
Automatica 127 (2021) 109498

T
a

b

c

c
w
d
2
t
m
t
w
a

y
(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Multi-hop sensor network scheduling for optimal remote estimation✩

akuya Iwaki a, Junfeng Wu b,∗, Yuchi Wu c, Henrik Sandberg a, Karl Henrik Johansson a

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
College of Control Science and Engineering, Zhejiang University, 310027, Hangzhou, PR China
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong

a r t i c l e i n f o

Article history:
Received 4 August 2019
Received in revised form 2 October 2020
Accepted 4 January 2021
Available online 17 February 2021

Keywords:
State estimation
Medium access control
Sensor networks
Sensor scheduling
Markov decision process

a b s t r a c t

This paper studies a design problem of how a group of wireless sensors are selected and scheduled to
transmit data efficiently over a multi-hop network subject to energy considerations, when the sensors
are observing multiple independent discrete-time linear systems. Each time instant, a subset of sensors
is selected to transmit their measurements to a remote estimator. We formulate an optimization
problem, in which a network schedule is searched to minimize a linear combination of the averaged
estimation error and the averaged transmission energy consumption. It is shown that the optimal
network schedule forms a tree with root at the gateway node. From this observation, we manage
to separate the optimization problem into two subproblems: tree planning and sensor selection. We
solve the sensor selection subproblem by a Markov decision process, showing that the optimal solution
admits a periodic structure when the transmission cost is sufficiently low. Efficient algorithms are
proposed and they are shown to reduce the computational complexity of the original optimization
problem. Numerical studies illustrate the effectiveness of the proposed algorithms, and show that
they are scalable to large networks.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recent development of wireless sensor technology enables
ontrol and estimation over multi-hop wireless sensor networks,
hich is of significant interest for process and automation in-
ustries (Lu et al., 2016; Park, Ergen, Fischione, Lu, & Johansson,
018; Willig, 2008). Wireless sensor networks provide advan-
ages through enhanced and massive sensing, flexible deploy-
ent and operation, and more efficient maintenance compared

o wired solutions. For instance, wireless sensors can be placed
here conventional sensors with cabling cannot be placed such
s on mobile robots or rotational machinery. However, since
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wireless sensors usually have no inexhaustible or reliable en-
ergy source, energy limitation affects system performance and
lifetime. In this context, energy-aware communication protocols,
real-time scheduling algorithms as well as empirical studies for
optimizing the performance of wireless sensor networks have
been proposed (Chipara, He, Xing, Chen, Wang, Lu, Stankovic, &
Abdelzaher, 2006; Hasenfratz, Meier, Moser, Chen, & Thiele, 2010;
Sha, Gunatilaka, Wu, & Lu, 2017). In addition, as the number of
wireless sensors over an area increases, data packets may be lost
due to interference or network congestion. This may lead to poor
performance of the overall estimation and control application.

To tackle these problems, sensor scheduling approaches for
remote estimation have been investigated by several research
groups. In Xu and Hespanha (2005), a communication control
scheme is discussed on how to trade off estimation performance
and communication cost. A stochastic sensor selection algorithm
is proposed in Gupta, Chung, Hassibi, and Murray (2006), where a
plant is monitored by multiple sensors but only one of them can
access the estimator at every time instance. Optimal estimation
with a multiple time-step cost is introduced in Mo, Ambrosino,
and Sinopoli (2011), where the authors consider finite time hori-
zon and obtain a suboptimal schedule by formulating a relaxed
convex problem. The infinite horizon problem is considered in
Mo, Garone, and Sinopoli (2014) and Zhao, Zhang, Hu, Abate,
and Tomlin (2014). The authors of Jawaid and Smith (2015)

derive conditions for the cost functions to be submodular so that
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stimation performance can be guaranteed. Schedules designed
y greedy algorithms are studied in Zhang, Ayoub, and Sundaram
2017). The minimum mean square error (MMSE) estimation
chedule can be obtained in some special cases for example
or two sensors in Shi and Zhang (2012), and more sensors in
an, Wu, Zhang, and Shi (2017) and Wu, Ren, Dey, and Shi
2017). While these works provide offline schedules, the authors
f Wu, Jia, Johansson, and Shi (2013) offer a deterministic online
MSE schedule by using feedback from the estimator. An MMSE
tochastic schedule is proposed in Han et al. (2015). The result of
an et al. (2015) is extended to multiple sensors in Weerakkody,
o, Sinopoli, Han, and Shi (2016). In a similar setup, remote esti-
ation with variance-based triggering is proposed in Trimpe and
’Andrea (2014), which yields a periodic transmission schedule.
n this setup, sensors can directly communicate with the remote
stimator through a common bus. The studies above consider
he remote estimation under network constraints. Sensor energy
onsumption and packet dropout are explicitly considered for
ovariance-based state estimation in Leong, Dey and Quevedo
2017), and LQG control (Leong, Quevedo, Tanaka, Dey & Ahlén,
017). While all research above consider single-hop networks,
.e., each sensor directly communicates with a gateway or an es-
imator, multi-hop networks are widely considered for industrial
ireless communication, such as WirelessHART (Chen, Nixon, &
ok, 2010), ISA-100 (International Society of Automation, 2009),
nd Zigbee (ZigBee Alliance, 2006). A co-design framework of
ulti-hop network scheduling and an optimal controller for a
ingle process are proposed in Demirel, Zou, Soldati, and Jo-
ansson (2014). Some recent work considers aspects of the in-
ustrial protocols for estimation and control problems (Di Giro-
amo & D’Innocenzo, 2019; Maass, Nešić, Postoyan, & Dower,
019a, 2019b). These studies assume that the network nodes are
lways time-synchronized, since the existing industrial commu-
ication protocols have a strict mechanism for such a time-
ynchronization. In Li, Phillips, and Sanfelice (2018), on the other
and, a distributed estimation problem over asynchronous com-
unications is considered, where the time intervals between
onsecutive data arrival are bounded but uncertain.
The main contribution of this paper is to provide a framework

f how to select and schedule a set of sensors to transmit their
easurements efficiently over a time-synchronized multi-hop
etwork. Motivated by an industrial case study at a Swedish pa-
er plant (Agrawal, Ahlén, Olofsson, & Gidlund, 2014; Ahlén et al.,
019), our framework defines the links to be activated to transmit
he sensor measurement for optimal remote estimation under
ensor energy constraints, when the sensors observe indepen-
ent discrete-time linear systems. It is important to investigate
stimation and control of multiple processes over a shared multi-
op network, in particular, since previous work (Demirel et al.,
014) only deals with a single process. Different from Han et al.
2017), Leong, Dey and Quevedo (2017) and Wu, Ren, Dey, and
hi (2018) and related work, the measurements are not directly
ent to the estimator but through some intermediate nodes and a
ateway. For the medium access and communication, we consider
periodic superframe structure common to many existing wire-

ess sensor network protocols (Araújo, Mazo, Anta, Tabuada, &
ohansson, 2014). A superframe repeated every sampling interval
s divided into timeslots. We assume only one point-to-point
ink is activated at a time. Then, by activating links in a certain
rder, the measurement data of selected sensors can be effi-
iently conveyed to the estimator. The link activation is jointly
etermined with the sensor selection, by considering data aggre-
ation techniques (Heinzelman, Chandrakasan, & Balakrishnan,
002; Rajagopalan & Varshney, 2006), and constrained by the
nergy consumption of the sensors. In such a set-up, we first find

ome structures of the multi-hop network schedule, so that the

2

problem can be decomposed into two subproblems. Then it is
shown that this multi-hop network scheduling problem can be
solved using a similar approach to the single-hop network (Leong,
Dey & Quevedo, 2017) by formulating a Markov Decision Pro-
cess (MDP). Second, we exploit the MDP formulation to obtain
a sufficient condition on the existence of a periodic optimal
sensor network schedule. Our condition does not exclude stable
plant, which was the case in Han et al. (2017) and our prelimi-
nary work (Iwaki, Wu, Wu, Sansberg, & Johansson, 2017). Third,
we provide algorithms to realize the periodic optimal schedule.
Fourth, to make our approach scalable for larger networks, we
present algorithms to obtain suboptimal schedules. The perfor-
mance of the optimal and suboptimal algorithms is illustrated and
evaluated in numerical examples. It is shown that the suboptimal
algorithms effectively generate suboptimal schedules with slight
performance degradation in small networks and is scalable to
large networks.

The remainder of this paper is organized as follows. Section 2
describes the system including wireless network, process, com-
munication, and energy consumption models together with the
remote estimator. The problem formulation is also presented.
Section 3 presents the main result. Suboptimal schedules are ob-
tained in Section 4. Numerical examples are provided in Section 5.
Section 6 concludes the paper.

Notations

The symbols N, N0, and R are the sets of integers larger
than zero, nonnegative integers, and real numbers, respectively.
The set of n by n positive semi-definite (positive definite) real
matrices is denoted by Sn

+
(Sn
++

). For simplicity, we write X ≥ Y
X > Y ), where X, Y ∈ Sn

+
, if X − Y ∈ Sn

+
(X − Y ∈ Sn

++
) and

X ≥ 0 (X > 0) if X ∈ Sn
+

(X ∈ Sn
++

). For a matrix A, we use
λmax(A) to denote the eigenvalue of A with largest magnitude. For
vector x, we denote its element i as x[i]. A vector 1N denotes a

row vector of all ones. The sequence of all vectors xt , t = 0, . . . , k
is represented by x0:k.

2. Problem formulation

In this paper, we discuss an optimal remote estimation prob-
lem, where the estimator generates state estimates based on the
received information from sensors. The objective is to choose the
network scheduler to minimize the estimation error subject to
energy considerations. We elaborate on the main components of
the system in the following subsections.

2.1. Wireless sensor network

A set of sensors Vs ≜ {1, 2, . . . ,N} is deployed in an area,
monitoring N decoupled discrete-time linear time-invariant (LTI)
processes. The sensors are interconnected via a wireless network
and they upload measurements through the network to a remote
estimator via a gateway. We denote the gateway as node 0, so
the whole node set is given by V ≜ Vs ∪ {0}. The network is
modeled by a directed graph G ≜ (V, E), where E ⊆ V × V is
the set of communication links. The link (i, j) is included in E if
there is a link from node i to node j. For a link e = (i, j) ∈ E , we
introduce the maps to the sending node vout(e) = i and to the
eceiving node vin(e) = j. Let N in

i and N out
i denote the in- and

out-neighbors of node i, respectively, i.e.,

N in
i ≜ {j ∈ V | (j, i) ∈ E},

N out
i ≜ {j ∈ V | (i, j) ∈ E}.

Furthermore, we denote d(e) as the distance between nodes i

and j. By arranging an order for the links e1, . . . , eℓ, . . . , e|E|, the
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Fig. 1. In a multi-hop wireless sensor network, each sensor transmits its data
to a remote estimator through intermediate sensors and a gateway.

node–arc incidence matrix of the graph G is defined as G ∈
{−1, 0, 1}(N+1)×|E|, where (i, ℓ)-th element of G is 1 if vout(eℓ) = i,
and −1 if vin(eℓ) = i, otherwise 0.

Fig. 1 illustrates a network G = (V, E) with V = {0, 1, 2, 3}
and E = {(1, 0), (1, 3), (2, 0), (2, 3), (3, 1), (3, 2)}. Assume that
the links are arranged in ascending order, G is then given by

G =

⎡⎢⎣−1 0 −1 0 0 0
1 1 0 0 −1 0
0 0 1 1 0 −1
0 −1 0 −1 1 1

⎤⎥⎦ .

For sensor 1, the distances to sensor 3 and to gateway 0 are
expressed by d((1, 3)) = d((3, 1)) and d((1, 0)), respectively. The
in- and out-neighbors are given by N in

1 = {3} and N out
1 = {0, 3}.

2.2. Process model

We consider N discrete-time LTI processes

x(i)k+1 = Aix
(i)
k + w

(i)
k , i ∈ Vs, (1)

where x(i)k ∈ Rn is the state of process i at time k, w
(i)
k ∈ Rn is

process noise assumed to be Gaussian process with zero-mean
independent and identically distributed (i.i.d.) and covariance
Wi ≜ E[w(i)

k (w(i)
k )⊤] > 0. The initial state x(i)0 , independent of

w
(i)
k , k ∈ N0, is also assumed to be Gaussian with mean E[x(i)0 ] and

covariance Σ
(i)
0 . Without loss of generality, we assume E[x(i)0 ] =

0, as nonzero-mean can be translated into zero-mean by the
coordinate change x̃(i)k = x(i)k −E[x(i)0 ]. We assume that the state x(i)k
can be observed directly by sensor i.

2.3. Communication model and network scheduling

The sensors communicate to the estimator through intermedi-
ate sensors and a gateway which define the underlying communi-
cation network. Time horizons of the sensors are partitioned into
strips of identical time intervals (see Fig. 2). Each time interval
is divided into two phases: a sensing phase and a communi-
cation phase, where the former is a time period for sensor i
to acquire the process state x(i)k and the latter is a time pe-
riod for message delivery. The communication phase between
time k and k + 1, which we call superframe at time instance k,
is divided into L timeslots. Superframe structures are used in
many industrial wireless communication protocols (Chen et al.,
2010; International Society of Automation, 2009; ZigBee Alliance,
2006), built upon the IEEE 802.15.4 MAC layer (IEEE 802.15.4,
2006). These MAC schemes are characterized by time-division
multiple access (TDMA) protocols. In TDMA protocols, some given
frequency channels are shared by the network nodes. At each
timeslot, some links are allocated to the channels to transmit
their data from a sending node to a receiving node. By repeating
this, the data will finally arrive at the gateway. To model the
protocols, we make the following natural assumptions for the
communication:

Assumption 1. We assume the following properties:
 e

3

Fig. 2. Each time interval is divided into a sensing and a communication phase.
The superframe duration is divided into timeslots. After the duration ends,
sensors are in idle period (Araújo et al., 2014).

(i) All sensors have the same sampling interval and are per-
fectly time-synchronized.

(ii) Data can be transmitted among the nodes without failure,
i.e., no packet dropout occurs.

(iii) The number L of timeslots in a single superframe is suffi-
ciently large for accommodating all links in G.

The data packet generated by sensor i is a tuple (‘index’,
‘time’, ‘value’), where ‘index’ indicates the sensor index, ‘time’ the
time-stamp when the data is generated, ‘value’ the measurement
value. Thus, formally we can describe the data from sensor i
generated at time k as

(
i, k, x(i)k

)
.

In this paper, for the sake of presentation simplicity, we as-
sume that only one frequency channel is available.1 Thus, at most
one link is activated at each timeslot ℓ of superframe k, i.e., a
link e is determined by a pair (k, ℓ). To indicate this link, we
denote the link activated at timeslot ℓ of superframe k as e(k, ℓ).
Let us denote I(i)(k, ℓ) as the data set that sensor i holds at
timeslot ℓ ∈ L ≜ {1, . . . , L} in superframe k, and let D(k, ℓ) ⊆
I(i)(k, ℓ) with i = vout(e(k, ℓ)) and j = vin(e(k, ℓ)) be the set of
data transmitted by sensor i. That is,

D(k, ℓ) ≜ I(j)(k, ℓ+ 1)\I(j)(k, ℓ).

The set of the sensor indices (‘index’) of which the data is to be
transmitted through e(k, ℓ) is expressed by

S(k, ℓ) ≜
{
i ∈ Vs : (i, k′, x

(i)
k′ ) ∈ D(k, ℓ), k′ ≤ k

}
.

Then, given the initial data set I(i)(−1, L), I(i)(k, ℓ) can be recur-
sively written as

I(i)(k, ℓ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I(i)(k− 1, ℓ)⊕

(
i, k, x(i)k

)
, if ℓ = 1,

I(i)(k, ℓ− 1)⊕ D(k, ℓ),
if ℓ ≥ 2, i = vin(e(k, ℓ− 1)),

I(i)(k, ℓ− 1),
if ℓ ≥ 2, i ̸= vin(e(k, ℓ− 1)),

where the operation I⊕D is union but only the data packet with
large time-stamp (‘time’) is preserved if I and D hold measure-
ments from the same sensor. When L timeslots terminate, the
gateway transmits all the measurement Dk ≜ I(0)(k, L) to the
estimator. We denote the elapsed time of the data from sensor i
in Dk as τ

(i)
k which can be calculated from the current time and

the time-stamp (‘time’). Assuming that the data of sensor i in Dk
is generated at time k′, and therefore described as

(
i, k′, x(i)k

)
, then

we write τ
(i)
k = k− k′.

The gateway is responsible for coordinating which sensors to
be activated at which timeslots and which communication links

1 Under Assumption 1, the results in this paper can be straightforwardly
xtended to the case of multiple frequency channels.
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o be established. This function is called network scheduling. That
s, the gateway decides the network schedule

k ≜
(
e(k, 1), S(k, 1), . . . , e(k, L), S(k, L)

)
given the available information after superframe duration k (after
timeslot L) denoted K(0)

k ≜ {C0:k,D0:k}. The network scheduler
hooses the schedule Ck+1 for the next superframe according to

k+1 = fk
(
K(0)

k

)
here fk is the map from the set of available information at the
ateway to the set of network schedules. We also define f ≜
fk)k∈N0 as the network scheduling strategy.

.4. Energy consumption

The sensors consume a certain amount of energy when they
eceive data from and transmit data to other sensors. Here we
ntroduce an energy consumption model often employed in wire-
ess communication protocols (Heinzelman et al., 2002;
ajagopalan & Varshney, 2006). The energy consumption for
eceiving a packet, which contains p bits information, is

r (p) = Eelecp (2)

here the energy coefficient Eelec is determined by the elec-
ronics, coding and other implementation aspects. The energy
onsumption for sending p bits information is

s(p, d) = Eelecp+ Eampd2p (3)

where Eamp is the energy coefficient for the amplifier and d is
the distance to the receiving sensor or gateway. When transmit-
ting multiple measurements, a sensor can aggregate them into a
single packet in order to reduce the transmission overhead. This
technology is called packet aggregation (Rajagopalan & Varshney,
2006). Assume that a single measurement from any sensor has c
its. Then the bits of information after aggregation are given by

(q) = c[1+ (q− 1)(1− r)] (4)

where q ∈ N is the number of measurements and r ∈ [0, 1] is the
data aggregation rate (Dou, Guo, Cao, & Zhang, 2007). If r = 1
the data is aggregated perfectly and the bits after aggregation are
independent of the number of measurements, which is, for in-
stance, the case for the LEACH protocol (Heinzelman et al., 2002).
If r = 0, no packet aggregation is used. Notice that it is difficult
to aggregate collected data from different sensors perfectly, but
some parts of the data such as header can be removed when
aggregating.

Let q(k, ℓ) ≜ |S(k, ℓ)| be the number of measurements trans-
mitted to node vin(e(k, ℓ)). Notice that q(k, ℓ) is determined by the
network schedule Ck, so the total energy consumption for sensor i
to receive and send packets in the superframe at time k is given
by

E(i)
k (Ck) =

∑
ℓ:vin(e(k,ℓ))=i

Er
(
p(q(k, ℓ))

)
+

∑
ℓ:vout(e(k,ℓ))=i

Es
(
p(q(k, ℓ)), d(e(k, ℓ))

)
. (5)

2.5. Remote estimation

After superframe duration k, the remote estimator computes
an estimate

X̂k ≜
(
x̂(1)k , . . . , x̂(N)

k

)
where x̂(i)k denotes the estimate of x(i)k . Let K(R)

k denote the infor-
mation set at the estimator. Notice that the sensor measurements
4

sent by node 0 and the estimation history are accessible to the
remote estimator. In other words, the information available to the
remote estimator is

K(R)
k ≜

{
X̂0:k−1,D0:k

}
.

In this paper, as a metric of the estimator performance, we use the
mean square error E[(ϵ(i))⊤ϵ(i)

] with ϵ(i) ≜ x(i)k − x̂(i)k . Note that the
optimal estimate for process i is computed recursively following
the modified Kalman filter (Shi, Epstein, & Murray, 2010; Sinopoli
et al., 2004) as

x̂(i)k = E[x(i)k |K
(R)
k ]

= E[x(i)k |K
(R)
k−1, X̂k−1,Dk]

= Aτ
(i)
k x(i)

k−τ
(i)
k

, (6)

with initial estimate x̂(i)0 = 0. Correspondingly, the error covari-
ance of x(i)k is denoted as

P (i)
k ≜ E

[
(x(i)k − x̂(i)k )(x(i)k − x̂(i)k )⊤|K(R)

k

]
.

Note that possible values of the error covariance are included in
a set

P (i)
k ∈ {0, hi(0), h2

i (0), . . .}, i ∈ Vs, ∀k ∈ N0, (7)

where hi : S+n → S+n is the operator hi(X) = AiXA⊤i + Wi,
and hn

i (X) is the n-hold composition of hi(·) with h0
i (X) = X ,

since P (i)
k evolves with hi(·) from 0 once the estimator receives

the measurement (Leong, Dey & Quevedo, 2017). Then the error

covariance is computed as P (i)
k = h

τ
(i)
k
i (0) and we have

E[(ϵ(i))⊤ϵ(i)
] = tr

(
h

τ
(i)
k
i (0)

)
. (8)

With this, the estimation error (8) is determined only by τ
(i)
k ,

which is included in Dk.

2.6. Problem formulation

The problem of interest is to find an optimal network schedul-
ing strategy that minimizes long-term estimation errors penal-
ized by sensor transmission energy usage. We define the cost at
time k as

C(Ck,Dk) ≜
∑
i∈Vs

tr
(
h

τ
(i)
k
i (0)

)
+ E(Ck)

where E(Ck) ≜
∑

i∈Vs
βiE

(i)
k (Ck) with βi > 0. We formulate the

following problem:

Problem 1.

min
f=(f0,f1,...)

J(f) ≜ lim sup
T→∞

1
T

T−1∑
k=0

C(Ck,Dk). (9)

Remark 1. Problem 1 jointly optimizes a weighted average of the
estimation error and sensor energy consumption. Minimization
of (9) with given values of βi corresponds to a minimum-cost
schedule with energy consumption constraint given by some αi >
:

in
f

lim sup
T→∞

1
T

T−1∑
k=0

∑
i∈Vs

E
[
(ϵ(i))⊤ϵ(i)]

s.t. lim sup
T→∞

1
T

T−1∑
k=0

E(i)
k (Ck) ≤ αi, i ∈ Vs.
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For Problem 1 to be well-posed, we make the following
assumption.

Assumption 2. The graph G contains a spanning tree with the
root being the gateway node 0.

Assumption 2 guarantees that persistently exciting protocols
(Tabbara, Nesic, & Teel, 2007) can be configured over the network
G. Therefore, Problem 1 is well-posed as long as G contains a
panning tree.

. Structures of network scheduler

In this section, we discuss structural properties of the network
cheduler solving Problem 1. First, we show that an optimal
chedule requires the network to carry sensor data within a
uperframe through a tree network formed by a set of activated
inks, by which the search space for an optimal strategy can be
educed. With this finding, we manage to separate Problem 1 into
wo subproblems: network routing and sensor selection.

.1. Necessary conditions for network schedule optimality

We consider all communication links within a single super-
rame jointly and analyze the resulting graph by treating these
inks as a whole, where the notion of joint graph arises. Let us de-
ine the joint graph for a superframe k under a network schedul-
ng strategy f in the following way. Denote Ek ≜ (e(k, 1), . . . ,
(k, L)) the sequence of communication links in the superframe k
elected from E of the underlying graph G. Then we call Gk ≜
V, Ek) the joint graph of the superframe k. Let us also denote
k ⊆ Vs as the set of sensor indices that the latest data

(
i, k, x(i)k

)
departs sensor i at the one of timeslots in superframe k, i.e., i ∈ Sk
if and only if there exists ℓ ∈ L such that the sending node of
e(k, ℓ) is i and its data are included in this transmission. That is,

Sk ≜
{
i ∈ Vs : ∃ℓ ∈ L

s.t. i = vout(e(k, ℓ)), i ∈ S(k, ℓ)
}
.

For an optimal scheduling strategy f∗ = (f ∗0 , . . . , f ∗k , . . .),
denote the optimal network schedule at time k as C∗k =

(
e∗(k, ℓ),

S∗(k, ℓ)
)L
ℓ=1, and the optimal set of the communication links and

joint graph as E∗k and G∗k , respectively. Furthermore, under a given
optimal network schedule C∗k , we denote the index set Sk and
the data set Dk as S∗k and D∗k , respectively. Then we have the
following lemma.

Lemma 1. Suppose that Problem 1 has an optimal solution f∗. Then
the followings hold:

(i) If i ∈ S∗k , then
(
i, k, x(i)k

)
∈ D∗k .

(ii) The joint graph G∗k is a tree with node 0 being its unique root.

Proof. Suppose that there exists ℓ ∈ L such that i = vout(e∗(k, ℓ))
∈ S∗(k, ℓ). Obviously, the data (i, k, x(i)k ) arrives at the gateway
through a single path without a circle path from sensor i to the
gateway. Let the arrival time of the data (i, k, x(i)k ) be k+ m,m ∈
N0. We show that m = 0 for an optimal network schedule.
The proof is by contradiction. Suppose that m > 0. Consider a
sequence of graphs G̃k:k+m ≜

(
G̃k, . . . , G̃k+m

)
which is the same

as G∗k:k+m ≜
(
G∗k , . . . , G

∗

k+m

)
except that links e ∈ G∗k:k+m that

are used to transmit x(i)k and the measurements aggregated into
x(i)k are removed, but rescheduled in G̃k+m with the latest data
x(i)k+m. Notice that G∗k:k+m and G̃k:k+m consume the same or smaller
amount of energy, but G̃ has smaller estimation error due to
k:k+m

5

the monotonicity of hi(·) starting from X = 0 (Shi & Zhang, 2012).
This contradicts the optimality of Gk:k+m. Thus, m = 0, hence(
i, k, x(i)k

)
∈ Dk. The second statement is obvious from m = 0.

The proof is now completed. □

Remark 2. Lemma 1 suggests that data (i, k, x(i)k ) will arrive at
the remote estimator within superframe k through tree graph G∗k ,
if it departs from sensor i in superframe k.

We give another lemma that indicates the order of link activa-
tion in an optimal network schedule. Suppose that the network
schedule satisfies (i) and (ii) of Lemma 1. We introduce a partial
order to the links in tree graph Gk. That is, for any e, e′ ∈ Ek, we
say e ⪰ e′ if there exists a directed path from vin(e) to vout(e′). It
defines a partial order on Ek since we can readily show that it is
reflexive, antisymmetric, and transitive.

Lemma 2 (Upstream-first Rule). Suppose that Problem 1 has an
optimal solution f∗. Then, ℓ1 ≤ ℓ2 if e∗(k, ℓ1) ⪰ e∗(k, ℓ2) for
e∗(k, ℓ1), e∗(k, ℓ2) ∈ E∗k .

Proof. By letting each sensor i in G∗k send x(i)k following upstream-
first order, all measurements sampled and sent within the su-
perframe k reach node 0 free of delays. Otherwise, a part of
measurements received by node 0 will arrive with delays. In other
words, any strategy f in this case can never be optimal. □

Remark 3. The upstream-first rule requires each sensor i in
Gk to wait until all the scheduled upstream sensor data arrive.
After their arrival, sensor i transmits its data to its downstream
neighbor node. It is immaterial in what order of the upstream
branches of node i are activated for transmission.

Lemmas 1 and 2 jointly suggest that, to construct a network
schedule, it is essential to select which sensors need to transmit
data to the remote estimator and to plan communication paths.
The sensor selection fully determines the estimation error while
the communication paths fully determines the communication
cost. To investigate an optimal network scheduling strategy, we
only need to focus on the path planning of data communication
and the sensor selection. These two steps are separably studied
in the sense that given a selected sensor set, we only need to
account for the communication cost when we plan the commu-
nication paths. Therefore, in the sequel, we will investigate two
subproblems: tree planning and sensor selection. The tree plan-
ning is studied with respect to sensor energy cost when a subset
of sensors is selected. Then the sensor selection is investigated
given the optimal communication paths.

3.2. Tree planning subproblem

In the previous subsection, we see that G∗k should be always
a tree with the unique root node 0 and the links are activated
according to the upstream-first rule. In this subsection, we intro-
duce a necessary condition to satisfy the statements (i) and (ii) of
Lemma 1. Imposing this condition to Ek, we formulate an integer
linear problem called the tree planning problem, which gives a
tree Gk minimizing the energy consumption E(Ck).

Let z(i)k (e) ∈ {0, 1} be an index function for any i ∈ Vs, denoting
whether (i, k, x(i)k ) is transmitted through link e ∈ E at time k. That
is, z(i)k ((j,m)) = 1 if there exists ℓ ∈ L such that e(k, ℓ) = (j,m)
and i ∈ S(k, ℓ), otherwise 0. To fulfill conditions (i) and (ii) of
Lemma 1, it is necessary to satisfy the following constraints:

(i) Each node in Sk has outgoing flow of its own measurement,
i.e., for i ∈ Sk,∑
m∈N out

i

z(i)k ((i,m))−
∑

m∈N in
i

z(i)k ((m, i)) = 1. (10)
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(ii) The gateway has only incoming flow, i.e., for i ∈ Sk,∑
m∈N in

0

z(i)k ((m, 0)) = 1. (11)

(iii) Intermediate nodes of a path obey a flow balance, i.e., for
i ∈ Sk and j ̸= i,∑
m∈N out

j

z(i)k (j,m)−
∑

m∈N in
j

z(i)k ((m, j)) = 0. (12)

(iv) The nodes that are not in Sk also obey the flow balance,
i.e., for i ̸∈ Sk, the constraint (12) holds.

Let z(i)k = [z
(i)
k (e1), . . . , z

(i)
k (e|E|)]⊤ ∈ {0, 1}|E| be the vector

of index functions for node i, where links are aligned in an
appropriate order, and

zk = [z
(1)⊤
k , . . . , z(N)⊤

k ]
⊤
∈ {0, 1}|E|·N . (13)

Then, using the node–arc incidence matrix G, the constraints
(10)–(12) can be written in a compact form as

Gz(i)k = b(i)(Sk), i ∈ Vs, (14)

where b(i)(Sk) ∈ RN+1 is a vector with elements taking one of the
values 0,±1 according to the right terms of (10)–(12).

Example 1. As an example of the flow constraint (14), consider
the network shown in Fig. 1. For node 1, we denote

z(1)k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(1)k ((1, 0))

z(1)k ((1, 3))

z(1)k ((2, 0))

z(1)k ((2, 3))

z(1)k ((3, 1))

z(1)k ((3, 2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, by (10)–(12), we obtain (14) when 1 ∈ Sk as⎡⎢⎣−1 0 −1 0 0 0
1 1 0 0 −1 0
0 0 1 1 0 −1
0 −1 0 −1 1 1

⎤⎥⎦ z(1)k =

⎡⎢⎣−100
1

⎤⎥⎦
where the left term matrix corresponds the node–arc incidence
matrix G and the right term vector b(1)(Sk).

Since E(Ck) is only a function of the network schedule at the
current time k, the variable zk that satisfies the constraints (10)–
(12) can be pre-calculated with fixed Sk. That is, at time k, given
the set Sk, recalling the energy consumption models (2)–(5) and
the definition (13) of zk, we obtain a tree network graph Gk by
solving the following problem:

Problem 2 (Tree Planning Subproblem).

Emin(Sk) ≜

min
zk

E(Ck) =
∑
e∈E

cη(e)
[
(1− r)

∑
i∈Vs

z(i)k (e)+ r max
i∈Vs

z(i)k (e)
]

s. t. Gz(i)k = b(i)(S), i ∈ Vs,

z(i)k (e) ∈ {0, 1}, i ∈ Vs, e ∈ E,

where

η(e) ≜

⎧⎨⎩
βvout(e)

(
Eelec + Eampd2(e)

)
+ βvin(e)Eelec,

if vin(e) ∈ Vs;

βvout(e)(Eelec + Eampd2(e)), if vin(e) ∈ {0}.
6

Problem 2 is a binary integer problem, which is in general
NP-hard. Nevertheless, due to a special algebraic property of the
constraints, we manage to find the global minimizer of Problem 2
by solving a relaxed problem. The result is formally presented as
follows.

Theorem 1. A vector z∗ ∈ {0, 1}N|E| is a minimizer of Problem 2 if
and only if it is a minimizer of the following problem:

Problem 3.

min
zk,t

∑
e∈E

cη(e)
[
(1− r)

∑
i∈Vs

z(i)k (e)+ rt(e)
]

s. t. Gz(i)k = b(i)(Sk), i ∈ Vs, (15)

0 ≤ z(i)k (e) ≤ 1, i ∈ Vs, (16)

z(i)k (e) ≤ t(e), i ∈ Vs, e ∈ E, (17)
t(e) ∈ {0, 1}, e ∈ E.

Proof. See Appendix A. □

Remark 4. In general, binary integer problems can be solved by
a branch and bound algorithm. Theorem 1 shows that an optimal
solution can be obtained by a relaxed problem without loss of
performance. This extremely reduces the number of iterations
in the algorithm—the number of possible branches are reduced
to 2|E| from 2N|E|.

3.3. Sensor selection subproblem

In the previous subsection, we saw that Ck is determined by
solving Problem 3 with given Sk and applying the upstream-first
rule to the resulted graph. We can rewrite the immediate cost
using τk ≜ [τ

(1)
k , . . . , τ

(N)
k ]
⊤ and Sk as

C(τk, Sk) =
∑
i∈Vs

tr
(
h

τ
(i)
k
i (0)

)
+ Emin(Sk).

Due to the necessary condition (i) of Lemma 1, τk is deter-
mined by Sk. To obtain the network scheduler, we need to find a
map from τk to Sk+1. This problem is called the sensor selection
problem formulated as an MDP.

Define the MDP M ≜ (Q,A, F (·, ·), C(·, ·)) as follows:

(i) The state space is given by

Q ≜
{
τ ∈ NN

0 : τ [i] ∈ N0, i ∈ Vs
}
.

(ii) The action space is given by

A ≜
{
S : S ∈ 2Vs

}
.

(iii) The deterministic transition function from state τ to τ ′

with action S ∈ A is defined as F (τ , S) = τ ′ where

τ ′[i] =
{

0, if i ∈ S;
τ [i] + 1, otherwise.

(iv). The immediate cost for a transition from τ to τ ′ with action
S ∈ A is given by

C(τ , S) =
∑
i∈Vs

tr
(
hτ ′[i]
i (0)

)
+ Emin(S).

Fig. 3 illustrates the MDP M for a two-sensor case. A state [τ [1],
τ [2]]⊤ = [u1, u2]

⊤ corresponds to sensors 1 and 2 transmitted u1
and u2 time units ago, respectively.

With this set-up, let us introduce a policy πk : Q → A for
MDP M and π ≜ (π0, π1, . . .). We are interested in a policy
that minimizes the average cost by choosing the sensor set to be
transmitting:
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Fig. 3. MDP M states and their transitions for two sensors. [u1, u2] in a circle
ndicates the MDP state [τ [1], τ [2]]⊤ = [u1, u2]

⊤ . The arrows indicate state
ransitions.

roblem 4 (Sensor Selection Problem).

∗ ≜ min
π∈Π

ρπ (τ0, S0) = min
π∈Π

lim
T→∞

1
T

T−1∑
k=0

C(τk, Sk) (18)

here Sk = πk−1(τk−1) for k ∈ N given the initial state and action
τ0, S0), and Π the set of all possible policies.

Now we will show that M has an optimal stationary de-
erministic policy π∗ ∈ Π . The idea is to check the sufficient
onditions for the existence of an optimal solution for countable
nfinite-state MDPs (Sennott, 2009) as discussed in Leong, Dey
nd Quevedo (2017) and Wu et al. (2018).

heorem 2. Consider the MDP M. There exist a constant ρ∗ and a
elative-value function H(·) satisfying the Bellman equation

ρ∗ + H(τ ) = min
S∈A

{
C(τ , S)+ H

(
F (τ , S)

)}
. (19)

Proof. See Appendix B. □

Theorem 2 shows that there exists a stationary deterministic
optimal policy. To find such a policy, next we show that M can
be restricted into a finite-state MDP without loss of performance
under the assumption that the estimation error is expensive
compared to the communication cost. For the finite-state MDP,
we can use classical algorithms such as value iteration. To do this,
we make the following assumption.

Assumption 3. Each process i ∈ Vs either satisfies:

(i) λmax(Ai) ≥ 1, or
(ii) λmax(Ai) < 1 and tr(Xi) > Emin({i}), where Xi ∈ Sn

++
is the

unique solution to the Lyapunov equation A⊤i XiAi+Wi−Xi =

0.

Lemma 3. Suppose that Assumption 3 holds. Then there exists a
constant

δi ≜ min
κ

{
κ ∈ N0 : tr

(
hκ
i (0)

)
> Emin({i})

}
for all i ∈ Vs.

Proof. It is immediate from the monotonicity of hn
i (X) along n

starting from X = 0 (Shi & Zhang, 2012) and Assumption 3. □

Finally, we have the following theorem.

Theorem 3. Suppose that Assumption 3 holds. Consider MDP M. If
τ [i] ≥ δi, then i ∈ π∗(τ ).
Proof. See Appendix C. □

7

Let us define the finite-state MDP:

Mf ≜ (Qf ,Af (·), F (·, ·), C(·, ·))

with

Qf ≜
{
τ ∈ NN

0 : τ [i] ≤ δi, i ∈ Vs
}

and Af (τ ) ≜ A\Āf (τ ) where Āf (τ ) ≜ {S ∈ A : ∃i ∈ Vs, τ [i] =
i, i ̸∈ S}. That is, sensor i is always selected at state τ when
[i] = δi. In the optimal policy of the MDP M, the state will
ove into Qf in the next transition even if its initial state τ0 is
utside of Qf . After that, the states never leave Qf . Thus, the
nitial cost will be ignorable since its contribution to the average
ost is reduced to zero as T tends to infinity (Bertsekas, 2017).
onsequently, we can derive the optimal policy of M by solving
he finite state MDP Mf without loss of performance. We show
hat the optimal sensor selection is periodic.

orollary 1. Suppose that Assumption 3 holds. Then there exists an
ptimal periodic schedule generated by an optimal policy π∗.

roof. Since the MDP Mf is deterministic, we can fix an arbitrary
ction as an optimal one at any state in Qf . Furthermore, since Qf
s finite, there exists a recurrent state over π∗. Thus, if the system
eaches the recurrent state again, the state transition will repeat.
ence the result follows. □

.4. Two-step value iteration algorithm

Previously, we showed that the set of optimally selected sen-
ors over time is periodic under Assumption 3 and can be ob-
ained by solving a finite-state MDP Mf with pre-calculated
min(S). We present a two-step algorithm based on relative value
teration (Puterman, 2005):

tep 1. (Algorithm 1) Calculate an optimal tree network for each
candidate set of sensor selection.

tep 2. (Algorithm 2) Calculate an optimal policy of the MDP Mf .

Algorithm 1 Computation of an optimal tree network and energy
cost
1: INPUT: η(e), r
2: OUTPUT: Emin(S)
3: for S ∈ A do
4: Compute Emin(S) in Problem 3
5: end for

Algorithm 2 has in general high computational complexity.
The reasons are twofold: first, the number of states of Mf de-
pends on δi, which increases exponentially by the number of
sensors. Second, since we allow to pick any sensor at every time
instance, the size of action space is 2N at every iteration. These
issues motivate us to construct suboptimal schedules in the next
section.

4. Construction of suboptimal solutions

In this section, we introduce algorithms to compute a subop-
timal solution in an efficient way.

4.1. Reduced MDP schedule

The first algorithm solves an approximate MDP by restricting
the size of the state and action spaces. To do this, we introduce
some sets of sensors and assume that the sensors in the same
set are always scheduled to transmit together. The reduced MDP
(R-MDP), M̃ ≜ (Q̃,A (·), F (·, ·), C̃(·, ·)) is obtained as follows:
f
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Algorithm 2 Computation of an optimal schedule

1: INPUT: Mf , Emin(S), v0, ϵ > 0, τ̄
2: OUTPUT: π∗(τ )
3: v0

← v0
− v0(τ̄ ) · 1|Qf | and k = 0

4: for τ ∈ Qf do
5: Compute

vk+1(τ ) = min
S∈Af

{
C(τ , S)+ vk(F (τ , S))

}
(20)

6: end for
7: vk+1

← vk+1
− vk+1(τ̄ ) · 1|Qf |

8: if max(vk+1(τ )− vk(τ ))−min(vk+1(τ )− vk(τ )) ≤ ϵ then
9: Go to Step 13
0: else
1: k← k+ 1 and return to Step 4
2: end if
3: For each τ ∈ Qf , set

π∗(τ ) = arg min
S∈Af

{
C(τ , S)+ vk(F (τ , S))

}

(i) Split Vs into M disjoint subsets Ṽ ≜ {V1, . . . ,VM}.
(ii) Define the bounds δ̃j ≜ min{δi : i ∈ Vj}, j = 1, . . . ,M .
(iii) Define the state space

Q̃ ≜ {τ ∈ NM
0 : τ [j] = 0, . . . , δj, j = 1, . . . ,M}

and the action space Af (τ ).
(iv). Define the cost

C̃(τ , S) ≜
N∑
i=1

tr
(
hτ [j(i)]
i (0)

)
+ Emin(S)

where j(i) indicates the subset j in Ṽ to which sensor i
belongs.

We compute the R-MDP schedule by calling Algorithms 1 and 1
with M replaced by M̃.

4.2. Fixed-period algorithm

The idea of our second algorithm is to fix the transmission
period of each sensor obtained by solving smaller MDPs. Then
the whole schedule is obtained by combining all such schedules.
The procedure is given by the fixed period algorithm (FPA) in
Algorithm 3.

Let us denote the sensor selection obtained by Algorithm 3
as SFPA,k. For this algorithm, we have the following result.

Proposition 1. Suppose that the data aggregation rate r = 0. Then
the schedule obtained by Algorithm 3 is optimal, i.e.,

lim
T→∞

1
T

T−1∑
k=0

C(τk, SFPA,k) = ρ∗.

Proof. We have E(Ck) =
∑

e∈E
∑

i∈Vs
η(e)z(i)k (e), which means

that the energy consumption E(Ck) is a linear combination of z(i)k (e)
That is, we have

Emin(SFPA,k) =
∑
i∈Vs

σi(S
(i)
FPA,k)Emin({i})

where σ (S) = 1 if i ∈ S , otherwise 0. Then we have
i

8

Algorithm 3 Fixed Period Algorithm

1: INPUT: η(e)
2: OUTPUT: {SFPA,k}

D
k=0

3: for i ∈ Vs do
4: Compute Emin({i})
5: Set Mi = (Qi,Ai, F (·, ·), C(·, ·)) with Qi = {τi ∈ N0 : τi =

0, . . . , δi} and Ai = {∅, i}
6: Solve Mi and compute a period Di
7: Set

S(i)
FPA,k =

{
{i}, if k ≡ 0 mod Di

∅, if k ̸≡ 0 mod Di

8: end for
9: Compute D, the least common multiple of Di, i = 1, . . . ,N
0: for k = 0, 1, . . . ,D do
1: Set SFPA,k =

⋃
i∈Vs

S(i)
FPA,k

2: Compute Emin(SFPA,k)
3: end for

C(τ , SFPA,k)

=

∑
i∈Vs

tr
(
hτ [i]
i (0)

)
+ Emin(SFPA,k)

=

∑
i∈Vs

[
tr

(
hτ [i]
i (0)

)
+ σi(S

(i)
FPA,k)Emin({i})

]
.

hus, minimization of

lim
→∞

1
T

T−1∑
k=0

[
tr

(
hτ [i]
i (0)

)
+ σi(S

(i)
FPA,k)Emin({i})

]
or each i ∈ Vs yields the minimum cost. This completes the
roof. □

. Numerical examples

In this section, we present three numerical examples to illus-
rate our results in this paper. In the first example, we evaluate
he performance of the R-MDP and FPA schedules by comparing
hem with the optimal one for the small network depicted in
ig. 1. In the second example, we provide a larger network, and
how that the two suboptimal algorithms can obtain the sched-
les efficiently even if the size of the original MDP is too large
o efficiently compute the optimal schedule. The third example
hows that these suboptimal schedules are scalable to networks
onsisting of a hundred nodes.

.1. Optimal and suboptimal schedules for a small network (N = 3)

To see the performances of the proposed algorithms, we con-
sider the small network depicted in Fig. 1. The system parameters
of the three plants are

A1 =

[
1.3 1.2
0 1.4

]
, A2 =

[
1.5 0.8
0 1.2

]
, A3 =

[
3.5 2.0
0 3.1

]
,

with Wi = 0.1I2, for i = 1, 2, 3 where I2 is the 2 × 2 identity
matrix. For communication parameters, we assume that Eelec =
Eamp = 1, c = 1, βi = 1 for i = 1, 2, 3, d((1, 0)) = d((2, 0)) =
d((1, 3)) = d((2, 3)) = 1, and r = 0.5. The action set consists of
every possible subset of sensors selected to transmit accompanied
by all possible routes as shown in Table 1.



T. Iwaki, J. Wu, Y. Wu et al. Automatica 127 (2021) 109498

A
s

O

o
E
a

{

f
a
w

P

a
s
o
T
W
w

r

Table 1
All possible sensor selections and their routes to the gateway for
the network in Fig. 1.
Action index Sensor selection Path

0 ∅ –
1 1 1→ 0
2 1 1→ 3→ 2→ 0
3 2 2→ 0
4 2 2→ 3→ 1→ 0
5 3 3→ 1→ 0
6 3 3→ 2→ 0
7 1, 2 1→ 0, 2→ 0
8 1, 2 1→ 3→ 2→ 0
9 1, 2 2→ 3→ 1→ 0
10 2, 3 3→ 2→ 0
11 2, 3 3→ 1→ 0, 2→ 0
12 2, 3 2→ 3→ 1→ 0
13 3, 1 3→ 1→ 0
14 3, 1 3→ 2→ 0, 1→ 0
15 3, 1 1→ 3→ 2→ 0
16 1, 2, 3 3→ 1→ 0, 2→ 0
17 1, 2, 3 3→ 2→ 0, 1→ 0
18 1, 2, 3 1→ 3→ 2→ 0
19 1, 2, 3 2→ 3→ 1→ 0

Table 2
The optimal paths for each sensor selection.
Sensor selection Optimal path Energy cost

∅ – 0
1 1→ 0 1
2 2→ 0 1
3 3→ 1→ 0 3
1, 2 1→ 0, 2→ 0 2
2, 3 3→ 2→ 0 3.5
1, 3 3→ 1→ 0 3.5
1, 2, 3 3→ 1→ 0, 2→ 0 4.5

Fig. 4. Three schedules obtained by the proposed optimal and suboptimal
lgorithms. Top: Optimal schedule, middle: R-MDP schedule, bottom: FPA
chedule.

ptimal schedule
First, we derive the optimal schedule. Algorithm 1 gives the

ptimal paths and their energy costs, see Table 2. By the value of
min({i}), i = 1, 2, 3, we obtain the bounds of the MDP state space
s δ1 = 3, δ2 = 4, δ3 = 3 with Theorem 3. Then we can find the

optimal schedule by Algorithm 1. The result is shown in Fig. 4
(top). The period of the optimal schedule is 8 in which actions 0,
1, 3, 10, and 13 from Table 1 are taken.
9

Table 3
Averaged costs and the sizes of MDP.

Averaged cost |Q| |A|

Optimal 4.09 80 8
R-MDP 4.17 16 4
FPA 4.35 ≤5 ≤2

Fig. 5. Estimation performance comparison of the three schedules: optimal
(red), R-MDP (green), and FPA (blue). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. The averaged cost J of the optimal, R-MDP and FPA schedules with
respect to the data aggregation rate r for the network with N = 3.

R-MDP schedule
Next, we formulate an R-MDP by setting V1 = {1} and V2 =

2, 3}. Then we have δ1 = 3 and δ2 = 3. The obtained schedule
is shown in Fig. 4 (middle). It has period 6 with actions 0, 1,
10, and 16. We can see that sensors 2 and 3 are always selected
together.

FPA schedule
We derive an FPA schedule by Algorithm 3. Now we have

Emin({1}) = Emin({2}) = 2, and Emin({3}) = 5, with which we
ormulate MDP Mi for i = 1, 2, 3. Then we obtain the fixed
ctivation period for each sensor: D1 = 3, D2 = 3, and D3 = 2,
hich yields the period 6 schedule as shown in Fig. 4 (bottom).

erformance evaluation
The averaged cost and the sizes of the MDPs for each schedule

re summarized in Table 3. We can see that the R-MDP and FPA
chedules obtain similar performances compared to the optimal
ne even though the sizes of the MDPs are considerably reduced.
he estimation performance

∑
i∈Vs

ϵ
(i)⊤
k ϵ

(i)
k is plotted in Fig. 5.

e can conclude that the proposed suboptimal schedules obtain
ell-performing schedules.
We show the averaged cost of these three schedules with

espect to the data aggregation rate r in Fig. 6. It confirms
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Fig. 7. A sensor network with N = 9 sensors.
Table 4
Averaged costs, periods, sizes of MDP.

Averaged cost Period |Q| |A|

R-MDP1 180.63 12 400 16
R-MDP2 180.76 12 840 16
FPA 184.20 60 ≤6 ≤2

Proposition 1, i.e., the averaged cost of the FPA schedule is
optimal when r = 0 and this averaged cost is the upper bound
f the FPA averaged cost for any r . The difference of the av-
raged costs of the optimal and FPA schedules increases with
ncreasing r , since the optimal schedule receives benefit of the
ata aggregation. In Fig. 4, the FPA schedule takes action 5 once
n a period, i.e., sensor 3 is selected alone. However, this is not
ffective in terms of the energy cost since the data cannot be
ggregated even though it passes through sensor 1. In the optimal
chedule in Fig. 4, sensor 3 is always selected together with
ensor 1 (action 13) or with sensor 2 (action 10). The R-MDP
chedule results in larger costs for any r . However, the cost is
lose to that of the FPA schedule if r = 1, since the R-MDP still
ries to take advantage of the data aggregation.

.2. Suboptimal schedules for a larger network (N = 9)

To see the performances of the proposed suboptimal schedul-
ing algorithms in a more realistic situation, we consider the
network shown in Fig. 7. The network consists of N = 9 sen-
sors distributed over a square field and a gateway at the origin.
The sensors can communicate with the other sensors when the
distances are shorter than dmax = 4. The plants are given by

A1 =

[
2.3 1.2
0 1.9

]
, A2 =

[
2 0
0 1.6

]
, A3 =

[
3 2.4
2.2 3.5

]
,

A4 =

[
1.4 0.2
0.5 1.5

]
, A5 =

[
2.3 0.5
0.2 1.4

]
, A6 =

[
2.2 0
0 2

]
,

7 =

[
2.5 0.2
1.2 2.2

]
, A8 =

[
2.1 1.2
0 1.5

]
, A9 =

[
3.5 3.6
2.3 3.5

]
,

ith Wi = 0.1I2, for i = 1, . . . , 9, Eelec = Eamp = 1, c = 4, βi = 1
or i = 1, . . . , 9, and r = 0.5. The bounds of the MDP states are
btained as δ1 = 4, δ2 = 6, δ3 = 3, δ4 = 6 δ5 = 5, δ6 = 6,
7 = 4, δ8 = 5, and δ9 = 3. This means that the original MDP
roblem is computationally expensive to solve as the size of its
tate space is of the order of

∏N
i=1 δi ∼ 106. The averaged cost

nd size of the MDPs are summarized in Table 4. R-MDP1 uses R-
DP algorithm with grouping sensors based on their locations in
10
Fig. 8. The averaged cost of the two reduced MDP schedules and the FPA
schedule with respect to the data aggregation rate r for the network with N = 9
sensors.

Fig. 9. A sensor network with N = 99 sensors. Black dots represent sensors and
the red one the gateway. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

order to take advantage of the data aggregation, i.e., we include
sensors placed in the near distance into the same set. We take
V1 = {1, 2},V2 = {3, 5},V3 = {4, 7}, and V4 = {6, 8, 9}. For
R-MDP2, we make sensor sets based on the bound δi to avoid
too many or too few transmissions with respect to the divergence
speed of each error covariance, i.e., sensors with close bounds are
included in the same sets. We use V1 = {1, 7},V2 = {3, 9},V3 =

{5, 8}, and V4 = {2, 4, 6}. The FPA schedule is obtained from small
MDPs Mi, i = 1, . . . , 9. The obtained FPA schedule generated by
D1 = 4, D2 = 6, D3 = 3, D4 = 6, D5 = 5, D6 = 6, D7 = 4, D8 = 5,
and D9 = 3 has period 60.

Fig. 8 shows the averaged costs of the three schedules with
respect to r . As in Proposition 1, the FPA schedule is optimal
when r = 0. Thus, it has a near optimal performance if r is
small. The performance further degrades compared to the R-
MDPs when r is large. Both approaches for the R-MDP schedules
reduce cost when r is large. The R-MDP2 has a comparatively
better performance regardless of the value of r . It implies that
a way group sensors influence the performance.

5.3. Suboptimal schedules for a large network (N = 99)

To see the scalability of the proposed suboptimal scheduling
algorithms, we consider the larger network shown in Fig. 9. The
network consists of N = 99 sensors distributed over a square
field (black dots) and a gateway at the center of the field (red dot).
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Table 5
Averaged costs, periods, sizes of MDP.

Averaged cost Period |Q| |A|

R-MDP 15300.9 5 252 8
FPA 15498.6 2520 ≤ 10 ≤ 2

Fig. 10. The averaged cost of the two reduced MDP and the FPA schedules with
respect to the data aggregation rate r for the network with N = 99.

or the R-MDP algorithm, we divide sensors into three subgroups,
o that the number of states is reduced to 252 when r = 0.5
(Table 5). The FPA schedule can also be obtained by solving 99
small MDPs where the maximum number of the states is 10. The
period of the FPA schedule is 2520. However, the period may
further increase in some cases since it is derived by taking the
least common multiple among Di, i ∈ Vs. In this case, it is difficult
o obtain the actual performance J since we need to recompute
min(SFPA,k) in step 12 of Algorithm 3. Fig. 10 shows the averaged
osts of the two schedules with respect to r . Similar to previous
xamples, the FPA algorithm results in better schedules when r
s small while the R-MDP does better when r is large.

. Conclusion

In this paper, we proposed a co-design framework of multi-
op network scheduling for remote estimation. We formulated
n optimization problem minimizing an infinite-time averaged
stimation error covariance with sensor energy consumption. We
howed that the problem can be divided into two subproblems by
xploiting necessary conditions for network scheduling optimal-
ty. An existence condition for a periodic optimal solution was
erived. To reduce the computational complexity, we proposed
wo alternative algorithms to obtain suboptimal schedules. It
as demonstrated how the proposed algorithms are effective in
umerical examples.
There are several possible directions to extend this work. Fur-

her analysis of constructing suboptimal schedules will be inter-
sting. Especially, how to group the sensors to obtain an effective
uboptimal schedule is still an open problem. Considering delay
nd packet dropouts induced by wireless communication will be
mportant to include in future studies. Furthermore, introducing
his framework to the existing industrial wireless communication
rotocols, e.g., WirelessHART or ISA-100, is to be considered, and
hen taking into account more practical constraints, such as the
umber of timeslots in a superframe.

ppendix A. Proof of Theorem 1

To prove Theorem 1, we need the following definition and
upporting lemmas.
11
Definition 1 (Total Unimodular Matrix Schrijver, 2003). A square
integer matrix is unimodular if it has determinant +1 or −1. A
matrix is totally unimodular if every square non-singular subma-
trix of it is unimodular.

Lemma 4. Let X be a totally unimodular matrix. Then the following
matrices are also totally unimodular:

(i) diag(X, . . . , X),

(ii)
[

X
I

]
and

[
X
−I

]
,

(iii)
[

X −X
]
and

[
X
−X

]
.

emma 5 (Papadimitriou & Steiglitz, 1998). If A is totally unimodu-
ar, then all the vertices of the polyhedron {x : Ax ≤ b} are integers
for any integer vector b.

Proof of Theorem 1. First, we transform Problem 2 into an
integer linear problem by introducing t(e) = maxi∈Vs z

(i)
k (e) and

the constraint z(i)k (e) ≤ t(e) for i ∈ Vs and e ∈ E . We show that
relaxing 0 ≤ z(i)k (e) ≤ 1 still obtains a binary integer solution.

The constraints (15)–(17) can be written in a compact form

{zk : Gzk ≤ b}

where b = [b(Sk)⊤, . . . ,−b(Sk)⊤, 1, . . . , 1, 0, . . . , 0]⊤ with b
(Sk)⊤ = [b(1)(Sk)⊤, . . . , b(N)(Sk)⊤]⊤ and

G ≜

⎡⎢⎣ diag(G, . . . ,G)
−diag(G, . . . ,G)

I
−I

⎤⎥⎦ .

he matrix G is the node–arc incidence matrix of G, therefore it
is totally unimodular. Then by Lemma 4, G is totally unimodular.
Fixing t(e) to 0 or 1 for all e ∈ E , zk obtains the integer solution
f the corresponding linear problem is feasible (Lemma 5). Thus,
minimizer of Problem 2 is equal to that of Problem 3. This

ompletes the proof. □

ppendix B. Proof of Theorem 2

To prove Theorem 2, we define a standard policy. Consider a
arkov chain with countable infinite state space Q. Let us denote

n
q1,q2 by the probability that the state that is currently at q1 will
e q2 for the first time exactly after n ≥ 1 transitions. That is,
n
q1,q2 = Pr(τk ̸= q2, k = 1, . . . , n− 1, τn = q2|τ0 = q1).

he expected first passage time (Sennott, 2009) tτ ,z is denoted as

q1,q2 =

∞∑
n=1

npnq1,q2 ,

nd the corresponding averaged total cost, called the expected
irst passage cost (Sennott, 2009) is denoted by cq1,q2 .

efinition 2 (Sennott, 2009). A randomized stationary policy π
s a standard policy if there exists a state z ∈ Q such that the
xpected first passage time tτ ,z from τ to z satisfies tτ ,z <∞ for
ll τ ∈ Q, and the expected first passage cost cτ ,z from τ to z
atisfies cτ ,z <∞ for all τ ∈ Q.

emma 6 (Sennott, 2009, Corollary 7.5.10). Assume that the follow-
ng conditions hold:

(i) There exists a standard policy π such that the positive recur-
rent class induced by π is equal to Q.



T. Iwaki, J. Wu, Y. Wu et al. Automatica 127 (2021) 109498

T
a

P
2
s
θ

z
p

t

N
E

c

T
1
F
H

C
s
f
a
T
e
p

θ

w
c

i

A

L
T
i

P
i
m

t

P
t
C
a
F
a
f
C
p
s

V

τ
a
i

H

I
o
w

H

B
w
o

R

A

A

A

B

C

(ii) Given U > 0, the set QU = {τ : C(τ , S) ≤ U for some S} is
finite.

hen there exists a solution to the Bellman equation (19) for the
verage cost problem with countable infinite state space Q.

roof of Theorem 2. The proof follows (Leong, Dey & Quevedo,
017) by considering a randomized policy π such that at any
tates sensor i transmits its measurement with probability θi and
≜

∏
i∈Vs

θi satisfies 1 − 1/λ2
max(Ai) < θ < 1 for all i ∈ Vs. Let

= [0, . . . , 0] ∈ NN
0 , then at any states it comes back to z with

robability θ . Thus,

τ ,z = θ + 2(1− θ )θ + 3(1− θ )2θ + · · · =
1
θ

<∞.

otice that cτ1,z ≤ cτ2,z if τ1[i] ≤ τ2[i],∀i and Emin(S1 ∪ S2) ≤
min(S1)+ Emin(S2), the expected average cost is

τ ,z ≤
∑
i∈Vs

tr
(
hτ [i]
i (0)

)
+ (1− θ )

[
cτ+1N ,z +

∑
i∈Vs

Emin({i})

]
+ θ

∑
i∈Vs

Emin({i})

=

∑
i∈Vs

tr
(
hτ [i]
i (0)

)
+

∑
i∈Vs

Emin({i})+ (1− θ )cτ+1N ,z

=

∞∑
n=0

(1− θ )n
[∑

i∈Vs

tr
(
hτ [i]+n
i (0)

)
+

∑
i∈Vs

Emin({i})

]

=

∞∑
n=0

(1− θ )n
∑
i∈Vs

tr
(
hτ [i]+n
i (0)

)
+

1
θ

∑
i∈Vs

Emin({i})

<∞

he boundedness of the last inequality holds from the assumption
− 1/λ2

max(Ai) < θ < 1 (Schenato, 2008; Schenato, Sinopoli,
ranceschetti, Poolla, & Sastry, 2007; Xu & Hespanha, 2005).
ence, π is a standard policy.
Next, we show that the positive recurrent class is equal to Q.

onsider an arbitrary state τ ∈ Q. This state is reachable from
tate z after τmax ≜ maxi{τ [i]} by letting sensor i transmit its data
or the first τmax−τ [i] transitions and not transmit τ [i] transitions
fter that. Let us denote the probability of this realization as θ ′.
hen, for any state τ , one can return to this state with probability
qual to or higher than θ ′′ ≜ θ · θ ′ after τmax transitions. Thus, the
robability that one returns to the state τ is
′′
+ (1− θ ′′)θ ′′ + (1− θ ′′)2θ ′′ + · · · = 1,

hich shows that the recurrent class is equal to Q, hence the first
ondition is verified.
The second condition is verified as C(τ , S) is monotonically

ncreasing in τ . □

ppendix C. Proof of Theorem 3

To prove Theorem 3, we first present the following lemma.

emma 7. Suppose that Assumption 3 holds. Consider MDP M.
hen, for all i ∈ Vs, there exists a time instance k ∈ N0 such that
∈ π∗(τk).

roof. It is obvious since no transmission policy is never optimal
f the process is unstable or the process is stable but the trans-
ission cost is lower than the steady-state estimation error. □
12
Next, we introduce a partial order over the state space Q. For
he states τ , τ ′ ∈ Q, we say τ ≻ τ ′ if τ [i] > τ ′[i] for all i ∈ Vs.

roof of Theorem 3. Proof is given by contradiction. Suppose
hat π∗ is an optimal policy with i ̸∈ π∗(τ ) where τ [i] ≥ δi.
onsider a policy π ′ such that i ∈ π ′(τ ), but all the other sensors
re selected as same as π∗(τ ). Let τ ∗1 ≜ F (τ , π∗(τ )) and τ ′1 ≜
(τ , π ′(τ )) be the next state of τ according to the policy π∗

nd π ′, respectively. Obviously, τ ∗1 ≻ τ ′1 since τ ∗1 [j] = τ ′1[j]
or j ̸= i, and τ ∗1 [i] = τ ∗[i] + 1, τ ′1[i] = 0. Define V (τ , S) ≜
(τ , S) + H(F (τ , S)), then by the Bellman principle, the optimal
olicy π∗ needs to satisfy V (τ , π∗(τ ))− V (τ , π ′(τ )) < 0. We will
how that π∗ contradicts this principle. Now, we have

(τ , π∗(τ ))− V (τ , π ′(τ ))
= C(τ , π∗(τ ))+ H(τ ∗1 )− C(τ , π ′(τ ))− H(τ ′1)

=

∑
j∈Vs

tr
(
h

τ∗1 [j]
j (0)

)
−

∑
j∈Vs

tr
(
h

τ ′1[j]
j (0)

)
+ Emin(π∗(τ ))− Emin(π ′(τ ))+ H(τ ∗1 )− H(τ ′1)

= tr
(
hτ [i]+1
i (0)

)
+ Emin(π∗(τ ))− Emin(π∗(τ ) ∪ {i})

+ H(τ ∗1 )− H(τ ′1)

≥ tr
(
hδi
i (0)

)
− Emin({i})+ H(τ ∗1 )− H(τ ′1)

> H(τ ∗1 )− H(τ ′1). (C.1)

The first inequality holds due to the subadditivity of Emin(·).
Let S∗1 ≜ π∗(τ ∗1 ) be the action given by the optimal policy at
state τ ∗1 . Consider a policy π ′1 such that π ′1(τ

′

1) = S∗1 . Also let
∗

2 ≜ F (τ1, π∗(τ ∗1 )) and τ ′2 ≜ F (τ ′1, π
′

1(τ
′

1)) be the next state of τ ∗1
ccording to π∗ and that of π ′1 according to π ′1, respectively. The
nequality (C.1) continues

(τ ∗1 )− H(τ ′1)
= C(τ ∗1 , π∗(τ ∗1 ))+ H(F (τ ∗1 , π∗(τ ∗1 )))
− C(τ ′1, π

∗(τ ′1))− H(F (τ ′1, π
∗(τ ′1)))

≥ C(τ ∗1 , π∗(τ ∗1 ))+ H(F (τ ∗1 , π∗(τ ∗1 )))
− C(τ ′1, π

′

1(τ
′

1))− H(F (τ ′1, π
′

1(τ
′

1)))
≥ C(τ ∗1 , S∗1 )− C(τ ′1, S

∗

1 )+ H(τ ∗2 )− H(τ ′2)

= tr
(
h

τ∗2 [i]
i (0)

)
− tr

(
h

τ ′2[i]
i (0)

)
+ H(τ ∗2 )− H(τ ′2)

> H(τ ∗2 )− H(τ ′2). (C.2)

f i ∈ S∗1 , then we have τ ∗2 [i] = τ ′2[i] = 0, i.e., τ ∗2 = τ ′2. Then we
btain V (τ , π∗(τ )) − V (τ , π ′(τ )) > 0. If i ̸∈ S∗1 , repeating (C.2),
e have

(τ ∗1 )− H(τ ′1) > · · · > H(τ ∗n )− H(τ ′n) > · · · .

y Lemma 7, we have a time instance k such that i ∈ S∗k . Thus,
e have V (τ , π∗(τ )) − V (τ , π ′(τ )) > 0 and this contradicts the
ptimality of π∗. □
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