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Abstract— In this paper we introduce a discrete time compet-
ing virus model and the assumptions necessary for the model
to be well posed. We analyze the system exploring its different
equilibria. We provide necessary and sufficient conditions for
the estimation of the model parameters from time series data
and introduce an online estimation algorithm. We employ
a dataset of two competing subsidy programs from the US
Department of Agriculture to validate the model by employing
the identification techniques. To the best of our knowledge, this
work is the first to study competing virus models in discrete-
time, online identification of spread parameters from time series
data, and validation of said models using real data. These new
contributions are important for applications since real data is
naturally sampled.

I. INTRODUCTION

As the world becomes more connected via transportation
networks, communication networks, social media, and oth-
ers, society become more susceptible to various types of
attacks such as diseases, viruses, and misinformation (fake
news). This vulnerability has been highlighted by the ongo-
ing COVID-19 pandemic [1]–[3]. We have also witnessed
the massive impacts that the spread of misinformation can
have on public health [3], [4] and political systems [5], [6].
Therefore, it is important to develop models that capture
the behavior of competing spreading processes to be able
to design and implement mitigation techniques.

Competing virus models have been motivated in the lit-
erature by competing viral strains [7] and competing ideas
spreading on different social networks [8], but they can also
have broader applications to political stances, adoption of
competing products, competing practices in farming, etc.
Competing SIS (susceptible-infected-susceptible) virus mod-
els have been studied extensively in recent years [7]–[18].
In [7], the idea of modeling two competing viruses was
introduced without any graph structure. The more recent
works have included graph structure. The majority of this
work has focused on the case of two competing viruses,
sometimes referred to as the bi-virus model [8]–[15]. Some
work has analyzed the equilibria of models of an arbitrary
number of competing viruses [16]–[18]. To the best of our
knowledge all of the previous work on competing viruses
has been done in continuous time.

Discrete time models have been studied for the single virus
model [19]–[25]. In [22]–[25] identification of a single virus
discrete time spread processes was investigated. In [25], in
addition to recovering the homogeneous spread parameters
the authors studied recovering the network structure of
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the model, but no real data was employed. In [22]–[24],
validation work was carried out using real data. One dataset
used in [22], [23] was the adoption of two competing US
Department of Agriculture (USDA) farm subsidy programs.
We employ that dataset here but use a two-competing virus
(bi-virus) model. The results show that the model fits the
dataset much better than when using a single virus model.

In many ways this paper is an extension of [22], [23],
generalizing from a single virus discrete model to multiple
competing viruses. However, the proofs are different in
several of the cases. New insights into the discrete time
model are presented via simulations. Finally, the data results
from [22], [23] are improved by using a two-competing virus
model. The paper is organized as follows: in Section II, the
competing virus spread model is introduced. In Sections III
and IV, we analyze and present necessary and sufficient con-
ditions for learning the parameters of the model, respectively.
In Section V, we validate the results from Sections III and
IV via simulation and propose an online spread parameter
estimation algorithm. In Section VI, we implement the ideas
from Sections IV and V on the USDA farm subsidy dataset.
Due to length constraints, the majority of the proofs are
omitted; please find the proofs in [26].
A. Notation

Given a vector function of continuous time x, ẋ indicates
the time-derivative. Given a vector function of discrete time
x[t], t is the time index. Given a vector x ∈ Rn, the 2-norm
is denoted by ‖x‖ and the transpose by x>. The vector of all
equal zeros is denoted by 0. Given two vectors x1, x2 ∈ Rn,
x1 > x2 indicates each element of x1 is greater than or
equal to the corresponding element of x2 and x1 6= x2, and
x1 � x2 indicates each element of x1 is strictly greater than
the corresponding element of x2. Given a matrix A ∈ Rn×n,
the spectral radius is ρ(A). Also, aij indicates the i, jth entry
of the matrix A, and ‖A‖F indicates the Frobenius norm of
A. The notation diag(·) refers to a diagonal matrix with the
argument(s) on the diagonal; the argument can be a vector
x or its elements xi. For n ∈ Z+, [n] := {1, ..., n}.

II. COMPETING VIRUS MODEL
We introduce a discrete-time multi-virus competing model.

The model can be derived from the continuous-time model,
where, for each virus k ∈ [m], xki is the infection level of
the ith agent (which can be interpreted as the probability of
agent i being infected or the proportion of subpopulation i
that is infected) and evolves as

ẋki = (1− x1i − · · · − xmi )

n∑
j=1

βkijx
k
j − δixki , (1)

where βkij > 0 are the infection rates and non-negative, edge
weights between the agents/groups and δki > 0 is the healing



rate, both associated with virus k ∈ [m] and for agent i.
Applying Euler’s method [27] to (1) gives

xki [t+ 1] = xki [t]+h((1− x1i [t]− · · · − xmi [t])

n∑
j=1

βkijx
k
j [t]

− δki xki [t]), (2)
where t is the time index and h > 0 is the sampling
parameter. We can write (2) in matrix form

xk[t+1] = xk[t]+h((I−X1−· · ·−Xm)Bk−Dk)xk[t], (3)

where Xk = diag(xk[t]), Bk is the matrix of βkij , and Dk =
diag(δki ). Note that Bk is not symmetric in general.

For the model to be well defined we introduce several
assumptions.

Assumption 1. For all i ∈ [n] and k ∈ [m], we have
xki [0], (1− x1i [0]− · · · − xmi [0]) ∈ [0, 1].

Assumption 2. For all i ∈ [n] and k ∈ [m], we have δki ≥ 0
and, for all j ∈ [n], βkij ≥ 0.

Assumption 3. For all i ∈ [n] and k ∈ [m], we have hδki ≤
1 and h

∑m
k=1

∑n
j=1 β

k
ij ≤ 1.

Lemma 1. For the system in (3), under the conditions of
Assumptions 1, 2, and 3, xki [t], (1−x1i [t]−· · ·−xmi [t]) ∈ [0, 1]
for all i ∈ [n], k ∈ [m], and t ≥ 0.

Lemma 1 implies that the set

D =

{
(x1, . . . , xm) | xk ≥ 0, k ∈ [m],

m∑
k=1

xk ≤ 1

}
(4)

is positively invariant with respect to the system defined
by (3). Since xki denotes the probability of infection of
individual i by virus k, or the fraction of group i infected
by virus k, and 1 − x1i − · · · − xmi denotes the probability
of individual i being healthy, or the fraction of group i that
is healthy, it is natural to assume that their initial values are
in the interval [0, 1], since otherwise the values will lack
any physical meaning for the epidemic model considered
here. Therefore, we focus on the analysis of (3) only on the
domain D.

We need an assumption to ensure non-trivial virus spread.

Assumption 4. We have B 6= 0, h 6= 0, and n > 1.

III. ANALYSIS
Definition 1. Consider an autonomous system

x[t+ 1] = f(x[t]), (5)
where f : X → Rn is a locally Lipschitz map from a
domain X ⊂ Rn into Rn. Let x̃ be an equilibrium of (5)
and E ⊂ X be a domain containing x̃. If the equilibrium x̃
is asymptotically stable such that for any x[0] ∈ E we have
lim
t→∞

x[t] = x̃, then E is said to be a domain of attraction
for x̃.

Proposition 1. Let x̃ be an equilibrium of (5) and E ⊂ X
be a domain containing x̃. Let V : E → R be a continuously
differentiable function such that V (x̃) = x̃, V (x) > 0 for
all x in E \ {x̃}, and ∆V [t] := V (x[t + 1]) − V (x[t]) < 0
for all x[t] in E \ {x̃}. If E is a positively invariant set, then

the equilibrium x̃ is asymptotically stable with a domain of
attraction E .

This proposition is a direct consequence of Lyapunov’s
stability theorem for discrete-time systems and the definition
of domain of attraction.

Finally, we need an assumption on the structure of the Bk

matrices. A square matrix is called irreducible if it cannot
be permuted to a block upper triangular matrix.

Assumption 5. For all k ∈ [m], Bk is irreducible.

Note that this assumption is equivalent to the underlying
graph being strongly connected. We have the following result
about the healthy state, where xki = 0 for all i ∈ [n], k ∈ [m].

Theorem 1. Suppose that Assumptions 1-5 hold for (3). If
ρ(I − hDk + hBk) ≤ 1 for all k ∈ [m], then the healthy
state is asymptotically stable with domain of attraction D,
as defined in (4).

Proposition 2. Suppose that Assumptions 1-5 hold. If ρ(I−
hDk +hBk) > 1 for all k ∈ [m], then (3) has at least k+ 1
equilibria, 0, (x̃1,0, . . . ,0), . . . , (0, . . . ,0, x̃m), where, for
each k ∈ [m], x̃k � 0.

We have the following corollary.

Corollary 1. Suppose that Assumptions 1-5 hold. If ρ(I −
hDk+hBk) ≤ 1 for all k ∈ [m]\{l} and ρ(I−hDl+hBl) >
1, then (3) has two equilibria 0 and (0, . . . ,0, x̃l,0, . . . ,0)
with x̃l � 0. Furthermore, 0 is asymptotically stable
with domain of attraction equal to {(x1, . . . , xm)|xl =
0 and xk ∈ [0, 1]n ∀k 6= l} and (0, . . . ,0, x̃l,0, . . . ,0) is
locally asymptotically stable.

From Theorem 1 and Proposition 2, we have the following
result.

Theorem 2. Under Assumptions 1-5, the healthy state is
the unique equilibrium of (3) if and only if ρ(I − hDk +
hBk) ≤ 1 for all k ∈ [m].

IV. LEARNING SPREAD PARAMETERS

In this section, we clearly lay out the assumptions and the
identification techniques for the multi-virus model. For this
section we use a slightly different version of (3), where we
factor βkij into βki a

k
ij as

xk[t+1] = xk[t]+h((I−X1−· · ·−Xm)BkAk−Dk)xk[t],
(6)

where Bk = diag(βki ) and Ak is the matrix of akij .

Remark 1. If the system has homogeneous spread param-
eters, that is, βki = βkj and δki = δkj for all i, j ∈ [n], the
condition in Theorems 1-2 reduces to ρ(A) ≤ δk

βk .

We start by assuming that the underlying graph structures
Ak are known and that we have full-state measurement with
no noise on the measurements, which we admit are strong
assumptions. However, for the dataset used in Section VI
these assumptions are well-founded because we aggregate
the data by county and the adjacency of counties is known,



i.e., the graph structure is known, and any farmer that
received a subsidy payout is in the dataset, i.e., there are
no hidden, unmeasured states. We will relax the no-noise
assumption in the Simulations Section (see Section V).

We present several results on learning the spread param-
eters of the model in (2) from data. The following result is
an improvement of Theorem 3 in [23].

Theorem 3. Consider the model in (3) under Assumptions
1-5 with virus k having homogeneous spread, that is, βk and
δk are the same for all agents. Assume that Ak, xk[t], for
all t ∈ [T ] ∪ {0}, k ∈ [m], and h are known. Then, βk and
δk can be identified uniquely if and only if T > 0, and there
exist i, j ∈ [n] and t1, t2 ∈ [T − 1] ∪ {0} such that

xki [t1]gj(x
k[t2]) 6= xkj [t2]gi(x

k[t1]), (7)

where g(xk[t]) := (I −X1[t]− · · · −Xm[t])Akxk[t].

Proof: Since xk[0], . . . , xk[T − 1], and Ak are known,
using (6) we can construct the matrix Φk, defined as, (I −X1[0]− · · · −Xm[0])Akxk[0] −xk[0]

...
...

(I −X1[T − 1]− · · · −Xm[T − 1])Akxk[T − 1] −xk[T − 1]

 .

(8)
Therefore, since we also know xk[T ] and h, we can rewrite
(3) as  xk[1]− xk[0]

...
xk[T ]− xk[T − 1]

 = hΦk
[
βk

δk

]
. (9)

Since n > 1, Φk has at least two rows. By the assumption
that there exist i, j ∈ [n] and t1, t2 ∈ [T − 1] ∪ {0} such
that (7) holds, Φk has column rank equal to two, with two
unknowns. Therefore there exists a unique solution to (9)
using the inverse or pseudoinverse.

If there do not exist i, j ∈ [n] and t1, t2 ∈ [T − 1] ∪
{0} such that (7) holds, then Φk has a nontrivial nullspace.
Therefore (9) does not have a unique solution.

Note that t1 and t2 from Theorem 3 could both equal zero
and the condition in (7) could still hold, that is, recovery of
the spread parameters may be possible with only two time
series points. Now we present two corollaries where hβk and
hδk, denoted by βkh and δkh, respectively, can be recovered.

Corollary 2. Consider the model in (3) under Assumptions
1-5 with homogeneous virus spread. Assume that Ak and
xk[0], . . . , xk[T ] are known. Then, βkh and δkh can be iden-
tified uniquely for every k ∈ [m] if and only if T > 0 and
there exist i, j ∈ [n] and t1, t2 ∈ [T − 1] ∪ {0} such that
xki [t1]gj(x

k[t2]) 6= xkj [t2]gi(x
k[t1]).

This corollary illustrates that under certain conditions,
while the exact behavior of the system may not be recover-
able the limiting behavior of the system may be determined,
by employing Theorems 1-2 with Remark 1.

If the assumption is made that the underlying spread
process is heterogeneous, we have a similar condition, an
improvement of Theorem 4 in [23].
Theorem 4. Consider the model in (2) under Assumptions

(a) The system at
time zero.

(b) The system at
time 100.

(c) The system at
time 10000.

Fig. 1: This homogeneous virus system follows (2) with
β1 = 1, β2 = 0.01 δ1 = 0.1, δ2 = 0.1, h = 0.05, and
A depicted by the edges.

1-5. Assume that xk[t], xli[t] for all t ∈ [T−1]∪{0}, l ∈ [m],
Ak, xki [T ], and h are known. Then, the spread parameters
of virus k for node i can be identified uniquely if and only
if T > 1, and there exist t1, t2 ∈ [T − 1] ∪ {0} such that

xki [t1](1− x1i [t2]− · · · − xmi [t2])

n∑
j=1

akijx
k
j [t2] (10)

6= xki [t2](1− x1i [t1]− · · · − xmi [t1])

n∑
j=1

akijx
k
j [t1].

V. SIMULATIONS
In this section, we present first, a set of simulations that

illustrate the results from the previous sections and second,
some illuminating simulations of the model that support the
validation work with real data. Since the dataset we consider
in Section VI only has two competing spread processes we
limit ourselves to m = 2 for this section as well, however,
the behavior is similar for m > 2. Virus 1 is depicted by the
color red (r), virus 2 is depicted by the color green (g), and
susceptible, or healthy, is depicted by the color blue (b). For
all i ∈ [n], the color at each time t for node i is given by

x1i [t]r + x2i [t]g + (1− x1i [t]− x2i [t])b. (11)

For the second set of simulations we, at times, inspect the
case of m = 1.
A. Examples of Results

We consider a system with 50 agents 24 of which are
randomly chosen such that they are initially infected by either
one of the two competing viruses. For Virus 1, β1 = 1 and
δ1 = 0.1 and for the Virus 2, β2 = 0.01 and δ2 = 0.1.
Moreover, h = 0.05 and the weighted adjacency matrix for
both viruses, A, is determined by

aij =

{
e−‖zi−zj‖

2

, if i 6= j,

0, otherwise,
(12)

where zi is the position of agent i and A is, therefore, fully
connected. Since the edges are weighted, the ones between
nodes that are far away from each other are difficult to see
in the figures. A simulation, based on this system, is shown
in Figure 1 with plots of the initial condition, the epidemic
states at time-step 100 and the final condition. Assuming A is
known we recover β1

h, δ1h, β2
h, and δ2h exactly, using (9) with

only two time-steps, consistent with Corollary 2. Hence, the
proportions δ1/β1 and δ2/β2 are also correctly recovered.
And clearly, if h is known, we recover the parameters exactly,
consistent with Theorem 3. Moreover,

ρ(I − hD1 + hβ1A) = 1.1976 > 1, and



(a) The system at time zero. (b) The system at time 100.

Fig. 2: This heterogeneous virus system follows (2) with
βki ∈ [0.001, 1] and δki ∈ [0.1, 10] randomly generated
∀i, k, h = 0.05, and A depicted by the edges.

ρ(I − hD2 + hβ2A) = 0.997 ≤ 1,

and consistent with Corollary 1, the endemic state is (x̃1,0),
where x̃� 0. We also find that this endemic equilibrium is
reached for all initial conditions with x1[0] > 0, that is, via
simulations it appears to be globally stable.

We now consider a similar system with 50 agents 24 of
which are initially infected by either one of the two viruses
and A given by (12). But the agents have moved and the
system is a heterogeneous virus system with βki ∈ [0.001, 1]
and δki ∈ [0.1, 10] randomly generated from uniform
distributions for all i ∈ [n] and k ∈ [m]. For T = 3 the
assumptions in Theorem 4 are met and we recover the spread
parameters exactly. Moreover,

ρ(I − hD1 + hβ1A) = 0.9958 ≤ 1, and

ρ(I − hD2 + hβ2A) = 0.9851 ≤ 1,

and we observe that the system converges to the healthy state,
x̃ = 0, consistent with Theorem 1.

B. Exploratory Simulations
In this section, we present two set of simulations that

give important insight into the model to assist our work on
the USDA dataset in the next section. The first simulation
explores how accurately we can capture the behavior of
a heterogeneous virus system with additive i.i.d. Gaussian
noise by using a homogeneous approximation, i.e. recovering
the spread parameters by applying (9). The second set of
simulations illustrates some interesting behavior regarding
the sampling parameter h.

For the first simulation we consider a heterogeneous
system with three agents and two viruses, m = 2. We set

h = 1, x1[0] = [0 0 1]
>
, x2[0] = [0 1 0]

>
,

δ1 = [0.05 0.03 0.04] , β1 = [0.15 0.13 0.08] ,

δ2 = [0.13 0.07 0.08] , β2 = [0.09 0.11 0.10] , and

A1 = A2 =

0 1 1
1 0 1
1 1 0

 .
We generate 40 time-steps of the epidemic states, x, using (2)
with additive i.i.d Gaussian noise with the standard deviation
set to 0.03.

To understand how accurately a heterogeneous system can
be approximated by a homogeneous model we use (9) with
T = 4 to learn homogeneous spread parameters. The learned

Fig. 3: Simulation of the epidemic states of a heterogeneous
system with additive i.i.d. Gaussian noise and recovered
states using a homogeneous approximation of the system.

Fig. 4: Simulation of the epidemic states of a homogeneous
system with additive i.i.d. Gaussian noise and recovered
states using the proposed online algorithm for learning the
spread parameters, x̄.

parameters are[
δ̂1h
β̂1
h

]
=

[
0.0415
0.1379

]
and

[
δ̂2h
β̂2
h

]
=

[
0.0772
0.0944

]
. (13)

The learned parameters in (13) are used to recover the
generated data-samples, x̂, by using (2) with homogeneous
spread parameters. We compare x and x̂ in Figure 3 to
illustrate how well a homogeneous model can approximate a
heterogeneous system with additive noise. We see that, even
with noise in the system, the approximation is quite good.

One can see that the errors between the recovered states,
x̂21 and x̂13, and the original system, x21 and x13, are higher
than the rest of the errors. The decreased accuracy of x̂13 can
be explained by the difference in magnitude of β1

3 from the
infection rates of the other agents. The same applies for x̂21
but for the healing rate, δ21 .

As an outbreak begins there may not be enough data to
estimate all of the spreading parameters correctly therefore
we need to be able to update our estimates iteratively.
We propose an online algorithm for learning the spread
parameters from data, extending the ideas from Section IV.
Assume that the system has additive noise and that data is
obtained in an online manner, that is, more data is received
as time increases. So at each time T , ΦlT can be constructed
in the same way as (8), adding a new row. Then at each time
T , the spread parameters βkT , δ

k
T are obtained by solving (9)



with ΦlT , using least squares or by employing a recursive
least squares method. The estimates of the spread parameters
are then used to predict the next time step:

x̄T+1 = xT + h((I −XT )β̂lTA− δ̂lT I)xk. (14)
A simulation based on the online algorithm for learning

is shown in Figure 4 with a single homogeneous virus. We
set h = 1, δ = 0.9, β = 1.5, x[0] = [0 0 1]

>, and

A =

0 1 1
1 0 0
1 0 0

 .
We generate the epidemic states, x, using (2) with additive
i.i.d Gaussian noise with the standard deviation set to 0.03.
By Figure 4 we can see that the estimation is quite accurate
using this online algorithm for learning, where x̄ represents
the estimated state. We can see that the new algorithm
performs quite well, capturing the behavior of the system.
We now apply these ideas to a USDA farm subsidy dataset.

VI. USDA FARM SUBSIDIES AS COMPETING VIRUSES
In the Food, Conservation and Energy Act of 2008 (2008

Farm Bill) a new subsidy program, ACRE, was introduced.
It was an alternative to the exist CCP program. Similar to
[22], [23] we aggregate farms on the county level. This
approach allows us to convert the binary decision to enroll
in ACRE or in CCP into a continuous measure of the
proportion of eligible farms that enroll in ACRE or CCP,
in each county. The proportion of farms enrolled in ACRE
(and CCP) corresponds exactly to the density of the first
virus (second virus), facilitating our investigation of the
spread of the competing programs. The number of eligible
farms in a county was set to the max number of farms
enrolled in both programs in any year. We removed counties
where no farms were ever enrolled in either program. We
also removed Alaska and Hawaii since they are not in the
contiguous United States of America. The data for the four
years considered can be found in Figures 5a-5d. Please see
[22], [23] for more detailed information on the programs.

We now use the learning techniques presented in Section
IV and tested in Section V for the model in (2) on the
USDA dataset. The adjacency matrices are calculated using
the adjacency of counties, that is,

aij =


1, if county i and county j share a border,
1, if i = j,
0, otherwise.

(15)First we identify two sets of homogeneous spread param-
eters using the whole dataset by applying (9):[

δ̂1h
β̂1
h

]
=

[
0.0107
0.0139

]
and

[
δ̂2h
β̂2
h

]
=

[
0.0551
0.0852

]
. (16)

We then simulate the model in (2) with the spread parameters
in (16), with the data from Figure 5a being used as the initial
condition. The resulting scaled error between the dataset, F,
and the simulated data, F̂all, using the Frobenius norm is∥∥∥F− F̂all

∥∥∥
F

‖F‖F
=

12.0420

96.8382
= 0.1244.

For completeness, similar to [22], [23] we use a subset of
the dataset, the USDA data from Idaho, to recover the two

(a) 2009 Data

(b) 2010 Data

(c) 2011 Data

(d) 2012 Data

(e) 2009 Simulated Data

(f) 2010 Simulated Data

(g) 2011 Simulated Data

(h) 2012 Simulated Data

Fig. 5: (Left) Calculated from the USDA dataset, the per-
centage of eligible farms enrolled in the ACRE Program,
the CCP program, or neither are depicted in red, green, and
blue, respectively. (Right) Simulated data using Figure 5a
as the initial condition on the model in (2) with parameters
calculated using the data from Kentucky, given in (18). The
colors of the nodes follow (11).

sets of homogeneous model parameters and then simulate the
spread of programs over the whole contiguous United States
using the learned parameters. For calculating the adjacency
matrix for Idaho, adjacent counties from bordering states
were ignored. Applying (9) on the Idaho dataset gives the
following spread parameters:[

δ̂1h
β̂1
h

]
=

[
−0.0332

0.0663

]
and

[
δ̂2h
β̂2
h

]
=

[
0.0503
0.0345

]
. (17)

Note that δ̂1h for the first virus (the ACRE program) is
negative, violating the assumptions of the model, which is
not ideal. Nevertheless for completeness, we simulate the
spread over the contiguous United States using the model in
(2) with the spread parameters calculated using the data from
Idaho, given in (17), with the data from Figure 5a being used
as the initial condition. The scaled error between the dataset,



F, and this simulated data, F̂ID, is∥∥∥F− F̂ID

∥∥∥
F

‖F‖F
=

14.28

96.8382
= 0.1348.

The scaled error from the analogous simulation in [22], [23]
was 0.2348. Therefore it would appear that, while not a
perfect fit, the competitive-virus model seems to capture the
behavior of this USDA Farm Subsidy adoption dataset better
than the single virus model.

After testing every possible state, we found that the data
from Kentucky provided the best estimate of the whole US
dataset when using the homogeneous version of the model in
(6). Applying (9) on the Kentucky dataset gives the following
spread parameters:[

δ̂1h
β̂1
h

]
=

[
0.0044
0.1352

]
and

[
δ̂2h
β̂2
h

]
=

[
0.0702
0.1272

]
. (18)

The simulated data is shown in Figures 5e-5h. The resulting
scaled error between the dataset, F, and the simulated data,
F̂KY, is ∥∥∥F− F̂KY

∥∥∥
F

‖F‖F
=

12.2724

96.8382
= 0.1230.

The results were improved upon when implementing the
recursive algorithm proposed in Section V-B, reducing the
scaled error to 0.0855. However, it must be noted that the first
two data points were included in the simulated data, since
the recursive algorithm is only used for one step prediction.
Using the first set of learned spread parameters for the second
and third data points gave an error of 0.1140, still improving
upon the previous results.

VII. CONCLUSION

In this work we have proposed a discrete time competing
virus model for an arbitrary number of viruses. We have
provided conditions for the model to be well defined. We
provided necessary and sufficient conditions for unique-
ness of the healthy equilibrium. We presented necessary
and sufficient conditions for learning spread parameters for
competing viruses from data. We presented an interesting
set of simulations that illustrate the analytic results and
depict some characteristics of the model that warrant further
study, and proposed an online spread parameter estimation
algorithm. We employed a previously studied USDA dataset
to validate the discrete-time two-competing virus, or bi-virus,
case by modeling the spread of two alternative farm subsidy
programs among farms aggregated by county, improving on
previous work.
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time virus spread processes: Analysis, identification, and validation,”
IEEE Transactions on Control Systems Technology, vol. 28, no. 1, pp.
79–93, 2019.

[24] A. Melo, C. L. Beck, J. I. Pena, and P. E. Paré, “Knowledge transfer
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