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Abstract— This paper analyzes the free recall dynamics of a
working memory model. Free recalling is the reactivation of a
stored pattern in the memory in the absence of the pattern. Our
free recall model is based on an abstract model of a modular
neural network composed on N modules, hypercolumns, each
of which is a bundle of minicolumns. This paper considers a
network of N modules, each consisting of two minicolumns,
over a complete graph topology. We analyze the free recall
dynamics assuming a constant, and homogeneous coupling
between the network modules. We obtain a sufficient condition
for synchronization of network’s minicolumns whose activities
are positively correlated. Furthermore, for the synchronized
network, the bifurcation analysis of one module is presented.
This analysis gives a necessary condition for having a stable
limit cycle as the attractor of each module. The latter implies
recalling a stored pattern. Numerical results are provided to
verify the theoretical analysis.

I. INTRODUCTION

Working Memory (WM) is a general-purpose cognitive
system responsible for temporary holding information in ser-
vice of higher-order cognition such as reasoning and decision
making. The importance of understanding human memory
functioning is evident from its central role in our cognitive
functions [1] as well as its role as the main inspiration behind
developments in artificial memory networks [5].

Among the most important features of working memory,
is the spontaneous free recall process. The latter refers to
reactivation of a stored pattern in the memory in the absence
of the pattern. The precise mechanisms underlying free recall
dynamics in the human brain is not yet fully understood [12].
Yet, several abstract neuro-computational [3] as well as more
detailed spiking neural network models have been built based
on different neurobiological hypotheses [11], at different
levels of abstractions, to account for human experimental
data on working memory.

Attractor neural networks, dynamical networks which
evolves towards a stable pattern, have been employed for
understanding the mechanisms of human memory, including
working memory. Among the most studied models is the
Hopfiled model [8] (and its several variations e.g. [6])
which represents a memory network with a fully connected
graph, symmetric weights and capable of storing only binary
values. The model has limitations on the capacity as well
as recalling previously stored patterns [3]. The latter has
motivated designs with more than two states including the
modular recurrent networks of Potts type [10].

?This work was supported by the Knut and Alice Wallenberg Foundation,
the Swedish Strategic Research Foundation and the Swedish Research
Council. The authors are with the School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
∗Corresponding to matinj@kth.se.

The model in this paper is originated from the biologically
inspired modular model of Potts type in [12]. The network
model in [12] is composed of N modules, hypercolumns,
each of which consists of a bundle of elementary units,
minicolumns, interacting via lateral inhibition, such that each
hypercolumn module acts as a winner-take-all microcircuit.
We refer the interested reader for a detailed biological
rationale of this model to [12].

In this paper, we study the free recall dynamics of WM
based on a simplification of the model in [12]. We consider
a network of N hypercolumns, each consisting of two
minicolumns. We assume that a few patterns have been
encoded in this WM by means of fast Hebbian plasticity
[4] using exogenous signals. In this paper, we study the
post-training reactivation dynamics of such a multi-item WM
assuming a constant and homogeneous coupling between
the network modules. Using tools from stability theory (a
Lyapunov-based argument, e.g. [9]), we obtain a sufficient
condition for achieving synchronization of network units
which are positively correlated assuming a complete graph
topology. Furthermore, for the synchronized network, the
bifurcation analysis of one module’s dynamics is presented.
This analysis gives a necessary condition for having a stable
limit cycle as the attractor of each network module. The latter
implies recalling a stored pattern.

To the best of our knowledge, the free recall dynamics of
working memory has not been studied analytically before, in
particular from a control theory perspective. As shown in this
paper, such analysis is useful for a better understanding of
the free recalling mechanism of working memory networks.

The paper is organized as follows. Section II, presents
the model and problem formulation. Section III, presents a
Lyapunov analysis for characterizing synchronization condi-
tion. This section also provides the bifurcation analysis of
one module of the network assuming that the network is
synchronized. In Section IV, simulation results are presented.
Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we present our model and state our goal
of analysis. We model the free-recall dynamics of WM
based on a simplification of a (non-spiking) attractor neural
network originated from a modular recurrent neural network
model [12]. This network is composed of N modules,
hypercolumns, each of which consists of m elementary
units, m minicolumns. In this model, each memory input
(or pattern) is encoded by a mechanism into N attributes
(represented by hypercolumns) each of which is composed
of m intervals (represented by minicolumns).



Fig. 1. A network composed of 3 hypercolumns. Each hypercolumn is
composed of 2 minicolumns. Each minicolumn is connected via positive
(excitatory, shown by solid lines) coupling to the minimcolumns in other
hypercolumns if their activities are correlated. Otherwise the coupling is
negative (inhibitory, shown by dashed lines).

Figure 1 shows a configuration of a network composed of
3 hypercolumns. We assume that the memory has been
trained to learn some patterns using exogenous signals. In
this paper, we study the post-training dynamics. Our goal
is analyzing the network’s dynamics in order to obtain
conditions under which a stored pattern is recalled.

We represent the network by a connected, undirected
complete graph composed of N nodes. Each node
corresponds to one hypercolumn i ∈ {1, . . . , N} whose
state is denoted by si. We study the case where si ∈ R2,
i.e., si = [si1, si2], where sij is the state of minicolumn j,
j ∈ {1, 2}, of hypercolumn i.

We model the dynamics of each minicolumn sij based on
a simplification of the model in [12], as follows

ṡij =

N∑
k=1
k 6=i

2∑
l=1

ωkl,ijokl − aij − sij , (1)

τ ȧij = gaoij − aij , τ > 1, (2)

oij = σ(sij) =
esij
m∑
k=1

esik
, (3)

where sij ∈ R, aij ∈ R, and oij ∈ (0, 1) represent the level
of activation, the level of the adaptation, and the output of
the minicolumn mij (minicolumn j in the hypercolumn i),
receptively. The parameters ga > 0 and τ > 1 are constant.
The coupling wight of the interconnection of the two mini-
columns skl (in hypercolumn k) and sij (in hypercolumn i)
is represented by ωkl,ij . We assume that the coupling weights
are constant in the post-training dynamics. Here, we apply
Hebb’s rule in the way that minicolumns are interconnected.
This implies that the mini-columns which were activated
simultaneously in the training phase are connected with
positive couplings in the post-taining dynamics, while the
minicolumns with uncorrelated activities are connected with
negative couplings (see Fig 1).

The role of variable aij , which models the biological
mechanism of neural adaptation, is to deactivate its corre-
sponding minicolumn mij in response to the changes in
the activity of the other minicolumn in hypercolumn i.
Owing to the definition of oij in (3), units within the same
hypercolumn interact via lateral inhibition, such that each
hypercolumn acts as a soft winner-take-all microcircuit. This
means that what determines the output of each minicolumn is
the relative level of its activation with respect to the activation
of the other minicolumn in the same hypercolumn. This
interaction is modeled by a soft-max function, σ as defined
in Equation (3).

Assumption 1 All interconnection weights are equal such
that |ωkl,ij | = ω

2 , ω > 0.

Without loss of generality, we assume that any two mini-
columns i1 and k1 (i2 and k2) are connected by positive
coupling, whereas the interconnection of i1 to k2 is negative,
∀i, k ∈ {1, . . . , N}. Since each hypercolumn is composed of
two minicolumns, we can write oi1 = 1 − oi2,∀i based on
the definition of the σ function in (3).
Now, with Assumption 1, the dynamics of each minicolumn
in (1) can be written as follows

ṡij = ω

N∑
k=1
k 6=i

σ(skj)− aij − sij − (N − 1)
ω

2
, (4)

where i ∈ {1, . . . , N}, j ∈ {1, 2}. The hypercolumn dynam-
ics (the node dynamics) obeys

ṡi = −si − ai −
κ

2
+ ω

N∑
k=1
k 6=i

σ(sk), ω > 0, (5)

τ ȧi = gaσ(si)− ai, τ > 1, (6)

where si = [si1, si2]
T , ai = [ai1, ai2]

T , σ(si) =
[σ(si1), σ(si2)]

T , and κ = (N − 1)ω.

In the next section, we analyze the network dynamics (the
free-recall dynamic) with the node dynamics as in (5), (6)
and to answer the question that under which conditions a
stored pattern is recalled. From a control theory perspective,
this question is translated to characterizing coupling condi-
tions under which the network modules synchronize [13] and
oscillate according to the desired pattern.

III. ANALYSIS

In this section, we first derive the coupling condition under
which synchronization, i.e. si,1 = sk,1; si,2 = sk,2; ai,1 =
ak,1; ai,2 = ak,2, can be achieved for the network with
the dynamics in (5), (6). We then analyze the behavior of
one module (one hypercolumn) in the synchronized network
using tools from the bifurcation theory. The analysis gives a
coupling condition for having a stable limit cycle behaviour
for each hypercolumn in the synchronized network.



Proposition 1 Consider the network dynamical system in
(5)- (6). If ga

τ < ω < ga
τ−1 holds, the solution to the system

in (5)- (6) converges to the set S = {si ∈ R, ai ∈ R : si =
sk; ai = ak,∀i, k ∈ {1, . . . , N}}.

Proof: Define α = 1
τ , α < 1. Define Dk = s1−sk and

Ek = a1−ak. By multiplying the equation in (6) with α, the
error dynamics for any two hypercolumns can be rewritten
as:

Ḋk = −Dk − Ek − ω(σ(s1)− σ(sk))
Ėk = g(σ(s1)− σ(sk))− αEk, g = αga.

Notice that the softmax function σ(si) of the vector si as
defined in (3) is a monotone function, i.e.

(a− b)>(σ(a)− σ(b)) ≥ 0,∀a, b ∈ Rn.

Define the following Lyapunov function and denote by ‖·‖2
the Euclidean norm:

V =
N∑
k=2

Vk, Vk =
1

2
‖gDk + ωEk‖22 +

1

2
βω ‖Dk‖22 ,

where β = g + (α − 1)ω. By assuming ω < α
1−αga, we

guarantee that β > 0, thus the function in (7) is positive
definite. We are interested in the conditions on ω such
that the error dynamics is asymptotically stable, i.e. the
conditions on ω such that V̇ < 0. We have,

V̇ = −
N∑
k=2

(‖gDk + ωEk‖22 +

+βgD>k Ek + βω ‖Ek‖22 + ωβ ‖Dk‖22 + ωD>k Ek+

+ω2βD>k (σ(s1)− σ(sk))). (7)

Rearranging the terms, we obtain

V̇ = −
N∑
k=2

(‖gDk + ωEk‖22 +

+ωβ

(
‖Ek‖22 + ‖Dk‖22 +

(
1 +

g

ω

)
D>k Ek

)
+

+ω2βD>k (σ(s1)− σ(sk))). (8)

The quantity ωβ
(
‖Ek‖22 + ‖Dk‖22 +

(
1 + g

ω

)
D>k Ek

)
is

positive definite if 1 + g
ω < 2, i.e. ω > αg. Therefore, a

sufficient condition for synchronization is

ωmin = gaα < ω <
α

1− αga = ωmax. (9)

A. Analysis of the dynamics of one hypercolumn in the
synchronized network

Assuming that the network is synchronized, we can write
the dynamics of the single module (hypercolumn) as

ṡi1 = −si1 − ai1 + κoi1 −
κ

2
,

τ ȧi1 = gaoi1 − ai1,
ṡi2 = −si2 − ai2 + κoi2 −

κ

2
,

τ ȧi2 = gaoi2 − ai2,

(10)

where κ = (N − 1)ω. Recall that oi1 + oi2 = 1. Define,
di = si1 − si2, and

f(di) = oi1 − oi2 =
edi −1
edi +1

= tanh(
di
2
). (11)

We now introduce the following change of variables that will
help us to analyze the dynamics of each hypercolumn and
earn a deeper insight into the behaviour of our system:

di = si1 − si2,
ei = ai1 − ai2.

(12)

Bifurcation Analysis
From (10), the dynamics of di, ei obeys

ḋi = −di − ei + κf(di),

ėi =
gaf(di)− ei

τ
.

(13)

We start the analysis of the two dimensional system in (13)
by computing the equilibria (d∗i , e

∗
i ) and study their stability

properties with the variations of the coupling parameter κ.
The equilibria of the dynamics in (13) satisfy the following
equations

(κ− ga)f(d∗i )− d∗i = 0, (14)

e∗i = gaf(d
∗
i ). (15)

Recall from (11) that f(di) = tanh(di2 ). We can show that
the system has a unique equilibrium if κ < ga+2, while for
κ > ga + 2 we have multiple equilibria.

Lemma 1 The origin is the unique equilibrium for the
system in (13) if κ < ga + 2.

Proof: For f(di) = tanh(di2 ), we have |f(di)| ≤ |di2 |.
Hence if κ − ga < 2, the equality in (14) is satisfied only
for di = 0.
.

Now, assume that κ < ga + 2. The unique equilibrium is
(d∗i , e

∗
i ) = (0, 0). The computed Jacobian matrix J(0,0) and

the characteristic polynomial are the following:

J(0,0) =

[
−1 + κ

2 −1
ga
2τ − 1

τ

]
, (16)

ρ(λ) = λ2 − σ(κ)λ+ δ(κ), (17)

where
σ(κ) =

−2τ − 2 + τκ

2τ
,

δ(κ) =
−2κ+ 2ga + 4

4τ
.

Thus, the origin is asymptotically stable if the following
two conditions hold

σ(κ) < 0 if κ < 2

(
1 +

1

τ

)
, (18)

δ(κ) > 0 if κ < ga + 2. (19)

As a result, the origin is the asymptotically stable equilibrium
point (attractor) for (13) if κ < 2(1+ 1

τ ) holds. This condition



is not particularly interesting since it means that all the units
in the network converge to the same value and their output
is identical. In other words, the network is not able to recall
any pattern (see Fig. 2-A). By increasing κ, the attractor of
the dynamical system (13) changes. In fact, at the critical
value κ∗ = 2

(
1 + 1

τ

)
a supercritical Hopf bifurcation [7]

occurs. That is, a unique stable limit cycle bifurcates from
the origin. This result is now formally presented below.

Proposition 2 For the system in (13), a unique stable limit
cycle bifurcates from the fixed point (di, ei) = (0, 0) into
the region κ > 2(1 + 1

τ ) if ga > 2
τ holds.

Proof: To prove the above statement, we show that
all of the conditions of [7, Theorem 3.4.2] are satisfied.
Denote the eigenvalues of J(0,0) in (16) as a function of
the parameter κ by λ1,2(κ). From (17), We have

λ1,2(κ) =
1

2

(
σ(κ)±

√
σ(κ)2 − 4δ(κ)

)
.

At the critical value κ∗ = 2
(
1 + 1

τ

)
, the following condi-

tions should be satisfied:
1) The Jacobian matrix, J(0,0) in (16), has a conjugate pair

of imaginary eigenvalues. That is,

σ(κ∗) = 0, δ(κ∗) > 0. (20)

The above condition is satisfied if ga > 2
τ holds.

2) Eigenvalues of J(0,0) in (16) vary smoothly by κ, i.e.

∂σ(κ)

∂κ

∣∣∣∣
κ=κ∗

=
1

2
6= 0. (21)

3) The last condition is to prove bifurcation of a stable
limit cycle. We first rewrite the system in (13) in the
follwoing form[

ḋi
ėi

]
=

[
1
τ −1
ga
2τ − 1

τ

]
︸ ︷︷ ︸

A

[
ḋi
ėi

]
+

[
F1(di)
F2(di)

]
, (22)

with F1(di) = (−1− 1
τ )di + κ tanh(di2 ) and F2(di) =

− ga2τ di +
ga
τ tanh(di2 ). Denote the eigenvalues of the

matrix A in (22) by ±βi, β > 0. Notice that the latter
are also the eigenvalues of J(0,0) at κ = κ∗. We now

consider a coordinate transformation
[
di
ei

]
= E

[
ui
vi

]
such that

E =

[
0 1
−β 1

τ

]
,

[
ui
vi

]
= E−1

[
di
ei

]
=

[
di
τβ − ei

β

di

]
.

Notice that in the above di = vi, hence F1(di) =
F1(vi), F2(di) = F2(vi). We write the dynamics of (13)
in (ui, vi) coordinate which gives[

u̇i
v̇i

]
=

[
0 −β
β 0

] [
ui
vi

]
+ E−1

[
F1(vi)
F2(vi)

]
. (23)

We now can calculate the cubic coefficient of the Taylor
series of degree 3 for the above system based on

the formula (3.4.11) of [7]. The computation gives a
negative value, −κ∗

64 , which ends the proof.

Proposition 1 gives a sufficient condition for synchroniza-
tion of the network in (5)-(6) and Proposition 2 presents
a necessary condition such that the synchronous state is a
stable limit cycle, i.e. a stored pattern is recalled. We now
combine the two results below.

Corollary 1 For the network dynamical system in (5)- (6),
ga
τ < ω < ga

τ−1 is a sufficient condition for the network to
converge to the set S = {si ∈ R, ai ∈ R : si = sk; ai =
ak ∀i, k ∈ {1, . . . , N}}. Moreover if ω < ga+2

N−1 holds, then
the origin is the unique equilibrium for the relative state,
(di, ei) with di = si,1−si,2, ei = ai1−ai2,∀i. Furthermore,
the two conditions ga > 2

τ , and ω > 2
N−1 (1 + 1

τ ) are
necessary for achieving a stable limit cycle as the attractor
of the relative state (di, ei) of each si on the set S .

By increasing κ, the attractor of the dynamics in (13)
changes. In what follows, we present a numerical example
explaining these changes. The numerical example is also
presented in Figure 2 (plotted using MATCONT [2] and
Python simulations).

Example 1 (Numerical bifurcation analysis) For the sys-
tem (representing one hypercolumn) in (10), set τ = 2, ga =
10. The relative states (di, ei) with the dynamics in (13)
converge to

• a stable equilibrium point for κ < 2(1+ 1
τ ) = 3. In this

case, no pattern is recalled, i.e. both minicolumns reach
the same level of activation, Fig. (2-A),

• a stable limit cycle with 2(1+ 1
τ ) < κ < κoo, ga+2 =

12 < κoo ≈ 13.11. In this case the two minicolumns
are activated in turn, that is the two stored patterns are
reactivated in turn, Fig. (2-B),

• a limit cycle and two locally stable equilibria points with
13.11 / κ / 13.24605. In this case, both oscillatory
behaviour (cyclic activation) and fixed point behaviours
are present. Depending on the initial conditions, the
system converges to one of the three attractors, Fig.
(2-C, 2-D),

• two locally stable equilibria with κ ' 13.24605. In
this case, the system does not show any oscillatory
behaviour but it locally converges to one of the two
stored patterns, i.e. one of the two minicolumns locally
reaches and stays at a higher level of activation, Fig.
(2-E).



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

(A)                                                                                                         (B) 

                                    (C)                                                                                                                                 (D) 

                                    (E)                                                                                                                                  

Fig. 2. Phase portrait of system in (13) for ga = 10, τ = 2. The nullclines are shown in red; the streamlines are shown in black. Several trajectories of
the system with different initial conditions are shown in orange. The plots show changes of the attractor for the dynamics in (13) based on the increase
of κ. In plots C, D where both fixed points and limit cycles (LC) exist, the LCs are plotted in Orange. Plot (D) shows a magnification of Plot (C).



IV. SIMULATION RESULTS

We consider a network of N = 12 hypercolumns, each
composed of two minicolumns. We set, ga = 97, τ = 54
(implemented as τa

τm
= 27

0.05 , see [12]). Based on Corollary
1, considering both the sufficient condition for achieving
synchronization and the necessary condition such that each
hypercolumn attractor is a limit cycle, we calculate ω =
1.8, hence κ = 19.8. Figure 3 shows the relative state of
positively correlated minicolumns. For clarity of presenta-
tion, the relative states with respect to hypercolumn 1, i.e.
variables D1,` = s1,1 − s`,1 and E1,` = a1,1 − a`,1 with
` ∈ {2, .., N}, are plotted. As shown the relative states
of positively correlated minicolumns in all hypercolumns
converge to zero. The latter implies synchronization. Figures
4 and 5 show the dynamics of one hypercolumn. As shown
in Figure 4, the two minicolumns oscillate in turn. Figure 5
shows the output of the two minicolumns and the level of
their corresponding adaptation variables. As shown, the role
of adaptation variable is to inhibit the minicolumn which is
most active and reactivate it in turn.
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Fig. 3. The plot of the relative states of positively correlated minicolumns
with respect to hypercolumn 1.
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Fig. 4. The state of hypercolumn 1. Variables s11 and s12 achieves
alternative activation and deactivation.

V. CONCLUSIONS

This paper has studied the free recall dynamics of a
multi-item working memory network modeled as a simplified
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Fig. 5. Output and adaptation variables of a single hypercolumn. The
adaptation variables are plotted in orange, the output of the units in blue.
The inhibition of one unit allows the other unit to activate.

modular attractor neural network. The network consisted of
N modules each one composed of two units. We analyzed
the free recall dynamics assuming a constant, and homoge-
neous coupling between the network modules. A sufficient
condition for synchronization of the network was obtained.
Furthermore, assuming a synchronized network, the behavior
of one module was analyzed using bifurcation analysis tools.
Based on this analysis, a necessary coupling condition was
given for achieving a stable limit cycle behavior for each
module in the synchronized network. The latter implies the
memory is recalling a stored pattern.
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