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Abstract— This paper considers a network of collaborating
agents for local resource allocation subject to nonlinear model
constraints. In many applications, it is required (or desirable)
that the solution be anytime feasible in terms of satisfying the
sum-preserving global constraint. Motivated by this, sufficient
conditions on the nonlinear mapping for anytime feasibility
(or non-asymptotic feasibility) are addressed in this paper. For
the two proposed distributed solutions, one converges over
directed weight-balanced networks and the other one over
undirected networks. In particular, we elaborate on uniform
quantization and discuss the notion of ε-accurate solution,
which gives an estimate of how close we can get to the exact
optimizer subject to different quantization levels. This work,
further, handles general (possibly non-quadratic) strictly convex
objective functions with application to CPU allocation among a
cloud of data centers via distributed solutions. The results can
be used as a coordination mechanism to optimally balance the
tasks and CPU resources among a group of networked servers
while addressing quantization or limited server capacity.

Index Terms— multi-agent systems, sum-preserving resource
allocation, distributed optimization, anytime feasibility

I. INTRODUCTION

Allocation of resources and utilities over a multi-agent
network is considered in this paper. This problem finds appli-
cation in different control scenarios ranging from coverage
control and task allocation to electricity power scheduling
[1]–[4]. The general idea is to optimally determine the
allocated amount of resources from a fixed total among a
group of users or agents. Recently, the emergence of Internet-
of-Things (IoT) has motivated distributed solutions over
networks, where agents locally solve the problem in their
neighborhood with no direct knowledge of distant agents
or global information. In many large-scale applications,
localized processing, and cloud computing motivate such
distributed resource allocation strategies instead of tradi-
tional centralized solutions. Example applications include
managing the balance between energy resources and energy
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demand over the smart grid, allocating the fixed amount of
tasks over a multi-agent network, or assigning the amount of
computing load to the network of data servers [5]–[7]. In the
context of resource management in Cloud infrastructures, we
particularly focus on the latter application where some net-
worked data centers (computing nodes) need to be assigned
by CPU cycles (resources) in a distributed fashion. The total
sum of resources is limited and fixed and the computing
nodes follow a distributed algorithm to locally balance the
CPU utilization by local information-exchange with other
nodes. In general, in CPU scheduling the jobs are allocated in
quantized (or discrete) values. Further, other than quantized
CPU allocation and in general applications, the data-sharing
setup is typically involved with bandwidth efficiency and
limited capacity concerns, and thus, mandates quantized
information exchange. This quantization issue needs to be
addressed in general networked scenarios.

A. The problem

The problem of sum-preserving resource allocation is in
the following standard form,

min
x

F (x) =
∑n

i=1 fi(xi) (1)

s.t.
∑n

i=1 xi = b, xi ∈ Xi

with xi, b ∈ R, fi : R → R, and Xi ⊆ R representing a
range of admissible values for states xi. The latter represents
the so-called box constraints for xi ∈ R in the form xi ∈
[mi Mi]. As discussed later, the problem can be extended
to the case where xi ∈ Rdi and Xi ⊆ Rdi where the local
constraints are defined in the form [8],

Xi = {x ∈ Rdi : gji (x) ≤ 0, j = 1, . . . , pi} (2)

with gji : Rdi → R as convex and twice-differentiable func-
tions on Xi. In general, the sum-preserving global constraint
can be also of higher-order form with xi, b ∈ Rm.

Among the existing solutions, other than the classic lin-
ear ones [1]–[3], [9], the work by [8] suggests a local
reallocation optimization algorithm at every iteration to
address all-time feasibility. On the other hand, there exist
many primal-dual solutions that do not guarantee primal-
feasibility (or anytime-feasibility), but instead asymptotically
reach feasibility [10], [11]. Many existing works focus on
linear solutions with ideal communication and actuation at
the node dynamics. However, in reality, multi-agent systems
(e.g., mobile robotic networks, connected generators over
the smart grid, or collaborating distributed data centers) are
subject to practical nonlinearities. For example, the shared
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information for task/CPU scheduling among data centers
(or servers) are quantized [6] or robot actuators performing
coverage allocation are subject to saturation [12]. The work
by [13] further addresses the notion of ε-accuracy over star
multi-agent networks, i.e., the number of communication bits
needed to reach the ε-neighborhood of the exact optimizer. In
the same line of research, Ref. [14] considers unconstrained
distributed optimization via single-bit information-exchange
over limited-capacity communication networks. Other than
the mentioned nonlinearities imposed by the nature of the
actuation and communication, other kinds of nonlinearities
are added for the purpose of improving the convergence
rate or to reach the optimal value in (prescribed) fixed-time
[15] or finite-time [14]. These further motivate the nonlinear
model consideration in this paper.

B. Main Contributions

In this paper, the main contributions are: (i) we address
possible nonlinearities in the dynamics of the agents due to
imperfect actuation and limited communication capabilities.
This is motivated, for example, by limited and/or quantized
range of action in actuators and, similarly, possible clipping
and quantization in communication channels. Other node-
based and link-based nonlinearities are further applicable to
address, for example, robustness to disturbances and pre-
defined (or fixed) convergence time. Some examples regard-
ing nonlinear consensus protocols are discussed in [16]–[18].
In this paper, we discuss convergence subject to both sector-
based and non-sector-based nonlinearities, for example, loga-
rithmic quantization and uniform quantization. (ii) We show
exact convergence under sector-based nonlinearities, while
for uniform quantization (as an example of non-sector-based
nonlinearity) we prove convergence to the ε-neighborhood
of the optimizer. In the latter case, the concept of ε-accuracy
is considered. This notion implies the quantization level to
ensure reaching ε-neighborhood of the optimal point. On the
other hand, for a given quantization level (or the number
of bits) one can address the best ε-accurate solution that
can be achieved while satisfying the feasibility constraint
at all times. In particular, (iii) we discuss the application
in resource allocation and CPU scheduling over networked
servers [6]. (iv) Unlike some works restricted to quadratic
costs [6], this work can address general strictly (and strongly)
convex cost functions (possibly non-quadratic) due to, e.g.,
the use of different barrier functions and penalty functions
addressing the local constraints to advance the quadratic cost
model in [6]. The results can further address different types
of practical nonlinearities imposed on the coordination mech-
anism among the servers, for example, saturated capacity,
quantization scheme of different sizes, and fast sign-based
solutions. Further, (v) we advance the assumption in [6], [8]
by considering uniform-connectivity over time instead of all-
time connected networks.

C. Some Preliminary Concepts

Following the Karush-Kuhn-Tucker (KKT) condition, the
following lemma finds the condition on the optimizer x∗

as the solution of (1). Define the gradient vector ∇F =
[∂x1

f1(x1); . . . ; ∂xn
fn(xn)].

Lemma 1: The optimizer x∗ as the solution of (1) is in
the form ∇F ∈ span(1n), i.e., ∂xj

fj(x
∗
j ) = ∂xi

fi(x
∗
i ) for

all i, j.
See the proof and more details in [16], [17]. Note that the
above lemma holds for the equality-constraint problem (1)
without local constraints (2). The box constraints (di = 1)
are addressed by additive penalty terms discussed later in
Section II-A. One can reformulate the problem and extend
it to weighted-sum-preserving constraints as follows,

min
y

F̃ (y) =
∑n

i=1 f̃i(yi) (3)

s.t.
∑n

i=1 aiyi = b, yi ∈ Yi

By change of variable in the form aiyi = xi, the above
problem takes the form (1) and follows similar solution.
Notice that ais need to satisfy composition conditions [19,
Section 3.2.4] to ensure convexity of the local sets Xis after
change of variables (as a composition of Yis and linear
transformation aiyi = xi).

D. The Assumptions

The following assumptions on the cost functions hold
throughout the paper:

1) The local cost functions fi are strictly (or strongly)
convex and smooth1.

2) The feasible solution set of problem (1) is non-empty
and compact.

The first assumption allows to address the unique optimizer
via KKT conditions and is widely considered in the literature.
The second assumption is particularly challenging if there are
different local constraints xi ∈ Xi and the combination of
these Xis and the sum-preserving constraint

∑n
i=1 xi = b

needs to be feasible. Algorithms are proposed in [1], [8] to
render feasible initialization for such cases.

The following assumptions (for the proof of convergence)
hold on possible nonlinearities on the agents’ dynamics:

(i) The nonlinearities satisfy 0 < α ≤ h(z)
z ≤ α

(sector-based), i.e., they are strongly sign-preserving
and monotonically non-decreasing nonlinear mapping.

(ii) h(z) is an odd mapping, i.e., h(−z) = −h(z) and
h(0) = 0.

The following are standard assumptions on the multi-agent
network (or the graph topology) in the consensus literature:

(I) The network is undirected with symmetric weights.
(II) The network is uniformly-connected or B-connected,

i.e., the union of the networks over every time-interval
B is connected.

Note that for some special cases we relax the assump-
tion (I) to general weight-balanced directed networks. In
terms of network connectivity, Assumption (II) advances ex-
isting solutions [8], [13] to dynamic (possible disconnected)
networks, i.e., the cases for which the network might be

1For the proof of convergence only strict convexity is used. In order to
determine the rate of convergence v-strongly convex assumption is adopted.
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disconnected during some time instances but their union
is connected over a finite time interval B. This occurs in
mobile multi-agent applications with limited communication
resources where the links over the network come and go as
the agents (e.g., robots) move in and out of the communica-
tion range of the other agents.

E. Paper Organization

The rest of the paper is as follows. Section II introduces
the distributed solutions subject to possible nonlinearities. In
Section III, the convergence of uniform quantization (as a
non-sector-based nonlinearity) and the notion of ε-accurate
solution are discussed. Section IV provides an example ap-
plication in CPU scheduling and related simulations. Finally,
Section V concludes the paper.

II. NONLINEAR DISTRIBUTED SOLUTIONS

Two nonlinear distributed gradient-Laplacian solutions are
considered in this paper. The continuous-time (CT) solutions
are in the form,

ẋi = η
∑
j∈Ni

Wji(t)h(∂xjfj(t)− ∂xifi(t)), (4)

ẋi = η
∑
j∈Ni

Wji(t)(h(∂xj
fj(t))− h(∂xi

fi(t))), (5)

The CT solutions find application, e.g., in economic dispatch
problem and power generation scheduling, see [16], [17]. In
discrete-time (DT),

xi(k + 1) = xi(k) + η
∑
j∈Ni

Wji(k)h(∂xjfj(k)− ∂xifi(k)),

(6)

xi(k + 1) = xi(k) + η
∑
j∈Ni

Wji(k)(h(∂xjfj(k))− h(∂xifi(k))),

(7)

with h(·) representing possible node-based or actuation non-
linearity (protocols (4) and (6)) or link-based or communi-
cation nonlinearity (protocols (5) and (7)) at the agents’ dy-
namics. This nonlinear function could be either (i) imposed
by the nature of the agents’ dynamics, e.g., due to control
saturation and/or quantization, or (ii) added purposefully by
the designer, e.g., to improve the convergence rate and/or
robustness properties with respect to noise and disturbances
by using sign-based solutions.

Lemma 2 (Convergence): Let the assumptions in Sec-
tion I-D hold. The continuous-time solutions (4)-(5) and
discrete-time solutions (6)-(7) converge to the exact opti-
mizer x∗ as the solution of problem (1).

The detailed proof for convergence and uniqueness of the
solution under CT dynamics (4)-(5) are given in [16], [17]
assuming general strictly convex cost functions. The proof
can be extended to the DT case using the following lemma.

Lemma 3: Let Assumptions (1)-(2) hold. Consider two
points x1,x2 ∈ Rn, and δx := x1 − x2. There exist
0 < α < 1 and x̂ = αx1 + (1− α)x2 such that,

F (x1) = F (x2) +∇F (x2)
⊤δx+

1

2
δx⊤∇2F (x̂)δx. (8)

Then,

F (x1) ≥ F (x2) +∇F (x2)
⊤δx+ vδx⊤δx, (9)

F (x1) ≤ F (x2) +∇F (x2)
⊤δx+ uδx⊤δx. (10)

Define the Lyapunov function as the residual F (k) =
F (x(k)) − F (x∗). For two consecutive (feasible) states
x(k + 1),x(k) define δx(k) := x(k + 1)− x(k). To satisfy
F (k + 1) ≤ F (k), from Lemma 3 one can prove that,

∇F⊤δx+ uδx⊤δx ≤ 0. (11)

Recall that for a weight-balanced connected graph G and
its associated Laplacian matrix Lg = D − W with D =
diag[

∑
j∈Ni

Wji] = diag[
∑

j∈Ni
Wij ], define λn, λ2 as the

largest and smallest non-zero eigenvalue of Lg . For x ∈ Rn

and x := x− 1⊤
n x
n 1n,

x⊤Lgx = x⊤Lgx, (12)

λ2∥x∥22 ≤ x⊤Lgx ≤ λn∥x∥22 (13)

Using (12)-(13) and substituting δx from Eq. (6)-(7),
further assume strongly convex functions satisfying 2v ≤
∂2
xfi(xi) ≤ 2u and sector-based nonlinearities satisfying

α ≤ h(z)
z ≤ α. Then, similar Lyapunov analysis as in [16],

[17], one can prove convergence for any step-rate η > 0
satisfying,

η ≤ 2αλ2

uλ2
nα

. (14)

Then, the linear convergence rate follows as,

F (k + 1)

F (k)
≤ 1− ηv(αλ2 −

u

2
λ2
nαη). (15)

The proof can be easily extended to B-connected graphs with
Lg as the Laplacian matrix of the union graph over the time-
interval B, i.e., considering F (k+B)

F (k)
in the above formula.

See [16], [17] for more information.
Remark 1: In problem (3), following the KKT conditions,

the optimizer satisfies ∇F̃ (y∗) ∈ span(a).

A. The Local Constraints

The local constraints xi ∈ Xi can be addressed via adding
penalty functions [20] or barrier functions [8] to the local
costs fi. Some commonly used penalty functions to address
the box-constraints are discussed here. The cost function is
updated as,

f c
i (xi) = fi(xi) + c[xi −Mi]

+ + c[mi − xi]
+ (16)

with [u]+ = max{u, 0} and c > 0 penalizing the deviation
from the admissible range of values. It is known that the
solution of this penalized case can become arbitrary close
to the exact optimizer by choosing c sufficiently small [21].
This non-smooth function can be substituted by the following
smooth equivalents [21], [22],

L(u, µ) = =
1

µ
log(1 + exp(µu)) (17)

[u]+κ = ([u]+)κ, κ > 1, κ ∈ N (18)
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It can be shown that the maximum gap between the two
functions [u]+ and (17) inversely scales with µ, i.e.,

L(u, µ)− [u]+ ≤ 1

µ

and the two can become arbitrarily close by selecting µ suffi-
ciently large [23]. In general, for local constraints in the form
(2), the penalty functions can be written as c

∑pi

j=1[g
j
i (x)]

+.
Similarly, some barrier functions Bj

i (xi) are proposed in the
literature [8], [24] to be added to the local costs in the form
f c
i (xi) = fi(xi) + c

∑pi

j=1 B
j
i (xi). Following (2), Bj

i (xi)

is defined real valued for xi ∈ Xi, i.e., gji (xi) < 0, and
following Assumption (1),

1) The barrier function needs to be convex and smooth.
2) If gji (xi) → 0− (i.e., the function approaching zero

from negative values), then Bj
i (xi) → ∞.

Some standard example barrier functions are given as [24],

Bj
i (xi) = − log(−gji (xi)) (19)

Bj
i (xi) =

−1

gji (xi)
(20)

These are respectively known as logarithmic and inverse
barrier functions.

B. The global Constraint: Anytime Feasibility

As mentioned in the introduction, many applications man-
date solution feasibility at all times, i.e., the global constraint∑n

i=1 xi = b hold at all times along the solution dynamics.
This implies that at any termination time, the resulting
outcome x of the proposed anytime-feasible protocols (4)-
(7) satisfy

∑n
i=1 xi = b. In application, e.g., the economic

dispatch problem, this means that the produced power and
the demand are balanced at all times to avoid system break-
down [1], [8]. Similarly, in balancing the CPU utilization
among a group of data centers, the algorithm needs to be
feasible at all times such that the allocated CPU resources
meet the workloads required by the servers [6], [7].

Lemma 4 (Anytime Feasibility): Suppose that Assump-
tion (2), Assumption (ii), and Assumption (I) hold. By any
feasible initialization, the state of agents remain feasible
under the CT dynamics (4)-(5) for all t > 0 and under the
DT dynamics (6)-(7) for all k ≥ 1.

The proof for CT case over uniformly-connected undi-
rected graphs is discussed in [16], [17]. For the DT case, the
proof similarly follows. First, note that from Assumption (2),
the feasible solution exists. For protocol (6),

n∑
i=1

xi(k + 1) =

n∑
i=1

xi(k)

+ η

n∑
i=1

∑
j∈Ni

Wji(k)h(∂xj
fj(k)− ∂xi

fi(k)), (21)

Following Assumption (ii) and Assumption (I), the last
term is equal to zero. This is because for two neighboring
agents i, j, we have Wij = Wji and

h(∂xjfj(k)− ∂xifi(k)) = −h(∂xifi(k)− ∂xjfj(k)).

The feasibility proof of (7) for undirected graphs similarly
follows. For link-based nonlinearities (5) and (7) one can
extend the proof even to weight-balanced directed graphs.

Corollary 1: For protocols (5) and (7) over a weight-
balanced graph,

n∑
i=1

xi(k + 1) =

n∑
i=1

xi(k)

+ η

n∑
i=1

∑
j∈Ni

Wji(k)h(∂xj
fj(k))− h(∂xi

fi(k)), (22)

Recall that for a weight-balanced graph G and its asso-
ciated Laplacian matrix Lg , we have 1⊤

nLgz = 0, where
z ∈ Rn and 1n as the vector of 1s. Now considering
z = [h(∂x1

f1(k)); . . . ;h(∂xn
fn(k))], the last term in (22)

is zero and Corollary 1 follows.

III. QUANTIZATION AND ε-ACCURACY

In this section, we compare the convergence for two
cases: sector-based nonlinearities satisfying Assumption (i)-
(ii), and sign-preserving (but not strongly) odd nonlinear
mapping. Note that the main difference of the two cases is

that for the second case
dh

dx
(0) = 0 while for the first case

dh

dx
(0) > 0. In particular, we consider logarithmic quantiza-

tion versus uniform quantization respectively as examples of
the first and second case. Following Lemma 2, for sector-
based nonlinearities the exact convergence is achieved, i.e.,
substituting the strongly sign-preserving function h(z) =

sgn(z) exp
(
q

[
log(|z|)

q

])
in (4)-(7) the solution reaches

the exact optimizer of (1). In contrast, for uniform quanti-
zation, one can define ε-accuracy as a trade-off between the
quantization level and convergence to the ε-neighborhood of
the exact optimizer x∗. We consider nonlinear CT protocol

(5) and DT protocol (7) with h(∂xi
fi(k)) = q

[
∂xi

fi(k)

q

]
with [·] as rounding to the nearest integer and q as the
quantization level. Note that, from the definition, for xi sat-
isfying −0.5q ≺ ∂xifi − ∂xif

∗
i ≺ 0.5q we have h(∂xifi) =

h(∂xi
f∗
i ) and for the optimizer we have ∂xj

f∗
j = ∂xi

f∗
i .

Define a new variable ξ(x) := ∇F (x)−
∑n

i=1 ∂xi
fi

n 1n. Then,
from the definition,

∇F −∇F ∗ = ξ +

∑n
i=1 ∂xi

fi
n

1n −∇F ∗ (23)

= ξ +

∑n
i=1 ∂xi

fi
n

1n −
∑n

i=1 ∂xi
f∗
i

n
1n (24)

where we simplified the notation as ∇F (x∗) = ∇F ∗ and
∂xifi(x

∗
i ) = ∂xif

∗
i . Recall the following lemma.

Lemma 5: For z ∈ Rn, z := z− 1⊤
n z
n 1n, and laplacian

matrix L of a weight-balanced graph: z⊤Lz = z⊤Lz.
Putting L = In and z = ∇F −∇F ∗ in the above lemma

along with (24),

ξ⊤ξ = (∇F −∇F ∗)⊤(∇F −∇F ∗). (25)
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For |∂xi
fi−∂xi

f∗
i | < 0.5q (or |∂xi

fi−∂xj
fj | < q) we have,

ξ⊤ξ < 0.25q21⊤
n 1n = 0.25nq2. (26)

From Lemma 3, substituting x1 = x and x2 = x∗ we get,

δx⊤∇F ∗ + vδx⊤δx ≤ F ≤ δx⊤∇F ∗ + uδx⊤δx (27)

It is clear that for any two feasible states δx⊤1n = 0 and,

δx⊤∇F ∗ = δx⊤ξ(x∗) = 0, (28)

since ξ(x∗) = 0n from the definition. Further, following the
results in [1] one can show that for any feasible state the
residual F (x) = F (x)− F (x∗) satisfies,

1

4u
ξ⊤ξ ≤ F ≤ 1

4v
ξ⊤ξ (29)

where we dropped the dependence on x for notation simplic-
ity. Eq. (28)-(29) along with Lemma 3 result in the following.

Lemma 6: Let Assumptions (1)-(2) hold and 2v ≤
∂2
xfi(xi) ≤ 2u. Then,

v∥x− x∗∥22 ≤ F ≤ u∥x− x∗∥22, (30)
∥ξ∥2
2u

≤ ∥x− x∗∥2 ≤ ∥ξ∥2
2v

. (31)
From (31) and (26) and given quantization level q,

∥x− x∗∥2 ≤ ∥ξ∥2
2v

<

√
nq

4v
= ε. (32)

This gives an estimate that how close we can get to the
optimizer x∗ for uniform quantization with level q, i.e.,
the so-called ε-accuracy. For a given demanded accuracy
level ε, any quantization level q > 4vε√

n
may not guarantee

such ε-accuracy and should be redesigned. One can find
similar ε-bound for the node-based CT protocol (4) and DT
protocol (6) following the same line of reasoning.

Remark 2: Note that the proposed nonlinear solutions are
not limited to the quadratic cost model discussed in [6].
In general, any cost function satisfying Assumption (1) is
valid in this work. Therefore, although the consensus-based
solution in [6] reaches the exact optimizer for quadratic costs,
it is not applicable for general non-quadratic costs. Further,
the proposed solutions can address penalty and barrier func-
tions discussed in Section II-A which are non-quadratic in
general. On the other hand, the proposed protocols (4)-(7)
can address other types of sector-based nonlinearities with
exact optimality. Solutions based on fixed-time convergent
algorithms can also be discussed as in [15], [17].

IV. POSSIBLE APPLICATIONS AND SIMULATIONS

A. CPU Scheduling in Data Centers

Consider the problem of balancing the CPU utilization
over a cloud of n = 12 data servers in order to optimally
assign the CPU resources to the workloads [5], [6]. The CPU
costs at each node follow the quadratic form,

fi(xi) =
1

2
πi(xi −

ρi + ui

πi
)2 (33)

with scalar πi > 0 representing the capacity of node i, ρi ∈
R as the number of CPU cycles needed, and ui ∈ R as

0 4000 8000

10-4

100

0 4000 8000

10-4

100

Fig. 1. The residual under two quantization approaches: (left) uniform, and
(right) logarithmic quantization with level q = 1. Logarithmic quantizer as
a sector-based nonlinearity is ”strongly” sign-preserving as limz→0

h(z)
z

≥
(1 − q

2
) > 0 and the residual converges to zero. In contrast, the uniform

quantizer with h(z)
z

= 0 for −h
2
< z < h

2
results in steady-state residual

and converges to the ε-neighborhood of the exact optimizer defined by
Eq. (32) and represented by the red dashed line on the left figure.

the number of occupied cycles due to predicted or known
utilization from already running tasks on the server i (see
more details in [5], [6]). For the simulation we choose πi =
2, random ρi, ui ∈ [0 50] and assume scalar box constraints
on the workloads/jobs at each node as,

mi = 0 ≤ xi ≤ 100 = Mi (34)

These constraints are addressed via quadratic penalty func-
tion (18) with κ = 2. Each node locally computes the optimal
proportion of its workload out of b =

∑n
i=1(ρi+ui) = 563.

The communication network is considered as a simple undi-
rected cyclic network. Let assume admissible quantization
level q = 0.125. Substituting v = 1 in Eq. (32), the
solution under the nonlinear (uniformly-quantized) protocol
(6) (for sufficiently small η) is guaranteed to reach the ε-
neighborhood of the optimizer x∗ satisfying,

∥x− x∗∥2 <
0.125

√
12

4
= ε. (35)

Comparison between logarithmic quantization and uniform
quantization is shown in Fig. 1.

B. Non-Quadratic Cost Model

As mentioned in the introduction, in contrast to consensus-
based solutions that only consider quadratic cost functions
[6], the proposed nonlinear solution in this paper can solve
resource scheduling with non-quadratic cost models. As an
example, the cost function can be in the form [25],

n∑
i=1

fi(xi) =

n∑
i=1

ωi(xi − αi)
4 (36)

with random αi ∈ [−2 4], ωi ∈ [0 1]. Further, the box
constraints −2 ≤ xi ≤ 5 can be addressed by non-quadratic
(logarithmic) penalty functions (17) with µ = 1. For this
simulation, actuation saturation (protocol (6)) is compared
with the linear solution in Fig. 2(left). Such clipping may
occur due to the maximum capacity at nodes, for example,
because of some resource utilization due to previous tasks
still being processed. In general, linear dynamics to solve the
resource allocation converge slowly and asymptotically. To
improve the convergence rate and to reach fixed-time con-
vergence, sign-based solutions can be adopted. It is known
that nonlinear dynamics in the form ż = sgnµ1(z)+sgnµ2(z)
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Fig. 2. (left) This figure compares the evolution of the residuals under the
linear solution and the node-based protocol (6) subject to saturation level
equal to 20. (right) The solution under linear and different nonlinear sign-
based solutions are shown. Adding sign-based nonlinearities can improve
the convergence rate as compared to the linear and single-bit solutions.

converge to the equilibrium in fixed (or prescribed) time [15].
Choosing nonlinear function h(z) = sgnµ1(z) + sgnµ2(z)
one can improve the convergence rate of the proposed
protocols (4)-(7) to reach faster convergence as compared
to the existing linear solutions [9]. The simulation results
are shown in Fig. 2 for two cases with µ1 = 0.5, µ2 = 1.3
and µ1 = 0.3, µ2 = 1.7 for protocol (6) along with the
single-bit protocol by [14] (with η = 3×10−5). Due to non-
Lipschitz continuity of the sign-based solutions, in discrete-
time, the steady-state residual is biased (known as the so-
called chattering phenomena). This bias can be reduced by
decreasing the step rate η.

V. DISCUSSIONS AND CONCLUDING REMARKS

This paper considers node-based and link-based nonlin-
earities on the agents’ dynamics to optimally solve resource
allocation subject to global sum-preserving constraints and
local box constraints. In particular, the application to CPU
scheduling subject to logarithmic quantization (sector-based
nonlinearity) and uniform quantization (non-sector-based
nonlinearity) are compared and for the latter ε-accuracy is
addressed. As an extension and future research direction, the
higher-order state dimension at agents can be considered as,

min
y

F̃ (y) =
∑n

i=1 f̃i(yi) (37)

s.t.
∑n

i=1 Aiyi = b

yi ∈ Yi

with yi ∈ Rdi ,b ∈ Rm, f̃i : Rdi → R, Yi ⊆ Rdi , and
Ai ∈ Rm×di as a full row-rank matrix. Note that the feasi-
bility constraint

∑n
i=1 Aiyi = b is the summation of some

local constraints (of higher dimension). One point to notice
is the convexity of the local constraints to admit certain
composition conditions as discussed in [19, Section 3.2.4].
Such extensions based on the results of [8] can be addressed
as a promising direction of future research.
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