been achieved.

IV. FINITE-TIME k-MEANS CLUSTERING WITH
QUANTIZED COMMUNICATION

In this section we propose a distributed algorithm which
solves problem P1 in Section III-B. For developing our
proposed algorithm in this paper, we first present an extended
version of the algorithm in [17] which is important for our
subsequent development. Then, we present the distributed
algorithm which solves Problem P1.

A. Multidimensional Deterministic Exact Quantized Average
Consensus

In this section, we present an extended version of the
deterministic algorithm in [17]. In this version, each node
is able to calculate the exact average of the initial states in a
deterministic fashion after a finite number of time steps for
the case where the state of each node is an integer vector (i.e.,
yj [µ] ∈ Zd, where µ, d ∈ Z>0). The proposed algorithm is
detailed as Algorithm 1 below.

The intuition of Algorithm 1 is the following. Each node
vj receives the mass variables yi[k] and zi[k] from its in-
neighbors vi ∈ N−

j and sums them along with its stored
mass variables (yj [k] and zj [k]). During the event-triggered
conditions C1–C5, node vj compares each element of the
received vectors against its stored vectors. According to the
event-triggered conditions, it decides whether it will update
its state variables and/or perform transmission towards one
of its out-neighbors. If it performs a transmission, it sets its
stored mass variables equal to zero and repeats the procedure.

Definition 1. The system is able to achieve exact quantized
average consensus in the form of a quantized fraction if, for
every vj ∈ V , there exists µ0 ∈ Z+ so that for every vj ∈ V
we have

qsj [µ] = q, (7)

for µ ≥ µ0, where q is the real average of the initial states
defined as

q =
1

n

n∑
l=1

yl[0]. (8)

Let us now consider the following setup.
Setup 1: Consider a strongly connected digraph Gd =

(V, E) with n = |V| nodes and m = |E| edges. Each node
vj ∈ V has an initial quantized state yj [0] ∈ Zd. During the
execution of the Algorithm 1, at time step µ1, there is at
least one node vj′ ∈ V , for which

zj′ [µ1] ≥ zi[µ1], ∀vi ∈ V. (9)

Then, among the nodes vj′ for which (9) holds, there is
at least one node vj , for which there exist some maximal
dimension dimj , such that

yj(k′)[µ1] ≥ yj′(k′)[µ1], vj , vj′ ∈ {vi ∈ V | (9) holds},
(10)

for k′ ∈ {1, 2, ..., dimj}. For notational convenience we will
call the mass variables of node vj (or the nodes, if they are

520

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 12:37:17 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Multidimensional Deterministic Exact Quan-
tized Average Consensus Algorithm
Input: A strongly connected digraph Gd = (V, E) with n =
|V| nodes and m = |E| edges. Each node vj ∈ V has an
initial quantized state yj [1] ∈ Zd.
Initialization: Every node vj ∈ V does the following:
• assigns to each of its outgoing edges {(vl, vj) | vl ∈ N+

j }
a unique order Plj in the set {0, 1, ...,D+

j − 1};
• sets tr(j) = 0 and e = tr(j);
• sets zj [1] = 1, zsj [1] = zj [1] and ysj [1] = yj [1] (which

means that qsj [1] = ysj [1]/z
s
j [1]);

• chooses out-neighbor vl ∈ N+
j according to the predeter-

mined order Plj (initially, it chooses vl ∈ N+
j such that

Plj = 0) and transmits zj [1] and yj [1] to this out-neighbor.
Then, it sets yj [1] = 0, zj [1] = 0, passj = 0;

• sets tr(j) = tr(j) + 1 and e = tr(j) mod D+
j ;

Iteration: For µ = 1, 2, . . . , each node vj ∈ V , does the
following:
• receives yi[µ] and zi[µ] from its in-neighbors vi ∈ N−

j

and sets

yj [µ+ 1] = yj [µ] +
∑

vi∈N−
j

wji[µ]yi[µ],

and
zj [µ+ 1] = zj [µ] +

∑
vi∈N−

j

wji[µ]zi[µ],

where wji[µ] = 0 if no message is received (otherwise
wji[µ] = 1);

• sets passj = 1, sets dimj = 1;
• Event Trigger Conditions: while dimj ≤ d then

C1: if zj [µ+ 1] > zsj [µ] break;
C2: if zj [µ+ 1] < zsj [µ] sets passj = 0, break;
C3: if zj [µ+ 1] = zsj [µ] and yj(dimj)[µ+ 1] > ysj(dimj)

[µ]
break;
C4: if zj [µ+ 1] = zsj [µ] and yj(dimj)[µ+ 1] = ysj(dimj)

[µ]
sets dimj = dimj + 1;
C5: if zj [µ+ 1] = zsj [µ] and yj(dimj)[µ+ 1] < ysj(dimj)

[µ]
sets passj = 0, break;

• if passj = 1:
• sets zsj [µ+ 1] = zj [µ+ 1], ysj [µ+ 1] = yj [µ+ 1],

qsj [µ+ 1] =
ysj [µ+ 1]

zsj [µ+ 1]
.

• transmits zj [µ+1] and yj [µ+1] towards out-neighbor
vλ ∈ N+

j for which Pλj = e and it sets yj [µ+ 1] = 0

and zj [µ+ 1] = 0. Then, it sets tr(j) = tr(j) + 1 and
e = tr(j) mod D+

j .
Output: (7) holds for every vj ∈ V .

more than one) for which (9) and (10) hold as the “leading
mass” (or “leading masses”).

In the following theorem we present the deterministic
convergence of Algorithm 1. The proof of the theorem is
similar to Proposition 1 in [17] and is omitted.

Theorem 1. Under Setup 1 we have that the execution of
Algorithm 1 allows each node vj ∈ V to reach quantized
average consensus after a finite number of steps St, bounded
by St ≤ nm2.

B. Finite-Time k-means Clustering Algorithm with Quan-
tized Communication

We now present a distributed algorithm which solves Prob-
lem P1 presented in Section III-B. The proposed algorithm
is detailed as Algorithm 2 below.

Assumption 1. Every node vj ∈ V knows the diameter of
the network D (or an upper bound D′).

Assumption 2. Each node vj knows the initial set of
centroids C[0] = [c1[0], c2[0], ..., ck[0]] ∈ Rd×k (k < n).

Assumption 1 is a necessary condition for the min- and
max-consensus algorithm, so that each node vj is able to
determine whether convergence has been achieved and thus
our proposed algorithm can terminate. Note, however, that
this assumption can be relaxed if we utilize the distributed
algorithm in [18] instead of Algorithm 1. The algorithm
in [18] converges to the exact real average in finite time
without requiring knowledge of the network diameter D.
Assumption 2 is a necessary condition so that each node can
calculate the updated value of the centroids without having
to communicate their real values to other nodes (because
communication is restricted to quantized values).

Remark 2. Regarding Assumption 2, previous work in [7]
ensures that one node is elected as the leader node and
propagates the real values of the centroids to every node.
Note that in our case, nodes communicate by exchanging
quantized values. Therefore, each node needs to know the
initial set of centroids in order to calculate their updated
values without the need of a leader node (which transmits
the updated value of the centroids to every node in the
network). When the initial set of centroids is known only to a
certain leader node, then the leader node can propagate the
set of centroids to every node if the initial set of centroids
comprises quantized values. Thus, after D time steps, every
node in the network will know the initial centroids and
Assumption 2 will be fulfilled.

We now describe the main operations of Algorithm 2. The
initialization involves the following steps:

Initialization. Centroid Selection and Unique Order:
Each node vj ∈ V has a quantized state xj ∈ Zd. Then, it
assigns to each of its outgoing edges a unique order.

The iteration involves the following steps:
Iteration - Step 1. Cluster Assignment and Labeled

Multidimensional Deterministic Exact Quantized Aver-
age Consensus: At each step µ, each node vj assigns its
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value xj to the nearest centroid according to (5) (since
each node knows the set of initial centroids C(0) =
[c1(0), c2(0), ..., ck(0)] ∈ Rd×k (k < n)). This means
that it sets rλj = 1 (where cλ(0) is the nearest centroid)
with respect to (3). Then, it performs k quantized average
consensus operations – each operation is done with the states
of the nodes that belong in the same cluster. Specifically,
each node vj executes k times (in parallel) Algorithm 1
in Section IV-A. Each execution is done with the nodes
{vi ∈ V | rλi = rλj = 1} (i.e., the nodes that belong in
the same cluster). In this way, each node calculates the exact
updated value of every centroid in finite time.

Iteration - Step 2. Labeled Distributed Stopping: Every
node vj performs k parallel min− and max−consensus
operations every D time steps as described in Section II.
Each operation is done with the states of the nodes that
belong in the same cluster (i.e., with nodes vi, vj for which
rλj = rλi = 1). In this way, each node is able to determine
whether convergence has been achieved and the updated set
of centroids cγ [T + 1], for every γ ∈ {1, 2, ..., k}, has been
calculated.

Iteration - Step 3. Centroid Update, Cluster Assign-
ment and Algorithm Termination: Once all k executions
of Algorithm 1 have converged, each node vj updates the
stored set of centroids. Then, it assigns its value xj to the
nearest updated centroid according to (5). It checks if the
previous centroid values are equal to the new centroid values.
If this condition holds for each node vj , the operation of the
algorithm is terminated. Otherwise, the iteration is repeated.

The flowchart for the operation of each node during
Algorithm 2 is shown in Fig. 2. In the flowchart, we can see
that initially each node assigns a unique order to its outgoing
edges and it also assigns its value to the cluster characterized
by the nearest centroid. Then, for each of the k clusters it
executes (i) “Labeled Multidimensional Deterministic Exact
Quantized Average Consensus” (shown in Algorithm 1 for
the case where we have one cluster k = 1), and (ii) “Labeled
Distributed Stopping”. This allows the calculation of the
new centroid values. Then, it checks if the previous centroid
values are equal to the new centroid values. If this condition
holds, the algorithm has converged and every node terminates
its operation. Otherwise, the process is repeated.

Next, we show that, during the operation of Algorithm 2,
each node vj is able to (i) calculate a set of centroids
c1, . . . , ck that fulfill (2) after a finite number of time steps,
and (ii) terminate its operation once convergence has been
achieved. Due to space limitations, we omit the proof of the
theorem below; it will be available in an extended version
of our paper.

Theorem 2. Consider a strongly connected digraph Gd =
(V, E) with n = |V| nodes and m = |E| edges. Each node
vj ∈ V has an initial quantized state xj ∈ Zd, and knows
the k initial clusters (where k < n) and their initial centroids
C[0] = [c1[0], c2[0], ..., ck[0]] ∈ Rd×k. During the operation
of Algorithm 2, each node vj is able to address problem
P1 in Section III-B after a finite number of time steps Ct

Start

k Exact Quantized Average Consensus

Distributed Stopping

End

New Centroid Values 

Old Centroid Values

Yes

No

k

Cluster Assignment

Calculation of k New Centroid Values

=

Unique Order Assignment

Fig. 2. Flowchart for operation of each node during Algorithm 2.

bounded by
Ct ≤ T (D + nm2), (14)

where T is the number of new centroid calculations (see
[19]) until (11) holds, and D is the diameter of network Gd.

Remark 3. In Theorem 2, the number of new centroid cal-
culations T until (11) holds is finite [19]. More specifically,
T depends on the kn ways to partition n observations into
k clusters. Since kn is finite number, we have that T is also
a finite number. As a result, the number of new centroid
calculations T is finite, and Algorithm 2 converges in finite
time (see Theorem 2). As mentioned earlier, the maximum
number of new centroid calculations is sometimes fixed to
some integer M .

V. SIMULATION RESULTS

We now present simulation results to illustrate the behavior
of Algorithm 2 over several examples.

Evaluation over a Random Network of 100 Nodes. We
execute Algorithm 2 over a random digraph of 100 nodes
with diameter D = 4. The 100 nodes are randomly placed in
a [50, 50]× [50, 50] region with uniform probability. During
the operation of Algorithm 2 we partition nodes into k = 3
clusters and calculate the centroid values that fulfill (2) in
finite time. In this case, the observations coincide with the
agent’s positions (i.e., the agents are clustered according to
their position). In Fig. 3 (A) the initial positions of the
3 centroids are marked by red, blue and green crosses,
the nodes are marked with circles, and each circle color
is the color of the nearest initial centroid (i.e., nodes are
marked red, blue, or green color). In Fig. 3 (B) we show
the trajectories of the centroids which are marked with red,
blue, or green lines according to the color of the centroid.
We can see that after T = 10 the centroid values fulfill
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Algorithm 2 Finite-Time Quantized k-means Algorithm
Input: A strongly connected digraph Gd = (V, E) with n =
|V| nodes and m = |E| edges. Each node vj ∈ V has an
initial quantized state xj ∈ Zd, and has knowledge of D.
Each node vj knows the number of clusters k < n and the
initial centroids C[0] = [c1[0], c2[0], ..., ck[0]] ∈ Rd×k.
Initialization: Each node vj sets flagj = 0 and assigns to
each of its outgoing edges vl ∈ N+

j a unique order Plj in
the set {0, 1, ...,D+

j − 1}.
Iteration: For µ = 1, 2, . . . , each node vj ∈ V , does the
following:
• while flagj = 0 then

• sets rλj = 1, where λ is such that ||xj − cλ[µ]|| ≤
||xj − cγ [µ]||, and γ ∈ {1, 2, ..., k} \ {λ};

• sets xcl
j [µ] = xj , for cl = λ, where rλj = 1, and

xcl
j [µ] = 0, for cl = {1, 2, ..., k} \ {λ};

• calls Algorithm 2.A;
• if

cγ(T + 1) = cγ(T ), for every γ ∈ {1, 2, ..., k}, (11)

then flagj = 1;
Output: (2), (3), (4) hold for every vj ∈ V .

(11). This means that the nodes are able to determine that
convergence has been achieved and thus proceed to terminate
their operation. In Fig. 4 we show the evolution of the
Distance Objective Function F (T ) defined as

F (T ) =

k∑
γ=1

∑
vj∈Cγ(T )

||xj − cγ(T )||2, (15)

for the network of Fig. 3. We can see that F [T ] is non-
increasing over time. Furthermore, we can see that F [9] =
F [10]. This means that for T = 10 the centroid values fulfill
(11) and nodes terminate their operation (see Fig. 3 (B)).

Evaluation over 1000 Random Networks of 1000
Nodes. We execute of Algorithm 2 over 1000 random
networks each consisting of 1000 nodes, with diameter
D ∈ {3, 4, 5}. During the operation of Algorithm 2, we
aim to partition nodes into k = 3 clusters. For each of
the 1000 simulations, the nodes and the centroid positions
are randomly placed in the region [100, 100] × [100, 100]
with uniform probability. We present the distribution F [T ]
of the new centroid calculations T until (11) holds for 100
simulations of Algorithm 2. Furthermore, we present the
average value F [T ] of the Distance Objective Function F [T ]
in (15), averaged over the 1000 simulations of Algorithm 2.

In Fig. 5 (A), for 1000 executions of Algorithm 2 we have
that F [T ] almost converges after 17 centroid calculations
T . Also, note that in Fig. 5 (A), F [T ] is plotted for T ∈
{1, 2, ..., 56}, where 56 is the maximum value of T for
Algorithm 2 to converge over the 1000 executions. In Fig. 5
(B), we have that the average value of T for Algorithm 2 to
converge over the 1000 executions is 17.39. The minimum
value of T is 5, and the maximum is 56 (also seen in Fig. 5

Algorithm 2.A Extended Labeled Multidimensional Deter-
ministic Quantized Average Consensus with Labeled Dis-
tributed Stopping
Input: D, T , µ, xcl

j [µ] for cl = {1, 2, ..., k}, Plj for every
vl ∈ N+

j ;
Initialization: yclj [1] = xcl

j [µ] for cl = {1, 2, ..., k};
Iteration: For µ′ = 1, 2, . . . , each node vj ∈ V , does the
following:
• while flagj = 0 then

• if µ′ mod D = 1 then sets M cl
j = xcl

j [µ
′]/zclj [µ

′],
mcl

j = xcl
j [µ

′]/zclj [µ
′], where zj [µ

′] = 1, cl =
{1, 2, ..., k};

• broadcasts M cl
j , mcl

j , cl = {1, 2, ..., k}, to every vj ∈
N+

j ;
• receives M cl

i , mcl
i from every vi ∈ N−

j , cl =
{1, 2, ..., k};

• sets M cl
j = maxvi∈N−

j ∪{vj} M cl
i , and mcl

j =

minvi∈N−
j ∪{vj} mcl

j ;
• executes Iteration Steps of Algorithm 1 for each cl =

{1, 2, ..., k} with initial state yclj [µ];
• receives zcli [µ

′], ycli [µ
′] from vi ∈ N−

j and sets

yclj [µ
′ + 1] = yclj [µ

′] +
∑

vi∈N−
j

wji[µ
′] ycli [µ

′], (12)

zclj [µ
′ + 1] = zclj [µ

′] +
∑

vi∈N−
j

wji[µ
′] zcli [µ

′], (13)

where wji[µ
′] = 1 if node vj receives a message from

vi ∈ N−
j at iteration µ′ (otherwise, wji[µ

′] = 0);
• if µ′ mod D = 0 then, if M cl

j = mcl
j , for every cl =

{1, 2, ..., k} then sets ccl[T + 1] = qs,clj [µ′] for every
cl = {1, 2, ..., k} and sets flagj = 1.

Output: ccl[T + 1] for every cl = {1, 2, ..., k}.

(A)). Furthermore, we can see that in most cases, the required
T for Algorithm 2 to converge over the 1000 executions is
in the set T ∈ {8, 9, ..., 20}.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have considered the problem of k-means
clustering over a directed network. We presented a novel
algorithm which is able to address the k-means clustering
problem in a fully distributed fashion. We showed that our
algorithm converges after a finite number of time steps, and
we provided a deterministic upper bound on convergence
time which relies on the network parameters. Finally, we
demonstrated the operation of our proposed algorithm and
compared its performance against other algorithms in the
existing literature. REFERENCES
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