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Abstract— This paper studies synchronization of a network
of hybrid quadratic integrate-and-fire spiking neurons commu-
nicating over a complete graph and interconnected by means
of bidirectional electrical couplings. Synchronization of the
network of identical neurons with a common and constant
coupling strength is studied using a Lyapunov-based argument
for sufficiently large coupling strength. In addition, a voltage-
dependent coupling law is proposed. It is assumed that each
neuron is coupled to each of its neighbors by a coupling law
which depends on the voltage of its neighboring neuron. For
the voltage-dependent case, a sufficient condition for synchro-
nization of two interconnected neurons is presented. Moreover,
a comparison between the two mechanisms is given. Simulation
results are provided to verify the theoretical analysis.

I. INTRODUCTION

Oscillation is the fundamental function behind the oper-
ation of many complex networks, including biological and
neural networks. An important feature of neural networks is
the synchronized operation. Among factors which play a role
in neuronal synchronization is the type of interconnections,
i.e. chemical and electrical synaptic interactions [13]. Elec-
trical synapses allow bidirectional interconnection between
neurons. The role of these synaptic interconnections, which
also exist in the mammalian brain [1], in synchronization
of neural activities have been verified by experiments and
analytically. Although electrical couplings do not exist alone
between neurons, studying the effects of bidirectional cou-
plings contribute to understanding of neural behaviors [12].

Neural behavior has been mainly studied (e.g. [3], [7])
using conductance-based models which are derived from the
Hodgkin and Huxley model [6]. The quadratic integrate-and-
fire neuron model ( [4], [7]) is a reduced model to represent
the detailed dynamics of any type I [7] conductance-based
model near the onset of firing [12]. Synchronization of pulse
coupled quadratic integrate-and-fire neurons has been studied
in [11]. In this setting, each neuron, after firing, sends a pulse
to its neighboring neurons which instantaneously adds a con-
stant value to the state of the neighboring neuron. The results
of [11] has shown a dichotomic collective behavior (either
slow or fast firing) for quadratic integrate-and-fire neurons
under an average monotonicity property. The stability of
the asynchronous state for a network of identical quadratic
integrate-and-fire neurons with symmetric electrical synapses
in a fully connected network was studied in [12]. The
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analysis has been performed using a model of phase-coupled
oscillators where phases represent the temporal deviation of
voltage trajectories from each other.

This paper studies synchronization of a network of
quadratic integrate-and-fire neurons interconnected by bidi-
rectional electrical couplings (electrical synapses). Consid-
ering the hybrid dynamics of each neuron, which is com-
posed of a continuous-time evolution together with a dis-
crete transition of states, the analysis of such a network is
challenging. To achieve synchronization, we first present a
sufficient condition to bring the maximum relative voltage
to a sufficiently small value before the neuron with the
maximum voltage spikes. Second, we propose an asymmetric
interconnection law such that the coupling of each neuron
to each of its neighbors is weighted by the voltage of the
neighboring neuron. This asymmetric and dynamic coupling
law interconnects each two neurons by injecting a larger
coupling current to the neuron whose voltage level is smaller.
We provide a comparison between these two mechanisms.
Moreover, a sufficient coupling condition (a lower bound)
for achieving asymptotic synchronization is presented for a
network of two neurons coupled via the voltage-dependent
law.
To the best of our knowledge, voltage-dependent coupling
and its effects on the synchronization behavior of quadratic
integrate-and-fire spiking neurons have not been studied
before.
This paper is organized as follows. Section II presents pre-
liminaries and the problem formulation. Section III studies
synchronization in a complete graph with common and
constant coupling strength. Synchronization in a voltage-
dependent network is presented in Section IV. Section V
presents simulation results and Section VI concludes the
paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section first recalls preliminaries including the
quadratic integrate-and-fire model. We then continue with
presenting the problem statement.

A. Preliminaries

For a connected undirected graph G(N , E), the node-set
N corresponds to n nodes and the edge-set E ⊂ N × N
corresponds to m edges. An undirected graph is called
complete if there is an edge between each two nodes. The
notation Ni denotes the set of neighboring nodes of node i.

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 4711



Quadratic integrate-and-fire spiking neuron

The quadratic integrate-and-fire neuron is used as a re-
duced model of the detailed sub-threshold dynamics of a
large class of neurons near the onset of periodic firing [4],
[5]. The model obeys

c ˙̄vi = κ(v̄i − V ∗)2 + Īext − Ic + Inoise,

if v̄i ≥ V̄ T , then v̄i ← V̄ r < V ∗,
(1)

where v̄i ∈ R is the membrane potential of neuron i, c
is the membrane capacitance, V̄ r < V ∗, VT , and V ∗ are
constant and represent the resting, instantaneous threshold,
and desired potentials respectively. The parameter κ > 0 is a
constant, Īext, and Inoise are the external and noise currents
and Ic is a constant current. It is assumed that if v̄i grows
to V̄ T , a mechanism is resetting v̄i to V̄ r.

B. Network model and Problem formulation

We consider an undirected and complete graph to model
the underlying interconnection topology of a network of
neurons modeled as quadratic integrate-and-fire spiking neu-
rons and coupled via electrical synapses. Following [12],
we rewrite (1) in terms of dimensionless variables vi =
κ
c τ(v̄i − V ∗), Iext = κ

c2 Īextτ
2, VT = κτ

c (V̄ T − V ∗) and
Vr = κτ

c (V̄ r − V ∗). We also assume that Inoise = 0 and
Īext − Ic = Iext > 0. Then, each neuron dynamics follows

τ v̇i = v2
i + Iext + Iis,

if vi ≥ VT , then vi ← −Vr,
(2)

where Iis = g(vi − vj) is the synaptic current, τ > 0 is a
time-constant and 0 ≤ Vr < VT . Without loss of generality,
we assume τ = 1 in the rest of the paper.
Since the voltage of each neuron by reaching to VT level
is reset to −Vr, each neuron has a hybrid dynamics. The
network dynamics is represented by the following hybrid
system

v̇i = v2
i − g

∑
j∈Ni

(vi − vj) + Iext,∀i ∈ N ,

if ∃ vi ≥ VT , then v+
i = −Vr, v+

j = vj .

(3)

Our goal is to study relations between the model parameters
and the coupling gain g on synchronization, i.e. simultaneous
spiking [11], of the network with undirected and complete
underlying topology and the node dynamics as in (3).

III. SYNCHRONIZATION WITH COMMON AND CONSTANT
COUPLING

In this section, we study the network described in Section
II assuming a constant and common coupling strength. All
neurons are assumed to have identical VT , Vr and exogenous
current Iext. Considering identical neurons, the only factor
which affect the synchronized behavior is the differences in
the initial conditions.

Assumption 1 The threshold voltages, VT and −Vr, and
external currents, Iext > 0 are identical for all neurons.
Moreover, Vr < VT and vi(0) ∈ [−Vr, VT ).

Example 1 (Two interconnected neurons) As an exam-
ple, let us first consider a network composed of two neurons
and take V = |v1 − v2| as the Lyapunov function candidate.
Calculating V̇ during [t0, t1), where t1 is the time at which
the maximum voltage reaches VT , we obtain

V̇ = |v1 − v2|(v1 + v2 − 2g), t ∈ [t0, t1). (4)

The above derivative is always negative if v1+v2 < 2g holds
for all t ∈ [t0, t1). Since, each vi takes a value between −Vr
to VT , then V̇ < 0 if g > VT holds.
The above implies that if g is sufficiently large, then the
error dynamics dissipates energy and the maximum relative
voltage is exponentially decreasing in the interval [t0, t1).
However, this does not guarantee synchronization [11]. We
discuss as follows. In the above example, assume that
v1(0) > v2(0). Denote the time at which v1(t) reaches
the threshold voltage VT by t1 and the relative voltage by
δ1v = v1−v2.At time t1, v1 is updated to −Vr. The behavior
of v2 depends on the sign of v̇2(tk) = (VT − δ1v)2 + Iext−
g(VT − δ1v + Vr).
Case I: v̇2(tk) > 0 (e.g. small g). In this case, after the rest
of v1, v2 still continues to grow. Depending on the size of
v̇2(tk) > 0, it could grow till reaching VT . Therefore, neuron
v2 spikes after t1. The upper bound of t2 − t1 depends on
δ1v, Iext and g.
Case II: With large g and if v̇2(tk) < 0, then the coupling
g is big enough to make v2 moves towards v1. In this case,
the dynamics between [0, t1) will be repeated in the interval
[t1, t2) with the difference that now v2 is the maximum
trajectory. Hence, after δ2v = v2 − v1 is small enough and
hence the derivative of v̇2 will be positive despite the large
coupling term, v2 reaches VT and spikes.
In both cases, with a sufficiently small relative voltage
synchronization can be achieved.

A. Synchronization of n interconnected neurons

From Example 1, if g is sufficiently large, then the
error dynamics dissipates energy and the maximum relative
voltage is exponentially decreasing in any interval [tk, tk+1].
Thus, the trajectories of the system can be brought suf-
ficiently close to each other before the neuron with the
maximum voltage spikes. This allows synchronization [10].

In what follows, we present a sufficient condition on g to
guarantee exponential stability of the network during contin-
uous evolution. Then we prove absence of Zeno behavior and
show that the trajectories keep order during the continuous
flow. Thereafter, we formulate a trade off between VT , Iext, g
and the initial conditions in order to bring voltage trajectories
to ε closeness before the maximum neuron spikes.

Lemma 1 Denote the time at which 1 ≤ m ≤ n neurons
reach VT by tk. The time interval between each two con-
secutive updates, i.e., tk+1 − tk, of the state of each neuron
with dynamics in (3) is bounded from below.

Proof: Considering the finite number of neurons, at
each jump (update) the number of updated states is smaller
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Fig. 1. The growth of the trajectory of the maximum voltage versus the
decay of the maximum relative voltage.

or equal to the number of all nodes n. Since the depth VT+Vr
is always positive, the voltage corresponding to each neuron
should evolve from vi(t

k) < VT to VT with a bounded
velocity smaller than v2

T + Iext + g(n − 1)∆v
max , where

∆v
max < VT + Vr denotes the maximum relative voltage.

Hence, the interval between any two jumps is bounded with
δt ≥ (VT−max{vi(tk)})

V 2
T +Iext+g(n−1)(VT +Vr)

. Notice that at each jump, more
than one neuron can be updated simultaneously [8], since the
number of nodes is finite, the network dynamics will evolve
after the update.

Lemma 2 For the network modeled in (3), assume that
ng > 2VT . If vi(tk)− vj(tk) ≥ 0 holds for each two nodes
i, j at tk, then vi(t)− vj(t) ≥ 0 holds for ∀t ∈ [tk, tk+1).

Proof: Consider vi(t
k) − vj(t

k) ≥ 0, writing the
derivative of the difference gives

v̇i(t)− v̇j(t) = (vi(t)− vj(t))(vi(t) + vj(t)− ng).

To have vi(t) < vj(t), the error dynamics should cross
zero which is an stable equilibrium (for example take V =
(vi−vj)2 as the Lyapunov function candidate) for the above
dynamics if ng > 2VT (since vi ∈ [−Vr, VT )) which ends
the proof.
As shown in Lemma 1, the relative voltage dynamics is
independent of the exogenous current Iext. On the other
hand, the speed of spiking depends on Iext. Hence, in
order to achieve a small enough error for relative voltage
before the maximum neuron spikes, there should be a trade
off between the speed of decay of relative voltages and
the speed of growth of the maximum trajectory for the
given initial conditions. Figure III-A shows the plot of the
maximum relative voltage error together with the growth of
the maximum voltage trajectory related to one neuron. The
following result present a relation between g, Iext, VT , Vr and
the initial conditions.

Proposition 1 For the network with node dynamics as in

(3), if the following condition holds

ln(vmax(tk)−vmin(tk)
ε )

ng − 2VT
<

1√
Iext

[tan−1(
VT√
Iext

)− tan−1(
vmax(0)√
Iext

)]

(5)
then the maximum relative voltage within the time inter-
val [tk, tk+1) decreases to ε, where ε is a design choice,
vmax(tk) = maxi vi(t = tk), and vmin(tk) = maxi vi(t =
tk).

Proof: Take V = max{|vi−vj ||(i, j) ∈ {1, . . . , n}} as
the Lyapunov function function candidate. Notice that, based
on Lemma 2, if vi(tk) ≥ vj(tk+1) holds, then vi(t) ≥ vj(t)
holds for t ∈ [tk, tk+1). Thus, |vi− vj | = vi− vj . Since our
Lyapunov function candidate is not necessarily continuously
differentiable due to the max operator, we consider its upper
Dini derivative D+V (see [2]) along solutions of (3) for
t ∈ [tk, tk+1). Hence, D+V = max(v̇i − v̇j). Since the
graph is complete, the nodes with maximum (minimum)
initial voltage, have identical voltage level, we denote the
maximum and minimum levels by vmax and vmin respec-
tively. Calculating the latter during [tk, tk+1) where tk+1 is
the time at which the maximum voltage trajectory reaches
VT (considering the initial times, t0 = 0 and t1 is the time
at which the first neuron spikes), we obtain

V̇ = (vmax − vmin)(vmax + vmin − ng), t ∈ [tk, tk+1),

= (vmax + vmin − ng)V, t ∈ [tk, tk+1).
(6)

The above derivative is negative if max(vi+vj) < ng holds.
Since, each vi takes a value between −Vr to VT , then V̇ < 0
if g > 2

nVT . We argue that when the maximum relative
voltage is sufficiently small, the role of coupling in each
neuron dynamics is negligible. Thereafter, the un-controlled
single neuron dynamics is dominant, i.e., the exogenous
current Iext will determine the spiking behavior. Thus,
the network synchronizes if the error dynamics dissipates
sufficiently small before the time at which the neuron with
maximum trajectory spikes. Take V 2

T + Iext as the velocity
of the maximum trajectory and denote is spiking time with
tkM . We obtain

tkM − tk ≥
1√
Iext

[tan−1(
VT√
Iext

)− tan−1(
vmax(0)√
Iext

)].

Also, since the relative voltage is exponentially decreasing,
∀t ∈ [tk, tk+1) we obtain the upper bound of the relative
voltage as follows

vmax(t)− vmin(t) ≤ e(2VT−ng)(t−tk)(vmax(tk)− vmin(tk)).
(7)

Considering a desired ε, we denote the time at which it can
be obtained from (7) with

tkε − tk ≥
ln(vmax(tk)−vmin(tk)

ε )

ng − 2VT
.
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If tkM > tkε holds, then the maximum relative voltage of
neurons is smaller than a given ε within the time interval
[tk, tk+1) and before the maximum neuron spikes. Thus, (5)
should hold.

IV. VOLTAGE-DEPENDENT INTERCONNECTIONS

As shown in the previous section, the synchronization of
the network of quadratic integrate and fire neurons depends
on multiple parameters, e.g. the size of the network, the re-
lations between the exogenous excitation (current), coupling
strength, threshold voltages and the initial conditions. Due to
the hybrid dynamics, resetting the voltage of each neuron will
lead to a discontinuous change in the dynamics of all of its
neighboring neurons by changing the corresponding synaptic
current. This motivates studying coupling rules which bring
voltage trajectories closer during the continuous evolution,
thus reaching smaller relative error before the maximum
neuron spikes, and mitigating the effects of resting the
voltage of one neuron on the dynamics of its neighbors.
Here, we propose a bidirectional voltage dependent coupling
control law and discuss its mechanism in Section IV-A.
We assume that the current neuron i dynamics receives
from neuron j is equal to ḡvj(vi − vj), hence the coupling
is voltage dependent, i.e. ḡvj (see Remark 2). Hence, the
dynamics of each neuron obeys

v̇i = v2
i − ḡ

∑
j∈Ni

vj(vi − vj) + Iext,∀i ∈ N ,

if ∃ vi ≥ VT , then v+
i = −Vr, v+

j = vj .

(8)

Assumption 2 The lower voltage threshold Vr is equal to
zero.

We continue with obtaining coupling condition under which
the maximum relative voltage is decreasing within any
interval of continuous evolution of the voltages.

Proposition 2 If ḡ > 1, then vi(t
k) − vj(t

k) ≥ 0 for
each two nodes i, j at tk guarantees vi(t) − vj(t) ≥ 0 for
∀t ∈ [tk, tk+1). Moreover, for the network with complete
graph topology and the node hybrid dynamics as in (8) the
maximum relative voltage is exponentially decreasing during
each interval [tk, tk+1) provided that ḡ > 1 holds.

Proof: Consider the dynamics in (8) in the interval
∀t ∈ [tk, tk+1). Denote v̇i by fi(vi). Since fi(0) ≥ 0, then
the dynamics of neuron i during the continuous evolution is
a positive system. Hence, by Assumption 2, vi ≥ 0,∀i,∀t ∈
[tk, tk+1). For each two nodes i and j, with vi(tk) > vj(t

k),
we have

v̇i(t)− v̇j(t) = (vi(t)− vj(t))((1− ḡ)(vi + vj)−
∑
k 6=i,j

vk),

∀t ∈ [tk, tk+1). If ḡ > 1, the relative voltage is decreasing.
Hence, vi(t)− vj(t) ≥ 0 for ∀t ∈ [tk, tk+1) holds.

Now, Take V = max{(vi − vj)|(i, j) ∈ {1, . . . , n}} as
the Lyapunov function candidate. The function’s upper Dini

derivative is D+V = max(v̇i − v̇j). We obtain

V̇ =(vmax − vmin)[(vmax + vmin)− ḡ
n∑
i=1

vi],

=− (vmax − vmin)[(ḡ − 1)

n∑
i=1

vi +
∑
k

vk 6=max v
vk 6=min v

vk].
(9)

Based on the above, the trajectories of the network with the
node dynamics in (8) do not leave the positive orthant. Thus,
the sum of nodal voltages is always non-negative. Thus, if
ḡ > 1 holds, V̇ is negative and the relative voltage dynamics
is exponentially decreasing in any interval [tk, tk+1).

Remark 1 (Interpretation of ḡ > 1) Recall from Section
II that we consider a dimension-less model for the neurons.

Remark 2 (Synaptic current in the form of Iis = ḡvi(vi−
vj)) Considering the voltage-dependent interactions, another
variation is the case where Iis = ḡvi(vi − vj) which creates
a Lotka-Volterra-based structure [9] with input. The analysis
of this case is beyond the scope of the current paper. A
numerical example related to this case is included in Section
V in order to compare the behavior of the networks with
two types of voltage-dependent interconnections, i.e. Iis =
ḡvi(vi − vj) and Iis = ḡvj(vi − vj).

Lemma 3 The time interval between each two consecutive
updates, i.e., tk+1 − tk, of the state of each neuron with
dynamics as in (8) is bounded from below.

Proof: The proof follows a similar trend as the proof
of Lemma 2. For this system, the interval between any two
jumps is lower bounded by δt ≥ (VT−max{vi(tk)})

V 2
T +Iext+ḡ(n−1)VT (VT )

.
Based on the above results, if the trajectories are ε close then
a similar argument as in Section VI follows. In what fol-
lows, we present a comparison of convergence mechanisms
between two networks, one with constant coupling, denoted
by g, and the other with voltage-dependent coupling, denoted
by ḡvi, for a network composed on two nodes.

A. Comparison between constant and voltage-dependent
couplings

To guarantee the stability of the relative voltage dynamics,
the symmetric and constant coupling strength requires g >
2VT

n , which implies dependency of the coupling strength on
the threshold voltage and the size of the network, however,
the asymmetric voltage-dependent coupling requires g > 1.
The latter is a local measure independent of the network size
and threshold voltages. Here, we compare the dynamics of
the difference and the sum of the derivatives of the maximum
and minimum voltages for a two-node network for the two
design cases. For the constant and symmetric network, we
have

(v̇max + v̇min) = (v2
max + v2

min) + 2Iext,

(v̇max − v̇min) = (v2
max − v2

min)− 2g(vmax − vmin).
(10)
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Fig. 2. The growth of the sum and the decay of the relative voltages for
a two node graph for constant (a) and voltage-dependent(b)networks.

while the asymmetric and voltage-dependent network gives

(v̇max + v̇min) = (v2
max + v2

min) + ḡ(vmax − vmin)2 + 2Iext,

(v̇max − v̇min) = −(ḡ − 1)(v2
max − v2

min).
(11)

Based on (10) and (11), the rate of growth of the sum
of trajectories with the constant coupling is independent
of the coupling, however, the rate of sum for the voltage-
dependent case is largest when the relative voltage is max-
imum. This shows that with g = ḡ the voltage-dependent
coupling law bring trajectories closer together. In fact, in
the voltage-dependent case, v̇max < v̇min. The coupling
law adds more to the minimum trajectory and deduct less
from the maximum voltages. This is different from the
constant coupling which is a balanced coupling law, i.e.
the added term to the minimum trajectory is equal to the
deduction from the maximum trajectory. In addition, after
the spike of the maximum neuron, the coupling current of
the minimum one jumps from −ḡVT (VT −vmin) to zero. For
the constant coupling case, the change of coupling current
from −g(VT − vmin) to g(vmin). Considering that a smaller
coupling strength is needed for stability of relative dynamics
and that vmin before jump is close to VT , the jump in the
voltage-dependent case is less disturbing, i.e. from VT δ to
zero compared to −VT δ to VT vmin, with ḡ > 1 and g > VT
respectively. Hence, the mechanism of achieving synchro-
nization is different for these two coupling laws. Figure IV-
A shows the plot of the evolution of the sum and relative
voltages for voltage-dependent and constant couplings for
identical neurons with similar VT , Vr, g = ḡ,∆v

0 . We now
study a sufficient condition under which two interconnected
neurons with the dynamics as in (8) achieve synchronization
asymptotically.

Proposition 3 Assume vmin(0) = 0, 0 < vmax(0) < VT

2 .
The network of two interconnected neurons with the dynam-
ics as in (8) achieves synchronization asymptotically if ḡ > 1
and ḡV 2

T > I .

Proof: As proved in Proposition 2, ḡ > 1 guarantees

that if v1(0) > v2(0), then the order is preserved for all time
before v1 spikes. Take the ratio κ = min v̇min

v̇max
. If ḡV 2

T >
I , the latter could be bounded by ḡ. Now we calculate the
error d(t−k−1) = VT − vmax(tk−1), k ∈ {0, 1, 2, ..}. Based
on this we estimate vmin(t−k ) = vmax(t+k ) as vmax(t+k ) =
κd(tk−1), where d(t0) = VT − v1(0), d(t1) = VT − v2(1),
and d(t2) = VT − v1(2), etc. Now, we calculate the error
e1 = v1(t+2 ) − v1(0) = κd(t1) − v1(0). We obtain e1 =
κ(VT − κ(VT − v1(0)) − v1(0). By κ > 1 (ḡ > 1), and
v1(0) < VT

2 , we obtain e1 < 0 which implies that the error
is deceasing, i.e. the initial condition at time t2 where v1

is the maximum trajectory is smaller than time zero. Hence
the error asymptotically converges to zero, which means that
synchronization is achieved.

Numerical comparison

To provide a comparison related to the above result, we
simulate two networks, one with constant and the other with
voltage dependent couplings. Our numerical verification on
two networks with constant and voltage dependent coupling,
with similar initial conditions vmax(0) = 0.9, vmin = 0,
and VT = 2, I = 4 For g = ḡ = 1.2 both networks
synchronize. However, the network with constant coupling
de-synchronize for 4 < g < 15, while the voltage dependent
case synchronize for all ḡ > 1.2.

V. SIMULATIONS

This section presents the simulation results for a complete
graph with 6 nodes. The neurons are identical and the model
parameters are set to VT = 2, −Vr = −0.2, and Iext = 4.
The initial condition is set to [1.2; 1; 0.5; 0.2; 0;−0.1]. For a
network with common and constant coupling, with g > 0.66,
the maximum relative voltage is decreasing. To achieve a suf-
ficiently small error, ε = 0.01, the condition in Proposition
1 gives g > 9.6. Figure 3 shows the voltage trajectories for
g = 10. As shown, synchronization is achieved. The results
of the voltage-dependent case is shown in Figure 4 with
ḡ = 2.8. To compare the results of Section IV with the design
in Remark 2, Figure 5 shows the results of the design in
Remark 2. As shown, both networks synchronize. However,
the network with the model in Remark 2 de-synchronizes
for g < 2.8, while the network analyzed in Proposition 2
(with Isi = vj(vi − vj)) still synchronizes for ḡ ≥ 1.1. The
results of g < 2.8 are not shown due to space constraints.
Figure 6 shows the voltage trajectories for the network with
constant coupling with g = 2.8. As shown, the network does
not achieve synchronization.

VI. CONCLUSIONS

This paper has studied synchronization of a network of
hybrid quadratic integrate-and-fire neurons over a complete
graph topology. Conditions for achieving sufficiently small
relative voltage error before the spike of the maximum
neuron (the neuron whose voltage is greater than other
neurons) has been obtained for a network with constant
coupling. In addition, a voltage-dependent coupling law
has been proposed and studied. This design represents an
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Fig. 3. Voltage trajectories for the network with constant and common
coupling with g = 10.
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Fig. 4. Voltage trajectories for the network with voltage-dependent coupling
with ḡ = 2.8.

asymmetric and dynamic coupling law which injects a larger
coupling current to the neuron with smaller voltage level.
A comparison between mechanisms of the two coupling
laws (constant and voltage-dependent) has been provided.
In addition, a sufficient condition for achieving asymptotic
synchronization has been presented for two interconnected
neurons with the voltage-dependent law and the results has
been numerically compared with the constant coupling law.
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Fig. 5. Voltage trajectories for the network in Remark 2 with ḡ = 2.8.
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