
Optimal CPU Scheduling in Data Centers via
a Finite-Time Distributed Quantized Coordination Mechanism

Apostolos I. Rikos, Andreas Grammenos, Evangelia Kalyvianaki,
Christoforos N. Hadjicostis, Themistoklis Charalambous, and Karl H. Johansson

Abstract— In this paper we analyze the problem of optimal
task scheduling for data centers. Given the available resources
and tasks, we propose a fast distributed iterative algorithm,
which operates over a large scale network of nodes, and
allows each of the interconnected nodes to reach agreement
to an optimal solution in a finite number of time steps. More
specifically, the algorithm (i) is guaranteed to converge to
the exact optimal scheduling plan in a finite number of time
steps and, (ii) once the goal of task scheduling is achieved,
it exhibits distributed stopping capabilities (i.e., it allows the
nodes to distributely determine whether they can terminate
the operation of the algorithm). Furthermore, the proposed
algorithm operates exclusively with quantized values (i.e., the
information stored, processed and exchanged between neigh-
boring agents is subject to deterministic uniform quantization)
and relies on event-driven updates (e.g., to reduce energy
consumption, communication bandwidth, network congestion,
and/or processor usage). We also provide examples to illustrate
the operation, performance, and potential advantages of the
proposed algorithm. Finally, by using extensive empirical eval-
uations through simulations we show that the operation of our
proposed algorithm is suitable for large scale networks such as
data centers.

I. INTRODUCTION

Modern Clouds infrastructure comprises a network of
data centers, each containing thousands of server machines.
Resource management in data centers is the procedure of
allocating resources (e.g., CPU, memory, network bandwidth
and disk space) to workloads such that their performance
objectives are satisfied, given the available resources.

Resource allocation is inherently an optimization problem.
However, solving it as such is challenging due to the scale
and heterogeneity of the infrastructure and the dynamic
nature of resource requirements of incoming and existing
workloads. Centrally gathering all the required performance
data from thousands of servers and running workloads, and
solving the problem by a single solver is not ideal as gath-
ered data becomes obsolete by the time the optimization is
solved. For this reason, there has been recent interest towards
practical distributed schedulers for solving this problem
hierarchically. However, most of the proposed approaches
employ heuristics that solve the problem approximately; see,
e.g., [1], [2].

Recently, there has been a surge on distributed optimiza-
tion, due to the wide variety of applications requiring related
solutions, ranging from distributed estimation to machine
learning [3], [4]. Most of the works in the literature consider
distributed solutions with asymptotic convergence which
assume that the messages/quantities exchanged among nodes
in the network are real numbers and therefore converge

within some error [5]. In several practical occasions, how-
ever, the quantities exchanged, such as scheduled tasks in
CPU allocation, take discrete values. In addition, in many
applications, such as in resource management in data centers,
it is desirable to conclude the optimization in a finite number
of steps via the exchange of quantized values, so that the
exact solution is calculated and then applied.

In this paper, we focus on balancing the CPU utilization
across data center servers by carefully deciding how to allo-
cate CPU resources to workloads in a distributed fashion. We
further take into consideration that the allocated resources
take discrete (quantized) values. We propose a distributed
algorithm that solves and terminates the optimization prob-
lem in a finite number of steps using quantized values. Even
though the proposed algorithm could be adopted in a wide
variety of applications, here, we discuss it within the context
of resource management in Cloud infrastructures. The main
contributions of the paper are the following.
• We present a distributed algorithm that solves the opti-

mization problem in a finite number of time steps using
quantized values.

• We deploy a distributed stopping mechanism in order to
terminate the algorithm’s operation, and hence the dis-
tributed optimization problem, in a finite number of time
steps. This is the first distributed stopping mechanism for
quantized average consensus algorithms.

• We provide an upper bound on the number of time steps
needed for completion based on properties of primitive
matrices. The completion time depends on connectivity
(which is determined by the diameter of the network),
rather than the size of the network.

• Simulations demonstrate that the proposed algorithm is
suitable for large-scale networks, such as data centers.

Providing a distributed solution to the resource coordi-
nation problem on a strongly connected digraph has been
studied in the literature (see, e.g., [5], [6]), but for real
values and not in an optimization context. Our paper is a
major departure from the current literature which mainly
comprises distributed algorithms which operate with real
values and exhibit asymptotic convergence within some error.
Utilization of quantized values allows for more efficient
usage of network resources, while finite time convergence
allows calculation of the exact solution without any error.
Our presented algorithm combines both characteristics and
aims to pave the way for the use of fast bandwidth-efficient
finite time algorithms which operate solely with quantized

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 6276

20
21

 6
0t

h
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

37
63

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

values for solving resource allocation problems.

II. NOTATION AND PRELIMINARIES

The sets of real, rational, integer and natural numbers are
denoted byR,Q,Z andN, respectively. Symbols Z≥0 (Z>0)
denote the sets of nonnegative (positive) integer numbers,
while Z≤0 (Z<0) denote the sets of nonpositive (negative)
integer numbers. For a ∈ R, the floor bac denotes the
greatest integer less than or equal to a while the ceiling dae
denotes the least integer greater than or equal to a. Vectors
are denoted by small letters, matrices are denoted by capital
letters and the transpose of a matrix A is denoted by AT .
For a matrix A ∈ Rn×n, the entry at row i and column j is
denoted by Aij . By 1 we denote the all-ones vector and by
I we denote the identity matrix (of appropriate dimensions).

Consider a network of n (n ≥ 2) nodes communicating
only with their immediate neighbors. The communication
topology is captured by a directed graph (digraph) defined
as Gd = (V, E). In digraph Gd, V = {v1, v2, . . . , vn} is the
set of nodes, whose cardinality is denoted as n = |V| ≥ 2,
and E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of edges
(self-edges excluded) whose cardinality is denoted as m =
|E|. A directed edge from node vi to node vj is denoted
by mji , (vj , vi) ∈ E , and captures the fact that node vj
can receive information from node vi (but not the other way
around). We assume that the given digraph Gd = (V, E) is
strongly connected. This means that for each pair of nodes
vj , vi ∈ V , vj 6= vi, there exists a directed path1 from vi to
vj . The diameter D of a digraph is the longest shortest path
between any two nodes vj , vi ∈ V in the network. The subset
of nodes that can directly transmit information to node vj is
called the set of in-neighbors of vj and is represented by
N−j = {vi ∈ V | (vj , vi) ∈ E}. The cardinality of N−j is
called the in-degree of vj and is denoted by D−j . The subset
of nodes that can directly receive information from node vj
is called the set of out-neighbors of vj and is represented by
N+
j = {vl ∈ V | (vl, vj) ∈ E}. The cardinality of N+

j is
called the out-degree of vj and is denoted by D+

j .

Data Center and Workload Modelling

We model a data center as a set V of server compute nodes,
each denoted by vi ∈ V , which also operate as resource
schedulers; this is standard practice in modern data centers.
All participating schedulers are usually interconnected with
undirected communication links and, thus, the network topol-
ogy forms a connected undirected graph. Nevertheless, our
results are suitable for digraphs as well and, for this reason,
hereafter we consider digraphs.

A job is defined as a group of tasks, and J denotes
the set of all jobs to be scheduled. Each job bj ∈ J ,
j ∈ {1, . . . , |J |}, requires ρj cycles to be executed. The
estimated amount of resources (i.e., CPU cycles) needed for
each job is assumed to be known before the optimization
starts. A job task could require resources ranging from 1

1A directed path from vi to vj exists if we can find a sequence of
nodes vi ≡ vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1

, vlτ) ∈ E for τ =
0, 1, . . . , t− 1.

to ρj cycles, and the total sum of resources for all tasks
of the same job is equal to ρj cycles. The total workload
due to the jobs arriving at node vi is denoted by li. The
time horizon Th is defined as the time period for which
the optimization is considering the jobs to be running on
the server nodes, before the next optimization decides the
next allocation of resources. Hence, in this setting, the CPU
capacity of each node, considered during the optimization,
is computed as πmax

i := ciTh, where ci is the sum of
all clock rate frequencies of all processing cores of node
vi given in cycles/second. The CPU availability for node
vi at optimization step m (i.e., at time mTh) is given by
πavail
i [m] := πmax

i − ui[m], where ui[k] is the number
of unavailable/occupied cycles due to predicted or known
utilization from already running tasks on the server over the
time horizon Th at step m.

Assumption 1. We assume that the time horizon is cho-
sen such that the total amount of resources demanded
at a specific optimization step m, denoted by ρ[m] :=∑
bj [m]∈J [m] ρj [m], is smaller than the total capacity of the

network available, given by πavail[m] :=
∑
vi∈V π

avail
i [m],

i.e., ρ[m] ≤ πavail[m].

This assumption indicates that there is no more demand
than the available resources. This assumption is realistic,
since the time horizon Th can be chosen appropriately to
fulfill the requirement. In case this assumption is violated, the
solution will be that all resources are being used and some
workloads will not be scheduled, due to lack of resources,
but how to handle this is out of the scope of this paper.

III. PROBLEM FORMULATION

Consider a network Gd = (V, E). Each one of the n = |V|
nodes is endowed with a scalar quadratic local cost function
fi : R

n 7→ R. In most cases [4], [7] a quadratic cost function
of the following form is considered:

fi(z) =
1

2
αi(z − ρi)2, (1)

where αi > 0, ρi ∈ R is the demand in node vi (and in our
case is a positive real number) and z is a global optimization
parameter that will determine the workload at each node.

The global cost function is the sum of the local cost
functions fi : Rn 7→ R (shown in (1)) of every node vi ∈ V .
The main goal of the nodes is to allocate the jobs in order
to minimize the global cost function

z∗ = argmin
z∈Z

∑
vi∈V

fi(z), (2)

where Z is the set of feasible values of parameter z.
Optimization problem (2) can be solved in closed form and
z∗ is given by

z∗ =

∑
vi∈V αiρi∑
vi∈V αi

. (3)

Note that if αi = 1 for all vi ∈ V , the solution is the average.
Nodes require to calculate the optimal solution at every

optimization step m via a distributed coordination algorithm

6277

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

which relies on the exchange of quantized values and con-
verges after a finite number of time steps. The proposed
algorithm allows all nodes to balance their CPU utilization
(i.e., the same percentage of capacity) during the execution
of the tasks, i.e.,

w∗i [m] + ui[m]

πmax
i

=
w∗j [m] + uj [m]

πmax
j

(4)

=
ρ[m] + utot[m]

πmax
, ∀vi, vj ∈ V,

where w∗i [m] is the optimal workload to be added to server
node vi at optimization step m, πmax :=

∑
vi∈V π

max
i and

utot[m] =
∑
vi∈V ui[m]. For simplicity of exposition, and

since we consider a single optimization step, we drop index
m. To achieve the requirement set in (4), we need the solution
(according to (3)) to be [8]

z∗ =

∑
vi∈V π

max
i

ρi+ui
πmax
i∑

vi∈V π
max
i

=
ρ+ utot
πmax

. (5)

Hence, we modify (1) accordingly. Then, the cost function
fi(z) in (1) is given by

fi(z) =
1

2
πmax
i

(
z − ρi + ui

πmax
i

)2

. (6)

In other words, each node computes its proportion of work-
load and from that it is able to find the workload w∗i to
receive, i.e.,

w∗i =
ρ+ utot
πmax

πmax
i − ui. (7)

The solution should be found in a distributed way. Specif-
ically, we aim at developing a distributed coordination algo-
rithm to find the solution via the exchange of information
only between neighboring nodes. The algorithm should rely
on processing and transmitting of quantized information
while its operation should exhibit finite time convergence.

IV. PRELIMINARIES ON DISTRIBUTED COORDINATION

A. Quantized Average Consensus

The objective of quantized average consensus problems is
the development of distributed algorithms which allow nodes
to process and transmit quantized information. During their
operation, each node utilizes short communication packages
and eventually obtains a state qs which is equal to the largest
quantized value (but not greater) or the smallest quantized
value (but not lower) of the real average q of the initial
quantized states, after a finite number of time steps.

In this paper we consider that quantized values are rep-
resented by integer2 numbers. This means that each node is
able to obtain a state qs which is equal to the ceiling dqe
or the floor bqc of the real average q of the initial quantized
states of the nodes, after a finite number of time steps.

Since each node processes and transmits quantized in-
formation, we adopt the algorithm in [9]. Specifically, the

2We assume that the state of each node is integer valued. This abstraction
subsumes a class of quantization effects (e.g., uniform quantization).

algorithm in [9] is preliminary for our results in this paper
and during its operation, each node is able to achieve
quantized average consensus after a finite number of time
steps. We make the following assumption which is necessary
for the operation of the algorithm in [9] as well as the
operation of our proposed algorithm in this paper. More
specifically, Assumption 2 below is a necessary condition for
each node vj to be able to calculate the quantized average
of the initial values after a finite number of time steps.

Assumption 2. The communication topology is modeled as
a strongly connected digraph.

The operation of the algorithm presented in [9], assumes
that each node vj in the network has an integer initial state
yj [0] ∈ Z. At each time step k, each node vj ∈ V maintains
its mass variables yj [k] ∈ Z and zj [k] ∈ Z≥0, and its state
variables ysj [k] ∈ Z, zsj [k] ∈ N and qsj [k] = dy

s
j [k]

zsj [k]
e. It

updates the values of the mass variables as

yj [k + 1] = yj [k] +
∑

vi∈N−
j

1ji[k]yi[k], (8a)

zj [k + 1] = zj [k] +
∑

vi∈N−
j

1ji[k]zi[k], (8b)

where 1ji[k] = 1, if a message is received at vj from vi at
k (otherwise, of no message is received, 1ji[k] = 1).
If the following event-triggered condition holds:
(C1): zj [k] > 1 ,
then, node vj updates its state variables as follows:

zsj [k + 1] = zj [k + 1], (9a)

ysj [k + 1] = yj [k + 1], (9b)

qsj [k + 1] =
⌈ysj [k]
zsj [k]

⌉
. (9c)

Then, it splits yj [k] into zj [k] equal integer pieces (with
the exception of some pieces whose value might be greater
than others by one). It chooses one piece with minimum
y-value and transmits it to itself, and it transmits each of
the remaining zj [k] − 1 pieces to randomly selected out-
neighbors or to itself. Finally, it receives yi[k] and zi[k] from
its in-neighbors, sums them with its stored yj [k] and zj [k]
values (as described in (8a), (8b)) and repeats the operation.

Definition 1. The system is able to achieve quantized aver-
age consensus if, for every vj ∈ V , there exists k0 ∈ Z+ so
that for every vj ∈ V we have

(qsj [k] = bqc for k ≥ k0) or (qsj [k] = dqe for k ≥ k0),
(10)

where q is the real average of the initial states defined as:

q =

∑n
l=1 yl[0]

n
. (11)

The following result from [9] provides an upper bound
regarding the number of time steps required for quantized
average consensus to be achieved.

6278

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

Theorem 1 ([9]). The iterations in (8) and (9) allow the
set of nodes to reach quantized average consensus (i.e., state
variable qsj of each node vj ∈ V fulfils (10)) after a finite
number of steps. Specifically, for any ε, where 0 < ε < 1,
there exists k0 ∈ Z+, so that with probability (1−ε)(yinit+n)
we have (qsj [k] = bqc for k ≥ k0) or (qsj [k] = dqe for k ≥
k0), for every vj ∈ V , where q fulfills (11) and

yinit =
∑

{vj∈V:yj [0]>dqe}

(yj [0]− dqe) +∑
{vj∈V:yj [0]<bqc}

(bqc − yj [0]). (12)

B. Synchronous max/min - Consensus

The max-consensus algorithm computes the maximum
value of the network in a finite number of time steps in
a distributed fashion [10]. If the updates of the nodes’ state
variables are synchronous, then the update rule for every
node vj ∈ V is:

xj [k + 1] = max
vi∈N−

j ∪{vj}
{xi[k]}. (13)

It has been shown (see, e.g., [11, Theorem 5.4]) that the
max-consensus algorithm converges to the maximum value
among all nodes’ initial values (i.e., to max{xi[0]}) in a
finite number of steps s, where s ≤ D (D is the diameter
of the communication topology). Similar results hold for the
min-consensus algorithm.

V. QUANTIZED CPU SCHEDULING ALGORITHM

In this section we propose a distributed quantized in-
formation exchange algorithm which solves the problem
described in Section III. The proposed algorithm is detailed
as Algorithm 1 below. Algorithm 1 allows each node vj to
calculate the optimal required workload w∗j shown in (7),
after a finite number of time steps. For solving the problem
in a distributed way we make the following two assumptions.

Assumption 3. The diameter of the network D (or an upper
bound D′) is known to all server nodes vj ∈ V .

Assumption 4. Each server node vj ∈ V has knowledge
of an upper bound πupper regarding the total capacity of
the network πmax (i.e., πupper ≥ πmax, where πmax :=∑
vj∈V π

max
j).

Assumption 3 is necessary for coordinating the min- and
max-consensus algorithm, such that each node vj is able to
determine whether convergence has been achieved and thus
the operation of our algorithm needs to be terminated.

Assumption 4 is made such that our proposed algorithm
allows each node vj to calculate the correct optimal required
workload w∗j in a finite number of time steps via exchanging
quantized information with its neighbors. Specifically, each
node vj needs to know πupper (where πupper ≥ πmax)
in order to multiply its initial value yj [0] with πupper so
that yj [0] > zj [0] (here zj [0] is a variable used by node
vj to process the value of yj [0] as it will be seen later in
the proposed algorithm). Guaranteeing that yj [0] > zj [0] is

necessary during the operation of our algorithm, so that each
node vj is able to split yj [k] into zj [k] equal integer pieces
(or with maximum difference between them equal to 1) at
every time step k ∈ N.

Remark 1. It is interesting to note here that Algorithm 1
is based on similar principles as the algorithm presented in
[12], which executes the ratio-consensus algorithm [13] (see
also [14]) along with min− and max−consensus iterations
[10]. Specifically, during the operation in [13], each node
maintains two real valued variables and updates them by
executing two parallel iterations. Then, each node is able to
calculate the real average of the initial states asymptotically
as the ratio of these two variables. Furthermore, by per-
forming min- and max-consensus [10] every D time steps,
each node is able to determine during which time step k0 its
state is within ε to the state of every other node (i.e., their
difference is less or equal to ε). Overall, [12] allowed the
nodes in the network to calculate the real average of their
initial states and then terminate their operation according
to a distributed stopping criterion. Nevertheless, compared
to [12], Algorithm 1 has significant differences due to its
quantized nature. These differences mainly focus on (i) the
underlying process for calculating the quantized average of
the initial states via the exchange of quantized messages, and
(ii) the distributed stopping mechanism designed explicitly
for quantized information exchange algorithms. Specifically,
during the operation of Algorithm 1, the underlying process
for calculating the quantized average of the initial states
is based on [9]. This means that each node maintains two
integer valued variables and updates them by executing two
parallel iterations, where it splits them into integer equal
pieces (or with maximum difference equal to 1) and transmits
them to randomly chosen out-neighbors. Then, each node
calculates the quantized average of the initial states in a
finite number of time steps as the ceiling of the ratio of
these two variables. Furthermore, the distributed stopping
mechanism is based on performing min- and max-consensus
every D time steps, where the min- and max-values are
initialized as the floor and the ceiling of the ratio of the two
integer valued variables it maintains. The min- and max-
consensus converges once the min-values are within 1 of
the max-values (i.e., their difference is less or equal to 1)
which means that the state of every node is within 1 to the
state of every other node. As a result, Algorithm 1 allows
the nodes to calculate the quantized average of the initial
states and, by utilizing the distributed stopping mechanism,
to determine whether convergence has been achieved, and,
thus whether the operation can be terminated.

Next, we show that, during the operation of Algorithm 1,
each node vj is able to (i) calculate the optimal required
workload w∗j (shown in (7)) after a finite number of time
steps, and (ii) after calculating w∗j terminate its operation.
Due to space limitations, we do not provide the proof for
the theorem below.

Theorem 2. Consider a strongly connected digraph Gd =

6279

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Quantized CPU Scheduling Algorithm
Input: A strongly connected digraph Gd = (V, E) with
n = |V| nodes and m = |E| edges. Each node vj ∈ V
has knowledge of lj , uj , D, πupper, πmax

j ∈ Z.
Initialization: Each node vj ∈ V does the following:
1) Assigns a nonzero probability blj to each of its outgoing

edges mlj , where vl ∈ N+
j ∪ {vj}, as follows

blj =

{
1

1+D+
j

, if l = j or vl ∈ N+
j ,

0, if l 6= j and vl /∈ N+
j .

2) Sets yj [0] := πupper(lj + uj), zj [0] = πmax
j , and flagj =

0.
Iteration: For k = 1, 2, . . . , each node vj ∈ V , does the
following:
• while flagj = 0 then
1) if k mod D = 1 then sets Mj = dyj [k]/zj [k]e, mj =
byj [k]/zj [k]c;

2) broadcasts Mj , mj to every vl ∈ N+
j ;

3) receives Mi, mi from every vi ∈ N−j ;
4) sets Mj = maxvi∈N−

j ∪{vj}
Mi, mj =

minvi∈N−
j ∪{vj}

mi;

5) if zj [k] > 1, then
5.1) sets zsj [k] = zj [k], ysj [k] = yj [k], qsj [k] =⌈

ysj [k]

zsj [k]

⌉
;

5.2) sets (i) masy[k] = yj [k], masz[k] = zj [k]; (ii)
cylj [k] = 0, czlj [k] = 0, for every vl ∈ N+

j ∪ {vj};
(iii) δ = bmasy[k]/masz[k]c, masrem[k] = yj [k]−
δ masz[k];

5.3) while masz[k] > 1, then
5.3a) chooses vl ∈ N+

j ∪ {vj} randomly according
to blj ;

5.3b) sets (i) czlj [k] := czlj [k] + 1, cylj [k] := cylj [k] +
δ; (ii) masz[k] := masz[k] − 1, masy[k] :=
masy[k]− δ.

5.3c) If masrem[k] > 1, sets cylj [k] := cylj [k] + 1,
masrem[k] := masrem[k]− 1;

5.4) sets cyjj [k] := cyjj [k]+mas
y[k], czjj [k] := czjj [k]+

masz[k];
5.5) for every vl ∈ N+

j , if czlj [k] > 0 transmits cylj [k],
czlj [k] to out-neighbor vl;

• else if zj [k] ≤ 1, sets cyjj [k] = y[k], czjj [k] = z[k];
6) receives cyji[k], c

z
ji[k] from vi ∈ N−j and sets

yj [k + 1] = cyjj [k] +
∑

vi∈N−
j

wji[k] c
y
ji[k], (14)

zj [k + 1] = czjj [k] +
∑

vi∈N−
j

wji[k] c
z
ji[k], (15)

where wji[k] = 1 if node vj receives cyji[k], c
z
ji[k] from

vi ∈ N−j at iteration k (otherwise wji[k] = 0);
7) if k mod D = 0 then, if Mj − mj ≤ 1 then sets

w∗j = dqsj [k](πmax
j /πupper)e and flagj = 1.

Output: (4) holds for every vj ∈ V .

(V, E) with n = |V| nodes and m = |E| edges and yj [0] =
πupper(lj + uj), zj [0] = πmax

j where lj , uj , πupper, πmax
j ∈

N for every node vj ∈ V at time step k = 0. Suppose that
each node vj ∈ V follows the Initialization and Iteration
steps as described in Algorithm 1. For any ε, where 0 <
ε < 1, there exists k0 ∈ N, so that for each node vj it holds

w∗j = dqtasks(πmax
j /πupper)e = ρ+ utot

πmax
πmax
j − uj ,

with probability (1− ε)(yinit+n) where

qtasks = πupper

∑
vj∈V(lj + uj)∑
vj∈V π

max
j

, (16)

and

yinit =
∑

{vj∈V:yj [0]>dqtaskse}

(yj [0]− dqtaskse) +∑
{vj∈V:yj [0]<bqtasksc}

(bqtasksc − yj [0]), (17)

is the total initial state error (i.e., yinit is the sum of the
differences between (i) the value dqtaskse and the initial state
yj [0] of each node vj that has an initial state higher than
the ceiling of qtasks and (ii) the value bqtasksc and the initial
state yj [0] of each node vj that has an initial state less than
the floor of qtasks).

This means that each node vj is able to (i) calculate the
optimal required workload w∗j (shown in (7)) after a finite
number of time steps k0 with probability (1−ε)(yinit+n) and
(ii) after calculating w∗j , terminate its operation.

VI. SIMULATION RESULTS

In this section, we present simulation results to illustrate
the behavior of our proposed distributed algorithm. In the
first part, we present a random graph of 200 nodes and show
how the states of the nodes converge. In the second part,
we present a more quantitative analysis over a larger set of
network sizes which would be more applicable to practical
deployments, such as in modern data-centers. To the best of
our knowledge, this is the first work that tries to tackle the
problem of converging using quantized values at that scale
while also providing a thorough evaluation accompanied with
strong theoretical guarantees. To foster reproducibility, code,
datasets, and experiments will be made publicly available3.

Evaluation over a Small Scale Network. Here, we
present how the states of the nodes converge during the
iteration. The network in this example comprised 200 nodes
and was randomly generated (an edge between a pair of
nodes exists with probability 0.5). This process resulted in a
digraph that had a diameter equal to 2. Small digraph diame-
ters are indicative on data-center topologies and are normally
preferred due to their locality and the benefit of having few
hops between each node [15]. The upper bound πupper of the
total capacity is 1000 and the workload lj of each node vj

3https://github.com/andylamp/
federated-quantized-ratio-consensus

6280

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Execution of Algorithm 1 over a random network comprised of
200 nodes having a diameter equal to 2. We see that the network converges
in less than 10 iterations while having no oscillations.

20 50 100 200 400 600 100
0

200
0

500
0

100
00

10

20

30

40
Iterations

Fig. 2. Required iterations for convergence of different network sizes during
the operation of Algorithm 1 along with their error bars. Each network size
is evaluated across 50 trials and the aggregated values were averaged out.

was generated using a random distribution uniformly picked
within the range [1, 100]. The node capacities πmax

j in this
experiment were set to either 100 or 300 for even and odd
node numbers respectively. Our simulation results are shown
in Fig. 1, which depicts the load per node according to its
processing capacity. We can see that the network converges
monotonically within a few iterations without being affected
by value oscillations or ambiguities.

Data Center Scale Evaluation. Our previous analysis
dealt with a quantitative example showing the weights for
all nodes involved across all iterations. Here, we present
a large scale evaluation of networks over a wide gamut
of sizes. Concretely, we evaluate our proposed scheme on
networks sized from 20 nodes up to 10000 nodes. The
topologies are randomly generated and result in digraphs that
have a diameter from 2 to 10. As we previously mentioned,
such digraph diameters are indicative of practical data-center
deployments. We evaluated each network size across 50 trials
and the aggregated values were averaged out before plotting.
The upper bound of the total capacity πupper for all trials was
set to 1000 and the workloads were generated similarly to
the previous example. We present the iterations required for
all of these networks to converge; these results are shown
in Fig. 2. We can see that across all network sizes our
scheme required less than 40 iterations to converge. Another
observation is that as network sizes grow, the number of
iterations to converge drops.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have considered the problem of optimal
task scheduling for data centers. We proposed a fast dis-
tributed iterative algorithm which operates over a large scale
network and allows each of the interconnected nodes to reach
agreement in a finite number of time steps. In the context of
task scheduling, we showed that our algorithm converges to
the exact optimal scheduling plan in a finite number of time
steps and then it exhibits its distributed stopping capability.
Furthermore, the operation of our algorithm is event-based
and relies on the exchange of quantized values between
nodes in the network. Finally, we have demonstrated the
performance of our algorithm shown it’s fast convergence.

REFERENCES

[1] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM, 2019, pp. 270–288.

[2] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in Proceedings of 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014, pp. 285–300.

[3] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of IEEE, vol. 106, no. 5, pp. 953–976, 2018.

[4] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278–305, 2019.

[5] A. D. Domı́nguez-Garcı́a and C. N. Hadjicostis, “Distributed resource
coordination in networked systems described by digraphs,” Systems &
Control Letters, vol. 82, pp. 33–39, 2015.

[6] T. Charalambous, E. Kalyvianaki, C. N. Hadjicostis, and M. Johans-
son, “Distributed offline load balancing in MapReduce networks,”
in Proceedings of 52nd IEEE Annual Conference on Decision and
Control (CDC), Dec 2013, pp. 835–840.

[7] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Third International Symposium on Information Processing
in Sensor Networks, April 2004, pp. 20–27.

[8] A. Grammenos, T. Charalambous, and E. Kalyvianaki, “CPU schedul-
ing in data centers using asynchronous finite-time distributed coordi-
nation mechanisms,” arXiv preprint arXiv:2101.06139, 2020.

[9] A. I. Rikos, C. N. Hadjicostis, and K. H. Johansson, “Fast quantized
average consensus over static and dynamic directed graphs,” arXiv
preprint arXiv:2103.05172, 2021.

[10] J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, pp. 726–737, March 2008.

[11] S. Giannini, D. Di Paola, A. Petitti, and A. Rizzo, “On the conver-
gence of the max-consensus protocol with asynchronous updates,” in
Proceedings of IEEE Conference on Decision and Control (CDC),
2013, pp. 2605–2610.

[12] S. T. Cady, A. D. Domı́nguez-Garcı́a, and C. N. Hadjicostis, “Finite-
time approximate consensus and its application to distributed fre-
quency regulation in islanded AC microgrids,” in Proceedings of
Hawaii International Conference on System Sciences, 2015, pp. 2664–
2670.

[13] A. D. Domı́nguez-Garcı́a and C. N. Hadjicostis, “Coordination and
control of distributed energy resources for provision of ancillary
services,” in Proceedings of the First IEEE International Conference
on Smart Grid Communications, 2010, pp. 537–542.

[14] M. Prakash, S. Talukdar, S. Attree, V. Yadav, and M. V. Salapaka,
“Distributed stopping criterion for consensus in the presence of
delays,” IEEE Transactions on Control of Network Systems, vol. 7,
no. 1, pp. 85–95, 2020.

[15] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter net-
work topology,” in Proceedings of the IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 348–359.

6281

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:18:14 UTC from IEEE Xplore. Restrictions apply.

