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Abstract— This paper proposes a singular perturbation ap-
proximation that preserves system passivity and an inter-
connection topology among subsystems. In the first half of
this paper, we develop a singular perturbation approximation
valid for stable linear systems. Using the relation between
the singular perturbation and the reciprocal transformation,
we derive a tractable expression of the error system in the
Laplace domain, which provides a novel insight to regulate
the approximating quality of reduced models. Then in the
second half, we develop a structured singular perturbation
approximation that focuses on a class of interconnected systems.
This structured approximation provides a reduced model that
not only possesses fine approximating quality, but also preserves
the original interconnection topology and system passivity.

I. INTRODUCTION

Many of dynamical systems that interest the control
community are inherently composed of the interconnection
of subsystems. The examples include power networks and
transportation networks, as well as control systems in which
some controllers are distributed over a plant; see [1], [2] for
an overview. Along with the dramatic technical development,
the architecture of these interconnected systems has tended
to become more complex and larger in scale. In view of this,
it is crucial to develop an approximate modeling method to
relax the complexity of systems.

Against such a background, this paper develops a model
reduction method based on a notion of the singular perturba-
tion approximation, which is one of well-known frameworks
to reduce the dynamical complexity of systems. In fact, many
of good properties of the singular perturbation approxima-
tion, such as the preservation of steady-state distribution and
stability preservation under appropriate conditions, have been
widely investigated in literature, e.g., [3], [4]. However, the
classical singular perturbation theory holds some drawbacks
including that:

• the applicability is limited due to the assumption that
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systems of interest are intrinsically decoupled into sub-
systems having different time scales

• the interconnection topology among subsystems is lost
through the approximation due to static states to appear
in approximants (see Section III-B for details).

As overcoming these drawbacks, we attempt to establish a
structured singular perturbation approximation. To this end,
we take the following two steps: In the first step, we develop
a singular perturbation approximation for general stable
linear systems. This is not based on the aforementioned
assumption, but by introducing a pre-conditioning coordinate
transformation, we decouple a given system into two subsys-
tems having different time scales. The major development
here includes the stability analysis of approximants as well
as the derivation of a novel error expression in the Laplace
domain. Then in the second step, based on the first result,
we develop a structured singular perturbation approximation
that focuses on a class of interconnected systems. The
development includes not only the analysis of passivity
preservation but also the preservation of an interconnection
structure. In addition, we derive a rigorous H2-error bound
of the input-to-output mapping approximation that provides
a clear insight to regulate the resultant approximation error.
It should be finally remarked that the error analysis in this
paper is based on the analysis in the line of our work [5],
[6], [7] as well as a relation between the balanced truncation
and the reciprocal transformation investigated in [8], [9].

This paper is organized as follows. In Section II, we
first develop a singular perturbation approximation for sta-
ble linear systems. The major development in the section
includes the stability analysis of approximants as well as
the derivation of a tractable error expression in the Laplace
domain. In Section III, using the result in Section II,
we develop a singular perturbation approximation with the
preservation of passivity and an interconnection structure
among subsystems. In Section IV, we show the efficiency of
the proposed approximation through a numerical example,
where the reduction of a passive decentralized controller
is considered. Finally, concluding remarks are provided in
Section V.
NOTATION The following notation is to be used. R: set of
real numbers; tr(M): trace of a matrix M ; im(M): image
of a matrix M ; diag(M1, . . . ,Mn): block diagonal matrix
having matrices M1, . . . ,Mn on its block diagonal. As nec-
essary, diag(M1, . . . ,Mn) is denoted by diag(Mi)i∈{1,...,n}.
A matrix A ∈ Rn×n, not necessarily symmetric, is said to
be negative definite (resp. positive definite) if xTAx < 0
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(xTMx > 0) holds for all x ̸= 0 ∈ Rn. The H∞ and H2-
norm of a stable transfer matrix G are, respectively, denoted
by

∥G(s)∥H∞ := sup
ω∈R
∥G(jω)∥

∥G(s)∥H2 :=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2

,

where ∥ · ∥ denotes the induced 2-norm.

II. GENERAL THEORY

A. Singular Perturbation Approximation of Linear Systems

In this section, we first develop a singular perturbation
approximation for general stable linear systems. Let us
consider a stable linear system

Σ :

{
ẋ = Ax+Bu
y = Cx+Du

(1)

with A ∈ Rn×n, B ∈ Rn×mu , C ∈ Rmy×n and D ∈
Rmy×mu , and denote the transfer matrix of Σ by G(s) =
C(sIn −A)−1B +D, for which we use the notation of

G(s) =

[
A B
C D

]
. (2)

In much literature on the singular perturbation theory, it
is assumed that system (1) is intrinsically decoupled into
several subsystems having different time scales; see [3], [4].
Contrastingly, such an assumption is not made in this paper.
Instead, by finding an appropriate coordinate transformation,
we decouple system (1) into two subsystems in a general
manner. More specifically, considering the coordinate trans-
formation of Σ by unitary [PT, QT]Twith P ∈ Rn̂×n and
Q ∈ R(n−n̂)×n, we obtain

Σ̃ :


[

ξ̇p

ξ̇q

]
=

[
PAPT PAQT

QAPT QAQT

] [
ξp

ξq

]
+

[
PB
QB

]
u

y =
[
CPT CQT

] [ ξp

ξq

]
+Du.

(3)
To reduce the dimension of Σ̃, we impose ξ̇q ≡ 0, which
means that the behavior of ξq is to be algebraically deter-
mined by ξp and u. Namely, the static state ξ̂q , which denotes
the approximant of ξq , is constrained by the algebraic
equation

ξ̂q = −(QAQT)−1QAPTξ̂p − (QAQT)−1QBu (4)

where the dynamical state ξ̂p is the approximant of ξp and
QAQT is assumed to be non-singular (this assumption is
valid if A is negative definite; see Section II-B below for
details). This approximation is intuitively reasonable when
the convergence rate of ξq is sufficiently grater than that
of ξp. However, it is non-trivial to find such a desirable
coordinate transformation.

Substituting (4) into the equation with respect to ξ̇p, we
have the singular perturbation model

Σ̂sp :

{
˙̂
ξp = Âξ̂p + B̂u

ŷ = Ĉξ̂p + D̂u
(5)

where
Â := PAPT − PAΠAPT ∈ Rn̂×n̂

B̂ := (P − PAΠ)B ∈ Rn̂×mu (6)
Ĉ := C(PT −ΠAPT) ∈ Rmy×n̂

D̂ := D − CΠB ∈ Rmy×mu

and
Π := QT(QAQT)−1Q ∈ Rn×n. (7)

Note that this Π does not depend on the basis selection of
Q because Π = QTHT(HQAQTHT)−1HQ holds for any
unitary matrix H ∈ R(n−n̂)×(n−n̂). This fact implies that the
singular perturbation model Σ̂sp in (5) depends only on the
choice of P . Based on the observation above, we define the
following terminology:

Definition 1: Consider a transfer matrix G in (2) and let
P ∈ Rn̂×n such that PPT = In̂ and n̂ ≤ n. The singular
perturbation approximant of G associated with P is defined
by

Ĝ(s;P ) :=

[
Â B̂

Ĉ D̂

]
(8)

where Â, B̂, Ĉ and D̂ are given by (6).
Obviously, the quality of the approximant Ĝ is dependent

on the determination of P . In the next subsection, we analyze
the property of Ĝ to construct a reasonable strategy for the
determination of P .

B. Analysis of Singular Perturbation Approximant

To analyze the singular perturbation approximant, we in-
troduce a transformation, called the reciprocal transformation
[8], [9], as follows:

Definition 2: Consider a transfer matrix G in (2). The
reciprocal of G is defined by

G−(s) :=

[
A−1 A−1B
−CA−1 D − CA−1B

]
. (9)

This reciprocal system satisfies G(s−1) = G−(s), and
some properties of the reciprocal transformation have been
investigated in literature; see, e.g., [8], [9]. The following
lemma provides a useful relation between the singular per-
turbation approximation and this reciprocal transformation:

Lemma 1: Given a transfer matrix G in (2) and a matrix
P ∈ Rn̂×n such that PPT = In̂ and n̂ ≤ n, let Ĝ be
its singular perturbation approximant associated with P in
Definition 1. Then

Ĝ−(s;P ) :=

[
PA−1PT PA−1B
−CA−1PT D − CA−1B

]
(10)

is the reciprocal of Ĝ.
Lemma 1 shows that the reciprocal of the singular per-

turbation approximant Ĝ is given by the projection of the
reciprocal of G associated with P . Note that this lemma
can be regarded as a generalization of the results shown in
[8], [9], where a relation between the truncation of balanced
systems and that of their reciprocal has been investigated.
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From Lemma 1, we obtain the following insight on stability
preservation:

Lemma 2: Consider a matrix P ∈ Rn̂×n such that PPT =
In̂ and n̂ ≤ n. If A ∈ Rn×n is negative definite, then Â ∈
Rn̂×n̂ in (6) is negative definite.

Proof: From Lemma 1, we notice that the negative defi-
niteness of Â is equivalent to that of PA−1PT. Furthermore,
the negative definiteness of PA−1PT is equivalent to that of

PA−1PT + (PA−1PT)T = P (A−1 +A−T)PT,

which proves the claim.

Lemma 2 shows that the negative definiteness of A,
which is a stronger stability condition, is preserved through
the singular perturbation approximation. In addition to this,
the following lemma ensures the existence of a similarity
transformation to make a stable matrix negative definite:

Lemma 3: Given a stable matrix A ∈ Rn×n, let V ∈
Rn×n be a symmetric positive definite matrix such that AV +
V AT is negative definite. Then, V −1

1
2

AV 1
2

is negative definite
where V 1

2
is a Cholesky factor of V such that V = V 1

2
V T

1
2

.

Lemma 3 shows the existence of a pre-conditioning co-
ordinate transformation to make a stable matrix negative
definite. The symmetric positive definite matrix V could
be used as a Lyapunov function to prove the stability of
A. Combining Lemmas 2 and 3, we ensure the stability
preservation of the singular perturbation approximation.

Next, we analyze the resultant error of the singular per-
turbation approximation. In general, the error analysis of the
singular perturbation approximation is not necessarily easy
due to the complicated form as in (5). To systematically
analyze the approximation error, we are required to derive a
tractable representation of the error system. In view of this,
we derive novel factorization of the error system as follows:

Theorem 1: Given a transfer matrix G in (2) and a matrix
P ∈ Rn̂×n such that PPT = In̂ and n̂ ≤ n, let Ĝ be its
singular perturbation approximant in (8). Then, Ĝ satisfies
Ĝ(0;P ) = G(0) and

Ĝ(s;P )−G(s) = Ξ̂(s;P )QTQX(s) (11)

where QTQ = In − PTP and

Ξ̂(s;P ) :=

[
PAPT − PAΠAPT (P − PAΠ)
C(PT −ΠAPT) −CΠ

]
X(s) :=

[
A B
A B

]
. (12)

In addition, if A is negative definite, then Ĝ is stable.

Proof: Consider a similarity transformation for the
reciprocal Ĝ− − G− of the error system, which is similar
to one used in [5], [6], [7]. Then, we have

Ĝ−(s;P )−G−(s) = Ξ̂−(s;P )QTQX−(s) (13)

where

Ξ̂−(s;P ) :=

[
PA−1PT PA−1

−CA−1PT −CA−1

]
X−(s) :=

[
A−1 A−1B
−In 0

]
.

Replacing B and D with In and 0, respectively, in (10), we
notice that Ξ̂− is the reciprocal of Ξ̂ in (12). Hence, from
Lemma 1 and

Ĝ(s;P )−G(s) = Ĝ−(s
−1;P )−G−(s

−1)

= Ξ̂−(s
−1;P )QTQX−(s

−1)

= Ξ̂(s;P )QTQX(s),

the factorization (11) follows. In addition, substituting s = 0
into (11), we notice that Ĝ(0;P ) = G(0) because X(0) = 0.
Finally, if A is negative definite, Â is also negative definite
as shown in Lemma 2. Hence, the stability of Ĝ follows.

This factorization of the error system provides an insight
that the singular perturbation approximation works well if
the norm of QX is sufficiently small, where Q denotes an
orthogonal complement of P . It should be noted that X
in (12) coincides with the transfer matrix from u to ẋ of
the original system Σ, and Ξ̂ coincides with the singular
perturbation approximant of

Ξ(s) :=

[
A In
C 0

]
(14)

associated with P .

III. STRUCTURED SINGULAR PERTURBATION

A. Passivity Preservation

In this section, based on the result in Section II, we
develop a structured singular perturbation approximation
that is specialized for a class of interconnected systems.
Generally speaking, properties of interconnected systems,
such as stability, are not straightforwardly characterized by
those of local subsystems. This fact often inhibits to analyze
interconnected systems locally. On the other hand, it is well
known that interconnected systems composed of the negative
feedback interconnection of passive subsystems are passive
[10], [11]. This implies that the local analysis of subsystems
is also valid for interconnected ones. In this sense, the system
passivity is one of key properties to analyze and synthesize
interconnected systems.

In view of this, we develop a singular perturbation ap-
proximation that preserves system passivity. To this end, we
introduce the standard passivity of systems as follows [12],
[13]:

Definition 3: A linear system Σ in (1) is said to be V -
passive if there exists a symmetric positive definite matrix
V such that

S(A,B,C,D;V ) :=

[
AV + V AT V CT −B
CV −BT −D −DT

]
(15)

is negative definite.
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Similarly to Lemma 3, we consider the following coordi-
nate transformation of passive systems:

Lemma 4: For any V -passive system Σ in (1)

S(V −1
1
2

AV 1
2
, V −1

1
2

B,CV 1
2
, D; In)

is negative definite, where V 1
2

is a Cholesky factor of V such
that V = V 1

2
V T

1
2

.

Proof: The claim follows from the fact that the matrix
in (15) is rewritten as

Ṽ S(V −1
1
2

AV 1
2
, V −1

1
2

B,CV 1
2
, D; In)Ṽ

T

where Ṽ = diag(V 1
2
, Imu).

This coordinate transformation is useful because the unit
matrix In is the solution of the matrix inequality of (15). A
similar realization has appeared in [10], and is called a self-
dual realization. From this lemma, we can assume, without
loss of generality, that any V -passive system is In-passive.
Based on this, we obtain the following theorem:

Theorem 2: Let an In-passive system Σ in (1) and let
P ∈ Rn̂×n such that PPT = In̂ and n̂ ≤ n. If

im([B,CT]) ⊆ im(PT) (16)

holds, then the singular perturbation model Σ̂sp in (5) is In̂-
passive.

Proof: We use the fact that Â can be factorized as

Â = (P − PAΠ)A(P − PAΠ)T;

see [14] for a proof. Noting that B̂ = PB and Ĉ = CPT

hold by the assumption of QB = 0 and CQT = 0,
we verify that S(Â, B̂, Ĉ, D̂; In̂) = P̃S(A,B,C,D; In)P̃

T

holds where P̃ = diag(P − PAΠ, Imu
). This proves the

claim.
This theorem shows that the singular perturbation approx-

imation of In-passive systems appropriately preserves the
passivity as long as (16) holds.

B. Preservation of Decentralized Feedback Interconnection

In this subsection, we focus on a class of interconnected
systems and investigate a condition to preserve the intercon-
nection topology. The singular perturbation approximation,
in general, yields dense system matrices in (6) even if the
original system matrices have some sparsity representing
an interconnection topology of subsystems. This means that
the interconnection topology of the original system is ex-
tinguished through the approximation. To preserve this, it is
essential that we introduce suitable sparsity of P compatible
with sparsity of the system matrices.

In the rest of this paper, we focus on the following class
of interconnected systems:

Σ0 :

 ẋ0 = A0x0 +B0u+
∑L

l=1b0,lwl

y = C0x0 +D0u
zl = c0,lx0

Σl :

{
ẋl = Alxl + blzl
wl = −(clxl + dlzl),

l ∈ L (17)

where L := {1, . . . , L}. For simplicity of notation, we
omit each matrix dimension and assume that all quantities
have compatible dimension. The structure of (17) repre-
sents a decentralized negative feedback interconnection of
subsystems Σl to the hub subsystem Σ0. Such a structure
appears in decentrally controlled systems, where Σ0 and Σl

can be regarded as a plant and decentralized controllers,
respectively.

The interconnected system can be rewritten by the struc-
tured system matrices of

A =

[
diag(Al)l∈L diag(bl)l∈Lc0,L

−b0,Ldiag(cl)l∈L A0 − b0,Ldiag(dl)l∈Lc0,L

]
B =

[
0
B0

]
, C =

[
0 C0

]
, D = D0 (18)

where b0,L := [b0,1, . . . , b0,L] and c0,L := [cT0,1, . . . , c
T
0,L]

T.
For convenience, we define the following terminology:

Definition 4: A linear system Σ in (1) is said to be a
decentrally interconnected network if A, B, C and D are
in the form of (18).

It should be emphasized that in order to preserve the
structure in Definition 4, we are required to take into account
sparsity of P as well as that of Q because Π in (7) possibly
becomes a dense matrix due to the inversion (QAQT)−1. To
realize suitable sparsity of the inversion, compatible with the
structure in (18), we impose the following specific structure
on P :

Definition 5: Let be given a decentrally interconnected
network Σ in Definition 4. An aggregation matrix compatible
with (18) is defined by

P := diag(p1, . . . , pL, In0) ∈ Rn̂×n (19)

where each pl ∈ Rn̂l×nl satisfies plp
T
l = In̂l

and
∑L

l=1n̂l +
n0 = n̂.

This structure of P implies that the singular perturbation
approximation is applied with respect to each subsystem.
Hereafter, we denote an orthogonal complement of pl ∈
Rn̂l×nl by ql ∈ R(nl−n̂l)×nl , i.e., pTl pl + qTl ql = Inl

holds
for each l ∈ L. Based on the formulation above, we obtain
the following theorem:

Theorem 3: Let be given a decentrally interconnected
network Σ in Definition 4. For any aggregation matrix P in
Definition 5, the singular perturbation model Σ̂sp is again
a decentrally interconnected network and is given by the
system matrices of

Â =

[
diag(Âl)l∈L diag(b̂l)l∈Lc0,L

−b0,Ldiag(ĉl)l∈L A0 − b0,Ldiag(d̂l)l∈Lc0,L

]
B̂ =

[
0
B0

]
, Ĉ =

[
0 C0

]
, D̂ = D0 (20)

where

Âl := plAlp
T
l − plAlπlAlp

T
l , b̂l := (pl − plAlπl)bl

ĉl := cl(p
T
l − πlAlp

T
l ), d̂l := dl − clπlbl

(21)
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and πl := qTl (qlAlq
T
l )

−1ql.
Proof: Note that the structure of the aggregation matrix

P allows that its orthogonal complement is in the form of

Q = [diag(q1, . . . , qL), 0] ∈ R(n−n̂)×n. (22)

Thus, it is readily verified that B̂ = PB, Ĉ = CPT and
D̂ = D hold due to QB = 0 and CQT = 0. This proves
the claim for B̂, Ĉ and D̂ in (20). In addition, the specific
structure of P and Q yields

PAPT =

[
diag(plAlp

T
l )l∈L diag(plbl)l∈Lc0,L

−b0,Ldiag(clpTl )l∈L A0 − b0,Ldiag(dl)l∈Lc0,L

]
PAQT =

[
diag(plAlq

T
l )l∈L

−b0,Ldiag(clqTl )l∈L

]
QAPT =

[
diag(qlAlp

T
l )l∈L diag(qlbl)l∈Lc0,L

]
QAQT = diag(qlAlq

T
l )l∈L.

Note that (QAQT)−1 = diag((qlAlq
T
l )

−1)l∈L holds. Thus,
Â in (6) is given by (20).

Theorem 3 shows that the singular perturbation approx-
imation associated with the aggregation matrix P appro-
priately preserves the decentralized interconnection of the
original system. In addition, comparing (20) with (18), we
notice that the singular perturbation approximation associ-
ated with P in (19) just coincides with that of each subsystem
associated with pl, and also that the dynamics of the hub
subsystem is exactly left through the approximation.

C. Approximation of Decentrally Interconnected Networks
composed of Passive Subsystems

In this subsection, combining all results above, we propose
a structured singular perturbation approximation of decen-
trally interconnected networks. For convenience, we define
Σ̂l by replacing Al, bl, cl and dl in (17) with Âl, b̂l, ĉl
and d̂l in (21). The following theorem provides an H2-error
bound of the structured approximation, where the principal
submatrix of M corresponding to the l-th subsystem is
denoted by [M ]l, e.g., [A]l = Al holds for A in (18):

Theorem 4: Let be given a decentrally interconnected
network Σ in Definition 4 and assume that

Σ0-z,w :

{
ẋ0 = A0x0 + b0,Lw
z = c0,Lx0

(23)

is V0-passive and all subsystems Σl in (17) are Inl
-passive.

Let G in (2) be the transfer matrix of Σ and Φ ∈ Rn×n such
that ΦA+AΦT +BBT = 0. If the aggregation matrix P ∈
Rn̂×n in Definition 5 satisfies that im([bl, c

T
l ]) ⊆ im(pTl ) and

ql[AΦAT]lq
T
l − diag(λ1

l , . . . , λ
nl−n̂l

l ) (24)

is negative semidefinite for each l ∈ L, then the singular
perturbation model Σ̂sp in (5) is a stable decentrally inter-
connected network, which is composed of V0-passive Σ0-z,w

and In̂l
-passive Σ̂l for l ∈ L, and satisfies Ĝ(0;P ) = G(0)

and

∥Ĝ(s;P )−G(s)∥H2 ≤ ∥Ξ̂(s;P )∥H∞

√√√√ L∑
l=1

nl−n̂l∑
i=1

λi
l (25)

where Ξ̂ is defined in (12).
Proof: Theorem 3 shows that the singular perturbation

approximation associated with P in (19) just coincides with
that of each subsystem associated with pl. In addition,
from Theorem 2 with im([bl, c

T
l ]) ⊆ im(pTl ), the singular

perturbation approximation of each Inl
-passive Σl yields

In̂l
-passive approximants Σ̂l. Thus, Σ̂sp, which consists of

the negative feedback interconnection of V0- and In̂l
-passive

subsystems, is stable. Furthermore, using (11), we have

∥Ĝ(s;P )−G(s)∥H2 ≤ ∥Ξ̂(s;P )∥H∞∥QX(s)∥H2

where Q is given by (22). Note that QB = 0 holds, which
implies that the feedthrough term of QX is null. Thus,
∥QX∥H2 is bounded and is given by

∥QX(s)∥2H2
= tr(QAΦATQT),

which is upper bounded by
∑L

l=1

∑nl−n̂l

i=1 λi
l due to (24).

This proves the claim.
This theorem shows that the structured approximation

works well if the sum of eigenvalues of [AΦAT]l that
are neglected through the approximation is small enough.
Based on the error analysis above, we provide the following
algorithm for systematic reduction, where we denote Nl :=
{1, . . . , nl}:
(a) Prescribe a threshold ϵ and let null matrices ηl for l ∈ L.
(b) Calculate the index matrix AΦAT from (A,B).
(c) Find the set {(λi

l, v
i
l)}i∈Nl

of all eigenpairs of the
diagonal blocks [AΦAT]l for each l ∈ L, where the
eigenvectors vil are normalized as ∥vil∥ = 1.

(d) For l ∈ L and i ∈ Nl, update ηl ← [ηl, v
i
l ] if λi

l ≥ ϵ.
(e) Find pl such that im(pTl ) = im([ηl, bl, c

T
l ]) and plp

T
l =

In̂l
by the Gram-Schmidt process.

(f) Construct the singular perturbation model in (5) asso-
ciated with the aggregation matrix P in (19).

This algorithm finds pl ∈ Rn̂l×nl such that λi
l < ϵ for all

i ∈ {1, . . . , nl − n̂l} in (24). Note that for the construction
of each pl, we only need the eigenvalue decomposition and
the Gram-Schmidt process for matrices with the dimension
nl of each subsystem.

IV. NUMERICAL EXAMPLE

We show the efficiency of the proposed structured approx-
imation through a numerical example. Let us consider the
2ν-dimensional mass-spring-damper system

Mq̈ + Lq̇ +Kq = Fw, y = z = FTq̇ (26)

with ν = 50, M = Iν , L = (1/4)Iν and

K =


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 , F =


1 0

0
...

... 0
0 1

 .

A depiction of this system is given in Fig. 1, where we use
the notation w = [w1, w2]

T, y = [y1, y2]
T, z = [z1, z2]

T and
q = [q1, . . . , q50]

T.
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Fig. 1. Depiction of Mass-Spring-Damper System with Decentralized
Control.
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Fig. 2. Trajectory of Output y.

By letting x0 := [qT, q̇T]T ∈ R2ν , we have the 100-
dimensional plant Σ0-z,w in (23) with

A0 =

[
0 Iν

−M−1K −M−1L

]
, b0,L =

[
0

M−1F

]
and c0,L = [0, FT]. As shown in [10], this Σ0-z,w is V0-
passive with V0 = diag(K−1,M−1). For this plant, we
construct a decentralized controller composed of passive
local controllers Σl in (17) for l ∈ {1, 2}. Here, we apply
the design technique of a centralized passive controller
proposed in [11] to each truncated (disconnected) sub-plant
denoted by Σl

0 in Fig. 1. As a result, we obtain a 100-
dimensional decentralized passive controller. In Fig. 2, the
output trajectories with and without control are shown by the
solid and chain lines, respectively, where the initial condition
x0(0) of the plant is given randomly.

Next, supposing that the performance of the decentralized
controller is desirable, we reduce the dimension of each con-
troller by using our structured approximation. To guarantee
the performance for any initial condition x0(0), we apply
the dual counterpart of Theorem 4, namely we approximate
the state-to-output mapping defined by (A,C) in (18) with
fixed C0 = [0, FT]. Assigning the threshold in the algorithm
in Section III-C as ϵ = 10−3, both controllers are reduced
to 5-dimensional ones, which preserves the decentralized
feedback interconnection as well as passivity. The output
trajectory of the controlled system with the reduced order
controllers is shown also in Fig. 2 by the dot lines. From
this result, we can see that the dimension of the passive
controllers is appropriately reduced almost without degrading
the performance.

V. CONCLUSION

In this paper, we have proposed a singular perturbation
approximation with the preservation of passivity and an inter-
connection topology. First, investigating the relation between
the singular perturbation and the reciprocal transformation,
we have derived useful factorization of the error system. In
the second half of this paper, based on the result in the
first half, we have established a network structure preserving
approximation for a class of interconnected systems. Our
approximation procedure produces a reduced model that not
only possesses fine approximating quality but also preserves
the original interconnection topology and system passivity.
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