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Abstract—For a closed-loop system with a contention-based mul-
tiple access network on its sensor link, the medium access con-
troller (MAC) may discard some packets when the traffic on the
link is high. We use a local state-based scheduler to select a few crit-
ical data packets to send to the MAC. In this paper, we analyze the
impact of such a scheduler on the closed-loop system in the pres-
ence of traffic, and show that there is a dual effect with state-based
scheduling. In general, this makes the optimal scheduler and con-
troller hard to find. However, by removing past controls from the
scheduling criterion, we find that certainty equivalence holds. This
condition is related to the classical result of Bar-Shalom and Tse,
and it leads to the design of an innovations-based scheduler with a
certainty equivalent controller. However, this controller is not an
equivalent design for the optimal controller, in the sense of Witsen-
hausen. The computation of the estimate can be simplified by in-
troducing a symmetry constraint on the scheduler. Based on these
findings, we propose a dual predictor architecture for the closed-
loop system, which ensures separation between scheduler, observer
and controller. We present an example of this architecture, which
illustrates a network-aware event-triggering mechanism.

Index Terms—Event-based systems, networked control systems,
state-based schedulers.

I. INTRODUCTION

ONSIDER a network of control systems, where the

communication between the individual sensors and
controllers of different control loops occurs through a shared
network, as shown in Fig. 1. This is an important scenario, in
the context of wireless networked control systems (NCS), for
industrial and process control [1]. A medium access control
layer is required in the sensor’s protocol stack to arbitrate
access to the shared network. To focus on the implications
of a medium access controller (MAC) on the sensor link,
we assume that the communication between the controllers
and the corresponding actuators occurs over a point-to-point
network, not a shared network. This is a common architecture
in practice [2], [3]. The MAC can implement a contention-free
or a contention-based multiple access method, both of which
have their own challenges [4]. A contention-free multiple
access method requires a dynamic scheduler to prevent poor
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Fig. 1. Network of M control loops, with each loop consisting of a plant 77
and a controller 7 forj € {1,..., A}, The loops share access to a common
medium on the sensor link, along with & other communication flows from
generic source-destination pairs. The controllers and actuators communicate
over dedicated networks, not shared links.

/

channel utilization, and such a scheduler is hard to construct
and implement on an interference-constrained shared network
[5], [6]. Contention-based methods have proven popular in
standards such as IEEE 802.15.4 [7], as they facilitate an easy
deployment on sensor nodes. However, such methods result
in random access, which could significantly deteriorate the
performance of a closed-loop system [8]. Thus, the design of a
MAC for networked control systems is a challenging problem,
and calls for innovative solutions [9].

In this paper, we explore the design of a state-aware con-
tention-based MAC, as opposed to an agnostic contention-based
MAC. The state-aware MAC is capable of influencing the ran-
domness of channel access in favour of the state of the plant
in the closed-loop system. However, directly using the state of
the plant to determine an access probability may result in a
MAC that is difficult to implement and analyze [10]. Instead,
we use the state of the plant to select packets to send to the
MAC, motivated by an understanding of the two roles played
by a MAC: Any random access method works by resolving
contention between simultaneous channel access requests, thus
spreading traffic that arrives in bursts. The carrier sense multiple
access with collision avoidance (CSMA/CA) method does this
by assigning a random back-off to packets that attempt to access
a busy channel, thus spreading the traffic over a longer interval
of time. Similarly, the p-persistent CSMA method does this by
probabilistically limiting access to the channel and permitting a
number of retransmissions if the channel is busy [11]. However,
all of these methods permit only a finite number of retransmis-
sions, beyond which the packet is discarded. We appropriate this
latter role of discarding packets to a local state-based scheduler,
which sends fewer, but more important packets to the MAC for
transmission across the network.

A similar strategy has previously been proposed from the
more general perspective of reducing network traffic [3]. When
applied to the newly posed NCS problem [12], this approach
has driven the design of event-based sampling systems [13],
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Fig. 2. Plant (P'), state-based scheduler (S') and controller (C') share the network (\") with 34 — 1 other closed-loop systems with state-based schedulers
(89,5 € {2,...,M}), and K generic devices (D*,7 € {1,...,K}), in (a). A model, from the perspective of a single closed-loop system in the network, is
depicted in (b). (a) A multiple access (MA) scenario for NCSs. (b) The MA model for each closed-loop system.

[14], which have been shown to outperform periodically sam-
pled systems under certain conditions [15]-[17]. More recently,
such systems have been analyzed for estimation over networks
[18], [19], but the extensions to the control setting remain in-
complete. We approach the NCS problem from a different per-
spective, but one that leads to a network-aware design of event
triggering methods.

There are two main contributions in this paper. The first con-
tribution is an analysis of the impact of having a state-based
scheduler in the closed-loop. Primarily, a state-based scheduler
permits the information available at the controller to be altered
with the plant state. This information is not entirely random, like
in the case of packet losses due to a noisy channel [20],[21], and
it can result in a sharply asymmetrical estimation error, unlike in
the case of encoder design over limited data rate channels [22],
[23]. It seems reasonable to ask if we can use the controller to
move the plant state across the threshold and force a transmis-
sion. If this is possible, the controller plays two roles: the first
one being to control the plant, and the second one being to con-
trol the information available at the next time step. This relates
to the classical concept of a dual effect, as described in [24] and
[25]. The answer to this question determines the ease of optimal
controller design, as the certainty equivalence principle would
not hold if there is a dual effect [26]. We examine our system
and find that there is a dual effect with a state-based scheduler
in the closed-loop, and the certainty equivalence principle does
not hold. Hence, the optimal state-based scheduler, estimator
and controller designs are coupled. A restriction on the input ar-
guments to the state-based scheduler, such that these arguments
are no longer a function of the past control actions, renders the
setup free of a dual effect, and enables the certainty equivalence
principle to hold. These results can be seen as an interpretation,
within the state-based scheduler setup, of the classical work on
information patterns [27], dual effect, certainty equivalence and
separation by Witsenhausen [28], Bar-Shalom and Tse [26], and
on adaptive control by Feldbaum [24], Astrém and Wittenmark
[25], and many others [29].

The second contribution of this paper is on the dual predictor
architecture, which is our proposed solution to the state-based
scheduler design problem. In this architecture, the state-based
scheduler thresholds the squared difference of the innovation
contained in the latest measurement to the estimator across the
network. This results in an optimal certainty equivalent con-
troller, and a simple observer which generates the minimum
mean-squared error (MMSE) estimate. Tuning parameters in the

state-based scheduler in this architecture based on the current
network traffic can result in a scheduling law that guarantees
a probabilistic performance. This is not easy to show, in gen-
eral, as the performance analysis of a closed-loop system with a
state-based scheduler in a multiple access network is a difficult
problem [16], [17]. However, we illustrate the guaranteed per-
formance using simulations, and thus claim that the state-based
scheduler we propose results in a network-aware event-trig-
gering mechanism.

The rest of the paper is organized as follows. In Section II, we
present the problem formulation. In Section III, we derive the-
oretical results for the case when full state information is avail-
able, with and without exogenous network traffic. In Section IV,
we present the dual predictor architecture. We look at an ex-
tension to output-based systems in Section V. We present a
counterexample to validate our results on the dual effect, along
with other examples that illustrates our notion of network-aware
event-triggering, in Section VI. Providing performance guaran-
tees remains a difficult problem, as we indicate under future
work, along with the conclusions, in Section VII.

II. PRELIMINARIES

We present the problem setup and a few important definitions,
along with a review of the classical concepts of dual effect and
certainty equivalence in this section.

A. Problem Formulation

We consider a network of M control loops, as shown in
Fig. 2(a). Each control loop, for j € {1,..., M}, consists of
a plant P7, a state-based scheduler S? and a controller C7.
The loops share access to a common medium on the sensor
link. A closed-loop system in this network can be modeled as
shown in Fig. 2(b), with the index j dropped for simplicity. The
block A/ represents the network as seen by this loop, and the
block ‘R denotes the contention resolution mechanism (CRM),
which determines access to the network. Each of the blocks in
Fig. 2(b) is explained below.

Plant: The plant P has state dynamics given by

Lht1 = Al]}k + Buk + wp (1)

where A € R**" B € R™*™ and wy, is independent and iden-
tically distributed (i.i.d.) zero-mean Gaussian with covariance
matrix 1,,. The initial state xg is zero-mean Gaussian with co-
variance matrix I2g.
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State-Based Scheduler: There is a local scheduler S, situated
in the sensor node, between the plant and the controller, which
decides if the state is to be sent across the network or not. The
scheduler output is denoted ~y, where v, € {0,1}. It takes a
value 1 when the state x;, is scheduled to be sent and O other-
wise. The scheduling criterion is denoted by the policy f, which
is defined on the information pattern of the scheduler ﬂ;, and is
given by

2
where f; is not a constant function of ug ', ie., 3 g, uy
such that f(wi.-) # f(uz2,-). The scheduling policy f%
is also a function of wj € £)f, and €1} is the o-algebra
generated by the information set at the scheduler, given by
k = {=zk,y5" 45,8657 }. Here, we use bold font to denote

a sequence of variables such as a7 {at,ae41,...,ar}.
Note that an explicit acknowledgement (ACK) of a successful
transmission is required for 8 to be available to the scheduler.
The scheduler output - is now a function of the state, as
suggested by the epithet “state-based scheduler.”

Network: The network A generates exogenous traffic, as is
indicated by ny € {0,1}. It takes a value 1 when the net-
work traffic attempts to access the channel, and 0 otherwise.
The network traffic is considered to be stochastic, as it could
be generated by another control loop, or by any other commu-
nicating node in the network. Thus, ny is a binary random vari-
able, which is not required to be i.i.d. We say that there is no
exogenous network traffic if ny, = 0, for all &.

CRM: The CRM block R resolves contention between mul-
tiple simultaneous channel access requests, i.e., when v, = 1
and ng, = 1. If the CRM resolves the contention in favor of
our control loop, 6 = 1, and otherwise 0. The CRM can be
modeled as the MAC channel response R, with MAC output 6y,
given by

bk = R(vk. 1) - 3)

For brevity, we also define &, = 1 — &, which takes a value 1
when the packet is not transmitted. The MAC channel response
'R is modeled as a discrete memoryless channel at the sampling
time scale, requiring the CRM to resolve contention with respect
to this packet before the next sampling instant. This translates
to a limitation on the sampling rates supported by the model.

Measurement: The measurement across the network is de-
noted yy. It is a nonlinear function of the state x, and is given
by

b =1,
8 =0,

Tk

Yk = Oy = {@

where } indicates an erasure. A successful transmission results
in the full state being sent to the controller. However, even non-
transmissions convey information as the scheduler output §;, can
be treated as a noisy and coarsely quantized measurement of the
state zy.

Controller: The control law g denotes an admissible policy
for the finite h0r1zon N defined on the information pattern of
the controller, Ilk , and is given by

4)

)

ur = gru(wy)
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Fig. 3. Illustration of the delay since the last received packet (d. ) and the index
of the last received packet (7%).

where wj, € 1f, and f is the o- algebra generated by the in-
formation pattern [ k = {y(J 88 uy } The objective function,
defined over a horizon /V is given by

N-1

VQOJf]\ + Z Ql*lfs + Uy QQUS')

s=0

J(f.9) = (6)

where () and (J; are positive semi-definite weighting matrices
and @7 is positive definite.
In the rest of the paper, we address the following questions.
1) For a NCS with a state-based scheduler, what is the optimal
control policy which minimizes the cost .J in (6)?
2) Can we find a simple, but suboptimal, closed-loop system
architecture for the given NCS?
To answer the first question, we need to examine whether the
system exhibits a dual effect. This also requires us to check
if we can find an equivalent system, in the sense of Witsen-
hausen, for which certainty equivalence holds. The second ques-
tion requires us to identify restrictions on the scheduling policy
f, which can ensure separation of the scheduler, controller and
observer.

Definitions and Properties

We present a few definitions and properties that are used in
the rest of the paper.

Definition 2.1 (Uncontrolled Process): An auxiliary uncon-
trolled process (P) can be defined for any closed-loop system,
by removing the effect of the applied control signals from the
state. The resulting uncontrolled state is denoted Z ., and given

by
(7

Last Received Packet Index: The time index of the last re-
ceived packet is denoted 7, at time & (illustrated in Fig. 3), and
for -1 < 7, < k, it is given by

T =max{t: 6, =1, for —1<t<k,6_1=1}. (8)
An iterative relationship for 7. can be found as
Tk:Ska_l-i-(skk, T_1=-—1. 9)

If a packet arrives at current time %, the last received packet
index 73, = k, but if there is no packet at time %, then the last
received packet index is the same as the last received packet
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index from time & — 1, i.e., 7, = Tx_1. This implies that 74, €
{-1,....k}.

Dual Effect: Note that the control u;, might affect the future
state uncertainty, in addition to its direct effect on the state. This
is called the dual effect of control [24], and is discussed for
state-based schedulers in Section III-A.

Definition 2.2 (No Dual Effect [26]): A control signal is said
to have no dual effect of order r > 2, if

E[M} 1] = E[M] |, w3 mb]

(10)

where My ; = (w1 — E[gll,

the 4th component of the state -, ; conditioned on |] and 7, 1S
the time index of the last received measurement at tlme k.

Note that M, in (10) must specifically not be a function of
the past control policies gi ~* for the control signal to have no
dual effect of order . In other words, if there is no dual effect,
the expected future uncertainty is not affected by the controls
u¢ " In the presence of a dual effect, the optimal control laws
are hard to find [25].

Certainty Equivalence: There are two closely related terms:
a certainty equivalent controller and the certainty equivalence
principle. We define both these terms with respect to the deter-
ministic optimal controller, with full state information, for the
above problem setup [26], [30]. These properties are discussed
for state-based schedulers in Section III-C.

Definition 2.3 (Certainty Equivalent Controller): A certainty
equivalent controller uses the deterministic optimal controller
with the state z;, replaced by the estimate &vx = E[xy]l, ] as
an ad hoc control procedure.

Sometimes, there is no loss in optimality in using a certainty
equivalent controller. Then, we say that the certainty equiva-
lence principle holds.

Definition 2.4 (Certainty Equivalence Principle): The cer-
tainty equivalence principle holds if the closed-loop optimal
controller has the same form as the deterministic optimal con-
troller with the state wj, replaced by the estimate &/ .

Correlated Network Noise: We state a property of feedback
systems with state-based schedulers that share a contention-
based multiple access network. Even if the initial states and
disturbances of all the plants in the network are independent,
the contention-based MAC introduces a correlation between the
traffic sources, as noted in [16] and [17].

Lemma 2.1: For a closed-loop system defined by (1)—(5), the
exogenous network traffic indicated by n; is correlated to the
state of the plant zy,.

Proof: The MAC output 65 _1 is a function of the state
71,1 and the indicator of network traffic ng 1, from (2) and (3).
The control signal w1 is a function of the MAC output &1
from (5), and is applied through feedback to the plant. Thus, ;.
and -y, are correlated to &3 ;. Similarly, the network traffic from
other closed-loop systems (and its indicator ny) is correlated to
6r—1, and consequently, . [ |

])” is the rth central moment of

III. OPTIMAL CONTROLLER DESIGN

We present the main results of this paper in this section. We
first analyze the effects of a state-based scheduler on a con-
trol loop with no exogenous network traffic, i.e., ny = 0. As
a consequence of this, the MAC output is equal to the scheduler
output, i.e., 6y, = ;. We show that there is a dual effect of the

1965
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Fig. 4. For states r € R?, we define a state-based scheduling policy f that
generates an event when the state lies outside the shaded region. The resulting
estimation error within the shaded region is nonzero, whereas it is zero outside
this region. The dual role of the controller, shown in Theorem 3.1, arises from
the incentive to move some states along path 2 (and remain outside of the shaded
region), as compared to path 1 (this only reduces the variance of the state).

control signal, and that the scheduling policy must be restricted
from using the past control inputs for the certainty equivalence
principle to hold. We illustrate this for a second-order system
with a state-based scheduler in Fig. 4, and show that the con-
troller is not oblivious to the scheduler boundaries. We extend
our results to the case with exogenous network traffic.

A. Dual Effect With State-Based Scheduling

We observe that the estimation error is a function of the ap-
plied controls, and that it does not satisfy the condition for no
dual effect in (10). Thus, we have the following result.

Theorem 3.1: For the closed-loop system defined by (1)—(5),
with no exogenous network traffic, i.e., ny = 0, the control
signal has a dual effect of order » = 2.

Proof: We examine the estimation error, and show that it
is not equivalent to the estimation error generated by the uncon-
trolled process P (from Definition 2.1) in place of . Thus, we
prove that the estimation error covariance is a function of the
applied controls u} '

From (4), we know that a successful transmission results in
the full state being sent to the controller, whereas a non-trans-
mission conveys only a single bit of information (&, is blnary)
about the state to the controller. Thus, the estimate, Zxx £

Ela|l k], is given by

Trle = OpTp + Sk[E[Tk“];,(Sk = 0] .

The variable §;, cannot be removed from the above expression
due to the asymmetry in the resolution of the received informa-
tion with and without a transmission. The scheduler outcome,
and consequently 6y, are influenced by the applied control in-

puts u; ~* in a state-based scheduler such as (2). The estimation

. oA A
error, defined as Zejx = xp — [E[mk.|llk ], is given by

Zi'k-wc == (:l?k - [Lk| 6k = 0]) . 5k4 (11)
and thus depends on é;. The estimation errorcwhen there is no
transmission is defined as &9, = x), — E[z|l, , & = 0], and is

given by

k
9, = Arxo + Z Az‘l(Bukfz + wi_p)

=1
k
-E AkiL’() + ZAﬂil(Buk,g + wk‘*lf)wzv&k =0
=
o '
:fffk — E[T’k“]k,bk = O}
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where Z;, is the state of the uncontrolled process (see Definition
2.1). As shown above, the additive terms containing the past ap-
plied controls can indeed be removed with knowledge of the ap-
plied controls at the estimator. However, é;, and &, the second
factor of the product in (11), remain a function of the applied
controls, and cannot be generated by the uncontrolled process
alone.

Thus, the estimation error is always dependent on the applied
controls and this distinguishes the current problem from other
related problems, such as in [22], [23]. The error covariance,
P & E[aepil, |[|:}, is given by

Pui = 8y - (E[ine @D, Iy, 6, = 0]) . (12)
The covariance P x is zero if the scheduling criterion in (2) is
fulfilled, and nonzero otherwise. Through dx, Pk« is a function
of the past controls. Hence, P:j» does not satisfy the condition
(10) required to have no dual effect. Thus, the system (1)—(5)
exhibits a dual effect of order r = 2. ]

In this setup, there is an incentive for the control policy to
modify the estimation error along with controlling the plant, as
illustrated in Fig. 4. Thus, the controller might choose to keep
the state out of the shaded region to improve the estimation error
for future time steps, even if this results in an increased variance
of the state.

B. Witsenhausen Equivalence

Suppose that every state-based scheduler f, from (2), can be
transformed into an innovations-based scheduler f, such as

e = ful@}) 13)
where, @5 € QF, Qf is the o-algebra generated by the in-
: 7S k-1 . FA
formation pattern I, = {wg,w; "'}, and the policy f is de-

fined in advance, and can be realized without any knowledge
of the control policies used in the system. The output of such a
scheduler is only a function of the innovations, and not a func-
tion of the applied controls #;~". This distinguishes an innova-
tions-based scheduler from a state-based scheduler (2). The in-
novations-based scheduler does not result in a dual effect of the
control signal, as we show below. Even so, we cannot replace a
state-based scheduler (2) in a closed-loop system with an inno-
vations-based scheduler (13), unless it results in an equivalent
control design. We now examine the question of equivalent de-
signs, following Witsenhausen [28].

Definition 3.1: An equivalent design, in the sense of Witsen-
hausen, g, for the optimal controller g*, which minimizes the
cost criterion (6) for the system defined by (1)—(5), satisfies the
equivalence relation given by

u =T(w.g") = T(w, gea) (14

where T is obtained by recursive substitution for the control sig-
nals in the system equations with the respective control policy
and the primitive random variables wy = [zg, ws *].

For brevity, we adopt the following notation. Let {7, f1, g1}
denote a system with a plant P given by (1), with f; as the given
scheduler and g; as the optimal controller for the cost in (6). We
now note the following result.

Theorem 3.2: Let there be no exogenous network traffic, i.e.,

ny, = 0. For any state-based scheduler f and innovations-based
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scheduler f that result in the same schedules, the corresponding
optimal designs, g* and g, respectively, are not equivalent in the
sense of Witsenhausen.

Proof: Definition 3.1 requires the control signals obtained
using the policies g* and g to be equal. In this proof, we find the
optimal control policies for g and g*, and show that they do not
result in the same control signals.

For the optimal control policy, which minimizes the quadratic
cost J in (6), to be certainty equivalent, we need to find a so-
lution to the Bellman equation [30], which is a one-step mini-
mization of the form

- (&)
Vi = min Elz} Quz + uf Qoup + Vi1 |l ] - (15)
U
In general, without defining a structure for the estimator, the
solution to the functional is given in the form of

V. =E [ﬂf{Sk.’I,’kMZ} + Sk (16)
where Sy, is a positive semi-definite matrix and both S} and
sy are not functions of the applied control signals u;~*, see
[26]. We now prove that a solution of this form can be found
for {P, f. g}, but not for {P, f,g*}.

First consider the system {P, f. g}. We denote the state and
control signals of this system as z; and u. At time N, the
functional has a trivial solution with Sy = (g and sy = 0.
This solution can be propagated backwards, in the absence of
a dual effect. To show this, we use the principle of induction,
and assume that a solution of the form (16) holds at time & + 1.
Then, at time &, we have

. ~ ~ ~ ~ ~ ~ &)
Vi = ngin E[T{Qlfk +’1L£Q2161¢ + $Z;+1Sk+1fﬂ]¢,+1 +’9k+1||]k]
= min E[#7(Q1 + AT Sy i1 A)iplly ] + tr{Spy1 R}
e

c N N
+ E[Sk+1“]k] + U{(QQ + BTS]H,lB)uk

AT R
+ .7~3k|7fATSk+1BYNI,k + QEBTSk+1A:fIk|k
where & = E[#, ||]Z} The optimal control is found to be

Uy = ka:%‘uk s Ly =(Q2+ BTSk_HB)ilBTSk_;,_lA .
(17)

Substituting the expression for %, into V, gives us a solution of
the form in (16), with

Sp=Q1+ ATSp 1A
— AT 8, 11B(Q2 + BT 8341B) " BT S0 A

C
s = [E[5k+1|ﬂk] + tI‘{Sk+1R“,}
+tr{AT S} 1 B(Q2 + BT S 1B) ' BT Sy 1 AP}

(18)

where the matrix S}, is positive semi-definite and not a function
of the applied controls 4 *. The scalar sy, is not a function of
the applied controls @ " if and only if P:» has no dual effect
[26]. From the expression for the error covariance Py x (12), it is
clear that a scheduling criterion that is not a function of the past
control actions, such as (13), results in no dual effect. Under this
condition, sy, is not a function of the applied controls &, " and
the proof by induction is complete. Since the optimal control
signal (17) is a function of only the estimate .'i']c\k , the certainty
equivalence principle holds.
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Now, consider the system {P, f, g* } with state ;. and con-
trol 7. Solving the backward recursion as we did above, we
find that Viy and Vy 1 have a solution of the form (16), with
Sy =0Qgand sy = 0,and Sy_1 and sy _1 given by (18) with
k = N — 1. However, Vi _o results in a different minimization
problem for this system because of the dual effect in {P, f, g* },
as indicated next. The optimal control signal u};_, can be ob-

. AV
tained by solving # as
N—2

(tl{(Qz +BTSI\ B)]KN,Q . [E[PN—HN—l |[|JC\,_2]})

Ouy

+ 271,‘1\/—_2((22 + BTSN_lB) + Qfg,gw,zATSN_lB =0

where we set IK yy_o as
(Q2+BTSy 1B) 'ATSNyB(Qs + BYSyB) 'BT Sy A.

Multiplying the above expression with (Q2 + BT Sy _1B) ™!
CE _

from the right and wusing (17) to denote ux®, =
—Ly_9&~_2~—2, We obtain the simpler equation
C
8u?\r72 tI’{]KN,Q[E[PN—uw—l |[|N72]}
+2(uyy —ui"y) =0 (19)

The first term in (19), related to the estimation error covariance
Py _1x_1,1s not equal to zero as implied by the dual effect prop-
erty from Theorem 3.1. Due to this term, the above minimization
problem is not linear, and thus, the solutions u$~, and u%
are not equal. Since u 5 has the same form as @ _2, we also
note that #x _» and 71A ) have very different forms. From this
point on, the cost-to-go for the optimal control policy g+ does
not have a solution of the form given by (16). Hence, the control
signals {#}y ~* and {uw* }3’~* will not be equal. Now, the joint
distribution of all system Variables could be quite different for
schedulers f and f. Thus, the described transformation of the
scheduling criterion does not result in an equivalent design. Wl

The above theorem provides us a motivation for using a state-
based scheduler, despite the inherent difficulties associated with
the closed-loop design. Due to the dual effect, the optimal con-
trol action takes on two roles. One, to control the plant, and
the other, to probe the plant state which could result in an im-
proved estimate [25]. The innovations-based scheduler results
in a simpler closed-loop design, as shown in (17)—(18). How-
ever, a probing action cannot be implemented in any controller
in this setup due to the lack of a dual effect. Thus, the resulting
control actions for the closed-loop systems with the state-based
and innovations-based schedulers are not the same.

C. Conditions for Certainty Equivalence

From the previous discussions, it is clear that a scheduling
criterion independent of the past control actions, such as the in-
novations-based scheduler, results in no dual effect. This result
is presented next.

Corollary 3.3: For the closed-loop system defined by (1)—(5),
with no exogenous network traffic, i.e., n = 0, the optimal
controller, with respect to the cost in (6), is certainty equivalent
if and only if the scheduling decisions are not a function of the
applied control actions, such as in (13).
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Proof: Inthe proof of Theorem 3.2, it is clear from (17) that
the optimal control policy § for the system {P, f, g} is certainty
equivalent.

To show the necessity of this condition for certainty
equivalence, we need to show that if the optimal control
signal has the form in (17) at time k, then the sched-
uling policy is not a function of the controls for n < £k,
for all k. Accordingly, assume that the optimal control
signal is given by (17) for £ =
Then, the optimal cost-to-go is of the form in (16) at
time n + 1 and s,41 = Zk/;1+1 [tr{ATSk+1B(Q2+
BTSk+1B) 1BTSk+1APA|k + Sikr1 Ry }| }, when written
out explicitly. We know that the optimal control signal 1w, is
obtained by minimizing (15) at time n. This control signal
will have the form in (17) for all Q2 > 0 only if s,41 is
independent of u,, or if the estimation error covariances
Pup, fork = {n+1,...,N — 1}, are not a function of u,,.
From the result in Theorem 3.1, this is only possible when the
scheduling policy is not a function of w,,. Since this is true for
n = (). ..., N —1, the scheduling policy must not be a function
ofuy~". |

Corollary 3.3 provides us with a restriction on the scheduler
to ensure certainty equivalence. Note that the resulting design is
not equivalent to the optimal design, as shown in Theorem 3.2.

D. Effect of State-Based Schedulers With Exogenous Network
Traffic

In this subsection, we analyze the effects of a state-based
scheduler on the control loop in the presence of exogenous net-
work traffic. Thus, we have n; # 0 and a channel output given
by (3). Recall from Lemma 2.1, that the network traffic indicator
ny 1s correlated to the state of the plant x;. The certainty equiva-
lence principle need not hold for plants where the measurement
noise is correlated to the process noise [26]. To focus on the ef-
fect of state-based schedulers on the closed-loop system, the re-
sults presented in the previous subsection did not include exoge-
nous network traffic. Now, we derive some of the above results
for the system in the presence of exogenous network traffic.

Lemma 3.4: For the closed-loop system defined by (1)—(5),
the control signal has a dual effect of order » = 2.

Proof: The MAC output ¢, (3) is clearly still a function of
the applied controls, through the state-based scheduler outcome.
Thus, the estimation error covariance P ., in (12), remains a
function of the applied controls u; ~*. Since P|» does not satisfy
the condition (10) required to have no dual effect, we see that
the system (1)—(5) exhibits a dual effect of order r = 2. |

With the above result, Theorem 3.2 can be easily extended
to include the case with exogenous network traffic. However,
it is not as straightforward to extend Corollary 3.3. When
the measurement noise is correlated to the process noise,
certainty equivalence need not hold. To see why, recall the
proof of Theorem 3 2, where we derive a solution of the form
Vi = B[z Spxi|l, ] + sy, for the Bellman (15). Now if wy, is
correlated to the variables in the information set I, & » specifically
n} , the minimization with respect to ug in (17) must include
the term tr{Sgy1 R, }. Then, the optimal controller will not
have the form shown in (17), and certainty equivalence will not
hold.
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We need to prove that wy is independent of nf for the cer-
tainty equivalence principle to hold, which we do below.

Corollary 3.5: For the closed-loop system defined by (1)—(5),
the optimal controller, with respect to the cost criterion (6), is
certainty equivalent if the exogenous network traffic indicator
ny is independent of the process noise wy, and, if the scheduling
decisions are not a function of the applied controls, i.e., if

Ve = fi(@})

where @} € €, and 0; is the o-algebra generated by the in-
formation set I, = {xg, wi ™', ni "}

Proof: Note that n, is only correlated to 8% and thus, to
the signals w{ ", from Lemma 2.1. As the process noise is i.i.d,
ny is independent with respect to wy. A scheduler of the form
(20) is not a function of the applied controls, and thus, certainty
equivalence holds. ]

(20)

IV. CLOSED-LOOP SYSTEM ARCHITECTURE

In this section, we find that symmetric scheduling policies
simplify the observer design. We propose a dual predictor archi-
tecture for the closed-loop system, which results in a separation
of the scheduler, observer and controller designs.

A. Observer Design

Due to the nonlinearity of the problem, the estimate in general
can be hard to compute. However, the estimation error is reset to
zero with every transmission, as we send the full state. Consider
one such reset instance, a time % such that §, = 1. The state is
sent across the network, y. = xy, so the estimate &x» = x.
A suitable control signal u;, is found and applied to the plant,
which results in the next state zyy;. Now, the scheduler can
generate one of two outcomes. We consider each case, and find
an expression for the estimate below:

1) 6r+1 = 0: We need an estimate of w;. We use the sched-

uler output as a coarse quantized measurement to generate
this, as follows:

N &
Lr+l|lk+1 — [E[:L.k-l-l‘"k-&-ls 6k+1 = O]
= Azp + Bug + E[w|8p1 (fwe)) = 0] (21)

where

Elw|6r41(f(wp)) = 0]
= S Efwelfwi) = 76001 = 0]
v€{0,1}
P(vkr1 = Y|or41 = 0)

and f(wk) = f(Axy + Buy + wi|xg, ug).

2) 641 = 1: The estimation error is zero as &r—1jt41 = Tgy1.
The transformation to f in (21), is not intended to remove the
dual effect, but merely serves to remove the known variables
from the expression. The dual effect has influenced the packet’s
transmission, i.e., the value of x1. To understand this expres-
sion clearly, we look at the next time instant. Now a signal .41
is generated, and applied to the plant. We note that z; 12 =
A2xy, + ABuy + Bupy1 + Awg + wiy1. The state x40 is
either sent to the controller or not depending on the scheduler
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outcome éx42. Again, we look at both cases, and derive an ex-
pression for the estimate:

a") Or42 = 0: We now need to estimate Awy, + wgy1, as
the rest is completely known from z;12. We use both
scheduler outputs dx1 and 642 to generate an estimate
of the unknown variables as

Tht2jksr = Azmk + ADBuy + Buk-i-l =+ ¢k

. ElAwr + wiy1r | Spr1(f(wr) = 0,
Or2(f(Awg +wii1)) = 0].
b') (Sk_;,_g =1: Again, .’i;k-+2\k+2 = Tk42.
This process can be continued recursively through a non-trans-
mission burst, until finally a measurement is received and the
estimation error is reset to zero. Thus, the observer computes
the estimate at any time & as

where €, =

T, o =1,
k—ry,
Ak’*Tk.’qu—k + Z AsilBUk‘_S
. . s=1
Lo = o =0,
k—T11 N b
+E [ 3 A e o[8(fi) o 8(frn) = 0
s—1
(22)

where 7}, 1s the time index of the last received measurement at
time k, as defined in (8), and the argument to the function f; is
given by the term >/ 7 A* 1w, .

B. State-Based Scheduler Design: Symmetric Schedulers

The computation of the term
E[SF T A Yy L|6(f), .. 6(frs1) = 0] makes the
estimate (22) hard to evaluate, because the quantized noise
is not Gaussian. As a suboptimal approach, consider
the scheduling criterion given by any symmetric map
fSy‘ITL(,r.) — fsy'm(il) Wlth

k—Tr—1

E AL

s=1

e =S (23)

Since 74 is not defined without the MAC output 6 in (8), we
replace it with 7;_1, which is also a measure of the non-trans-
mission burst. Choosing the scheduler in this manner results in
a zero mean estimate from the quantized noise when there is
no transmission. Now, the estimate (22) is easy to compute and
the observer can be designed without knowledge of the sched-
uling policy. Also, a certainty equivalent control can be applied.
This observation is summarized below, and is used to design the
scheduler presented in Section IV-C.

Proposition 4.1: For the closed-loop system defined by
(1)—(6), the use of the symmetric scheduling policy (23) im-
plies that certainty equivalence holds, and it also results in
separation in design between the estimator and scheduler.

C. Dual Predictor Architecture

In this section, we examine closed-loop design of the com-
plete system, including scheduler, observer and controller. From
the results of Lemma 3.4 and Proposition 4.1, it is clear that the
scheduler, observer and controller designs are coupled, in gen-
eral. It is not possible to design the optimal scheduling policy
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Fig. 5. State-based dual predictor architecture: the innovations to the observer
serve as input to the scheduler. The resulting setup is certainty equivalent. The
observer is simple, and computes the MMSE estimate.

independently and combine it with a certainty equivalent con-
troller and optimal observer to get the overall optimal closed-
loop system. At the same time, solving for the jointly optimal
scheduler, observer and controller is a hard problem.

Thus, we propose an architecture, shown in Fig. 5, for a de-
sign of the state-based scheduler, and the corresponding optimal
controller and observer. There are two estimators in this archi-
tecture, and hence, we call it a dual predictor architecture [31].
This architecture has been referred to previously in the context
of mobile networks [32]. The scheduler, observer and controller
blocks are described below.

1) Scheduler (S): The scheduler output 7y, is given by

S 2
Ve = f(@h, Trimy ) = { Lok = &[> c

. 24
0, otherwise 24

where € > 0 is a given threshold and |-, , is the estimate at
the controller at time % if the current packet is not scheduled for
transmission. To realize such a scheduling policy, the observer
must be replicated within the scheduler, and for the observer to
be able to subtract the applied control, the controller must also
be replicated within the scheduler. An explicit ACK is required
to realize this information pattern, as indicated in Fig. 5.

2) Observer (O): The input to the observer is y; = 0rzy.
The observer generates the estimate 2+« as given by

Trie = 5ki'm7k + bpy - 25)

Recall that 8§, = 1 — &, takes a value 1 when the packet is
not transmitted. In such a case, the estimate is given by Z|-, ,
a model-based prediction from the last received data packet at
time 7. This estimate is given by

Twjry, = Ar-1ji-1 + Bug 1 . (26)

3) Controller (C): The controller generates the signal uy
based on the estimate alone, as given by

Up = —Lk.’l/;/'/qk (27)

where L. is defined in (17).
Note that the scheduling criterion described in (24) can be
rewritten as

|.7Ik — Trjry 1 |2 = |A.’i‘k71\k71 + 7Uk—1|2 = |.”i;k\,—k71 |2 .

Here, we use #|-,_, as 7 is not defined without 4. The cri-
terion |Zx-, , |2 < e captures the per-sample variance of the
estimation error, when no transmission is scheduled. Taking ex-
pectations on both sides, we get tr{Pi-,_, } < €. The sched-
uler attempts to threshold the variance of the estimation error,
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but this cannot be guaranteed in a network with multiple traffic
sources. Also, note that the scheduling policy is a symmetric
function of its arguments, as in Proposition 4.1. We now state
the main result of this section.

Theorem 4.2: For the closed-loop system given by the plant
(1), the state-based dual predictor (24)—(27), and the cost crite-
rion (6), it holds that

i) The estimate (25) minimizes the mean-squared estima-
tion error.

ii) The control signal does not have a dual effect.

iii) The certainty equivalence principle holds and the optimal

control law is given by (27).
iv) The LQG cost is given by
N-1
Jop = igSmI%U + tl’{S()P()} + Z tI‘{Sn+1Rw}

n=0
N-1

+ 3" 4 {(LT(Q2 + BT 8,1 B) L) Puin}
n=0

(28)

where Py is the error covariance of the estimate at the
observer, with Sy = ¢ and .S; obtained by backward
iteration of (18).
Proof: We know that
E—y
AR Mg+ Y A" ' Bug_p = A#icapes + Bug
n=1
k—7y,

Z Affl’wk«fdﬁk“ = 01 =0

=1

E

where the last expression results from the use of a symmetric
scheduling policy. Substituting for these terms in the expression
for the estimate in 22, we get

6k:1

¢y Tk,
[E[mk’“]k’] B {A.ﬁf’)k—lk—l + Buk*l: 6"»’ =0.

Thus, the estimate in (25) is the MMSE estimate [33].

The error covariance at the estimator is given by (12), where,
from (24) and (3), it is clear that the scheduler outcome v;, and
the MAC output &;, do not depend on the applied controls u§ ™.
Thus, the error covariance satisfies the definition in (10), and the
control signal in this architecture does not have a dual effect.

From the above conclusion, note that the scheduling policy
in (24) is of the form (20). Thus, from Corollary 3.5, we know
that the optimal controller for this setup is certainty equivalent.
Then, the optimal control signal is given by (17), which has
the same form as the controller in this architecture (27). The
expression for the control cost remains the same as in the case
with partial state information, and is given by (28). ]

Thus, the dual predictor architecture results in a suboptimal
but simplified closed-loop system.

V. EXTENSIONS AND DISCUSSIONS

In this section, we extend the above results to an output-based
system. We also identify the existence of a dual effect when the
cost function penalizes network usage and when the transmis-
sion, with a state-based scheduler, occurs over limited data-rate
channels. Finally, we discuss the dual effect property that we
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have encountered in this problem with respect to other NCS
architectures.

A. Measurement-Based Scheduler

We now consider a system without full state information, but
with co-located measurements. We show that by placing an op-
timal observer, a Kalman Filter (KF) at the sensor, to estimate
the state of the linear plant, and basing the scheduler decisions
on this estimate, instead of on the measurement, we are able to
establish the same conclusions as before.

Consider a linear plant with a state z;, and a measurement
mp given by
(29)

1 = Az + Bug +w. ., mp=Czr+ 1.4

where w, ;. is 1.1.d. zero-mean Gaussian with covariance matrix
12, .. The initial state zy is zero-mean Gaussian with covariance
matrix 2. . Also, the measurement m € R™ and the matrix
C € R™ ™, The measurement noise v, ; is a zero mean i.i.d
Gaussian process with covariance matrix 12, . € R™*™ and it
is independent of w; ;.

We can place a KF at the sensor node, which receives every
measurement 1y, from the sensor and updates its estimate (7 ,,)
as

éiu = A,:;ff,l‘k,,l + Bup_1 —l—K,f,kek (30)
where Ky ;. denotes the KF gain and ¢; denotes the innovation
in the measurement. The innovation is Gaussian with zero-mean
and covariance IZ. ;. The error covariances for the predicted es-
timate and the filtered estimate are denoted ;] and P}, , respec-
tively. These terms are given by

€ =My — C(Aé:,l‘k,l + Buk,]_) ,
Kip=PCT"R; Rep = CP;CT + R, .,
PI? :APf,lu,,lAT + Rw,z ,P;\A = P]f - Kf,k:Re,k’K?,k .

If we use the estimate to define a new state, such that x, = s
we have a linear plant disturbed by i.i.d Gaussian process noise
wy = Ky pep. Thus, we have reestablished the problem setup
from Section II-A, and the results from before can be applied to
this plant. Note that the scheduler is now defined with respect to
the estimate 27, and not the measurements m,. However, the
scheduler output remains a function of the state and the mea-
surement, through the estimate.

B. Penalizing Network Usage

We have shown, in the proofs of Theorem 3.1 and Theorem
3.2, that the applied controls play a significant role in a state-
based scheduler and cannot be removed from the scheduler in-
puts to create an equivalent setup without a dual effect. How-
ever, the minimizing solution to a cost criterion can render the
effect of the applied controls redundant. To see an example of
this, consider the problem of finding the jointly optimal sched-
uler-controller pair for the classical LQG cost criterion in (6).
Since there is no penalty on using the network, the optimal
scheduler policy is to transmit all the time. Now, the structure of
the closed-loop system does not resemble the one presented in
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Theorem 3.1, and consequently, that result does not hold. In this
scenario, there is no incentive for the controller to influence the
transmissions and the jointly optimal scheduler-controller pair
(fﬂ7 gﬂ) is given by
osho1 v, ¢liul= Luwe Vi G1)

where Ly, is given in (17). Note that in the rest of this paper, we
do not consider finding the jointly optimal scheduler-controller
pair, as the use of a contention-based MAC does not permit us
to choose the schedule sequence.

Now, consider a cost criterion which penalizes the use of the
network, such as

N-1
Ji= min E ﬂj:{on.’L‘N + Z (Lleig + qugus)

N-—-1 61‘\7—1
“0 [} s=0

N-1
+ > A (32)
s=0

where (Jg, 31 and Qo are positive definite weighting matrices
and A > 0 is the cost of using the network. The optimal state-
based scheduling policy chooses a schedule in relation to the
penalty A, such that the average network use, i.e., E[6;], de-
creases as A increases. Thus, we state the following result.

Proposition 5.1: For the closed-loop system defined by
(1)—(5), with no exogenous network traffic, the control signals
derived from the jointly optimal scheduler-controller pair,
which minimize the cost criterion in (32), exhibit a dual effect
of order r = 2.

Proof: 1Tt is easy to show that the scheduler-controller pair

(f ﬂ, gﬂ) does not minimize the cost in (32). Now, the scheduler
uses the policy in (2) to select packets to send across the net-
work. Thus, the closed-loop system has the same structure as in
Theorem 3.1, and there is a dual effect of order » = 2 for any
control signal in this setup. ]

Proposition 5.1 provides the controller an incentive to modify
the transmission outcome. As a result, the optimal scheduler and
controller designs in this problem are coupled. Using the results
of Lemma 3.4, the above results can be extended to include the
effect of exogenous network traffic.

C. Using A Rate-Constrained Channel

Our proof of the dual effect in Theorem 3.1 relies on the
asymmetry in the resolution of the received information; the
full state is sent with a transmission and only a single-bit quan-
tized encoding of the state is sent when there is no transmission.
However, data channels are generally rate-constrained, and a
full state can never be sent. If the encoder-decoder pair on the
sensor link uses R bits of information the estimation error at
the controller can be written as &xx = 8r - (w1 —Elxg IIZ L0, =
1)) 465 - (zx — E[zx|l, , 6% = 0]), in place of (11). Note that
O, and consequently the applied controls, cannot be removed
from the above expression, unless the estimation error with and
without a transmission result in the same expression, i.e., rg —
[E[xk||]§,6k =1] = — IE[mk,|ﬂZ76'k = 0] for R > 1. Hence,
there is a dual effect with a state-based scheduler, even when
using a rate-constrained channel for transmission.
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Fig. 6. Estimate is not influenced by the applied controls in (a) and (b), with knowledge of the applied controls. In contrast, the applied controls cannot be removed
from the decision process in (c). (a) Packet losses (d.). (b) Encoder—decoder (£ — D) design. (c) State-based Scheduler.

D. Relation to Other NCS Architectures

The dual effect and certainty equivalence properties have
been noted previously in other NCS problems. We discuss these
occurrences and the connections to our problem setup below.

1) Packet Drops Over A Lossy Network: Packet drops in
a lossy network are not influenced by the applied controls
[Fig. 6(a)]. Hence, certainty equivalence holds, when there are
packet drops on the sensor link [21]. However, when there are
packet drops on the actuator link, separation holds only if there
is an ACK of packets received or lost [20].

2) Importance of Side Information: In any NCS problem, the
classical information pattern must be reconstructed for the cer-
tainty equivalence principle to hold [34]. This may require one
or more side information channels to convey ACKs of received
packets back to the transmitters [20], [35].

3) Encoder Design Over Limited Data Rate Channels: This
problem differs from our setup in the sense that the encoder
output is the only measurement available across the channel,
and this potentially contains the same number of information
bits, see Fig. 6(b). In [22], the applied controls are shown to not
influence the estimation error.

4) Event-Based Systems: The results we have encountered
in this paper show that the applied controls can push the state
across the scheduler threshold, and influence the transmission
outcome, as illustrated in Fig. 4. This is a consequence of the
unequal information in the measurement y;,, with and without a
transmission, see Fig. 6(c). A similar problem with a cost func-
tion such as (32), has been dealt with in [36], [37]. They use a
transformation similar to the one presented for the encoder de-
sign problem in [23]. There are, however, subtleties in defining
an equivalence class for a state-based scheduler: using an equiv-
alent scheduler need not result in an equivalent design, as shown
in Theorem 3.2.

VI. EXAMPLES

We present three examples in this section. The first example
describes the problem setup, and illustrates the motivation for
the problem. The second example illustrates the results of The-
orem 3.1 and Theorem 3.2, which identify the dual role of the
applied controls towards the information available to the con-
troller. A counterexample is also presented, in which we iden-
tify some controllers which exploit this dual role. The third ex-
ample illustrates the dual predictor architecture and provides an
example of network-aware event triggering.

A. An Example of A Multiple Access NCS

This example illustrates the role of a state-based scheduler
in our problem formulation in Section II-A, where a number

of closed-loop systems share a contention-based multiple ac-
cess network on the sensor link. We use a p-persistent CSMA
protocol in the MAC. The observer and controller are chosen
for simplicity of design, not as optimizers of any cost. We look
at the performance of this network of control loops, with and
without the state-based scheduler.

We consider a heterogenous network of 20 scalar plants, in-
dexed by j € {1,...,20}. There are three different types of
plants, P71 P2 and P73 given by

(4) [z‘]l,(kj) +u}(€j)+,w’g:j>

29 = a (33)

where ol € {1,0.75,0.5}, and Rl € {1,1.5,2}, for the
plant P17 The systems numbered j € {1,...,6} are of type
P € {7,...,13} are of type PI"? and j € {14,...,20}
are of type P73l The plants are sampled with different pe-
riods given by Tt € {10,20,25}, for the different types of
plants, respectively. The state-based scheduler uses the crite-
rion L,EJ s e A p-persistent MAC, with synchronized slots,
which permits three retransmissions is used. The persistence
probability is given by pg), where r denotes the retransmis-
sion index, and p € {1,0.75,0.5} for r € {1,...,3}. The
LQG criterion in (6), with N = 10 and Qg = 1 = Q2 = 1 is
used to design a certainty equivalent controller (17) as an ad hoc
policy, not an optimal one, as we know from Corollary 3.5. The
observer calculates a simple estimate as given by (25)—(26).

We look at the performance of a closed-loop system in this
network without a state-based scheduler, i.e., when el = 0 for
all j. The cost of controlling the plants in the contention-based
network is denoted .fg%\l, and the values are listed in Table I. We
compare these values to the costs obtained with a state-based
scheduler in the closed-loop system, denoted Jg’é, when ¢(/) =
2.5. There is a marked improvement with a state-based sched-
uler in the closed-loop. Fig. 7 depicts the state and the control
signal for the first plant in this network, when a state-based
scheduler is used. The above improvement is obtained due to
fewer collisions in the contention-based MAC. The nonzero
scheduling threshold reduces the traffic in the network, and in-
creases the probability of a successful transmission for all the
plants in the network.

B. Two-Step Horizon Example

We now look at a simple example to see the computational
difficulties in identifying optimal estimates and controls for a
system with a state-based scheduler in the closed-loop. We also
show that for a scheduler such as f in Section III-B, which ren-
ders the control signal free of a dual effect, the entire plant is al-
tered, so the equivalence construction does not work. Finally, as
aproof of the dual effect associated with a scheduler such as f in
(2), we present a counterexample, obtained through simulations.
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Fig. 7. State and the control signal with the channel use pattern: the red dots
denote transmission requests, the white inner dots denote MAC retransmission
attempts, and the green dots denote transmission success. Note that the requested
bound on the state, which is marked with a dotted line, is sometimes exceeded
due to network traffic. Also, the control signal corresponds closely to the state
only when there is a successful transmission.

TABLE I
COMPARISON OF CONTROL COSTS WITH (-Jsg) AND WITHOUT (Jcv) A
STATE-BASED SCHEDULER IN THE CLOSED-LOOP

| Plant Type H Pl | PIT2] | PIT3] |
Jon 45.3074 | 10.0028 | 6.1213
Jss 23.5785 8.3489 5.3803

Consider a scalar plant, given by 41 = axy + bug + wy,
with Ry = R,, = 1. The scheduling law is given by

o
b = {oi

Our aim is to find both the optimal controller, with dual effect,
and the certainty equivalent controller for the innovations-based
scheduler and show that these result in different control actions
for the same scheduling sequence. The controllers are designed
to minimize the LQG cost (6), for a horizon of two steps, i.e.,
N = 2, and with g, @1, Q2 > 0. We first derive the optimal
controller with dual effect. Then, for the same schedule, we de-
fine the certainty equivalent controller, assuming that an innova-
tions-based scheduler of the form f in (13) has been designed.
We compare the resulting control actions, and comment on the
differences.

1) Estimator: The estimates %o and :1; are obtained
using (22). The estimation error covariances Pyjo and Py
are presented in the Appendix. Since the estimation error
is non-Gaussian, we need to derive the probability density
functions of the estimation errors at each time instant. This
makes the computation of the estimation errors and the error
covariances hard.

2) Optimal Controller: To solve for the optimal control sig-
nals, we use V1 and V from (15). The complete derivations of
V1 and Vj are presented in [38]. We find the control signal u
that minimizes V7, and get

T > 0.5,

otherwise. (34)

abQq .

—mﬂﬂm (35)
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Then, to find wg, we take a partial derivative of the expression
for V4 with respect to ug and get

W
a— = 2160(@2 + b g]_) + 2T()|[)CL’)S]_
2 212
aQR 0
QQ + bQQO duo ( [Pl‘l‘ ]) = 0 * (36)

The optimal ugy can be obtained by substituting for Pl\l and
solving the resulting equation.

3) Certainty Equivalent Controller: For the same scheduler
outcomes &, 81 obtained through an innovations-based sched-
uler which has no dual effect, the certainty equivalent controller
gives us the control signals

U = — 71%@0 z
B Qo+ 02Qo
AbSy
Uy = — ————ZTy|o - 37
uo Qs + 125, Lolo (37)

Note that the 1 is found by minimizing V3, which results in the
same expression as for the optimal controller (35). However,
when there is no dual effect, the last term in (36) vanishes, and
1y for the certainty equivalent controller is obtained by solving

2uo(Q2 + b>S1) + 2gi0abSy =0 . (38)

4) Discussion: A comparison of the control signals for the
certainty equivalent controller (37) with %3 and g obtained in
(35) and (36), shows that the signal 1 remains the same. How-
ever, ug is different, and displays a dual effect in the optimal
controller. From (38), it is clear that the additional term in (36)
alters the solution for the optimal controller. This observation
can be explained as follows. In a controller with a dual effect, the
control signal can be chosen to probe the plant state in order to
improve the quality of the estimate. However, there is no motive
in improving the estimate in a one-step optimization process.
Thus, 4 is the same for both controllers. When the optimiza-
tion is performed over two steps, a probing effect in the first step
can improve the estimate and the corresponding control applied
in the next step. Thus, ug is different for the optimal controller.

5) Counterexample: To illustrate further the existence of the
dual effect in the state-based scheduler setup discussed above,
we consider an explicit numerical example with parameters ¢ =
2,b=1,Ry = 1 and R,, = 100 for the linear plant, and a
cost function with )y = 100, ¢); = 1 and Q2 = 1. Finding
a ug that solves (36) is hard. Instead, we evaluate the cost of
using a certainty equivalent controller with a state-based sched-
uler such as in (34) and compare it with alternative controllers
g = —LoZeo, which use a different value for the control
gain Ly. We choose a range of values for Ly centered around
the certainty equivalent control gain L§'E, and plot the control
costs obtained against the control gain in Fig. 8, for different
values of the scheduler threshold. The certainty equivalent con-
trol cost is marked by a dotted line in all the plots, while the
cost of using an alternate controller is plotted with a solid line.
For each of the scheduling thresholds shown in Fig. 8, there ex-
ists a range of values of Ly # L§F for which the resulting
control cost is lesser than the certainty equivalent control cost.
This validates the discussion preceding the counterexample, and
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Fig. 8. A comparison of the control costs obtained using the certainty equivalent controller (with gain L§ * = 1.664, shown in dotted lines) and some alternative
controllers (with gain Ly, shown in solid lines), for scheduler threshold e = {10, 20, 30}. Clearly, there are values of Ly # L§ ¥ that result in a lower cost. This
can be explained by the dual effect in the control signal, as shown in Theorem 3.1.

provides an example of controllers which utilize the probing in-
centive to improve upon the certainty equivalent controller. The
improvement in cost reduces for larger thresholds, which might
be explained by noting that the probing incentive, for a small
threshold, is not accompanied by a high penalty in cost. As the
threshold grows larger, the probing incentive might not be ben-
eficial to exploit, in terms of the cost.

Another counterexample may be found in Curry’s work on
dual effect with nonlinear measurements [39]. He examines a
system with a nonlinearity in the measurement, which may be
interpreted as a simple state-based scheduling policy, and il-
lustrates that the optimal controller for a two-step horizon cost
differs from the certainty equivalent controller due to the dual
effect.

This example shows that there is a dual effect, and even the
same schedule can result in a different control sequence for a
system without a dual effect. Thus, an equivalent construction
for the scheduler does not result in an equivalent system.

C. Example of the Dual Predictor Architecture

In this example, we present the dual predictor architecture
applied to a shared network. We tune the threshold of the state-
based scheduling law to probabilistically guarantee an achiev-
able control performance, given the traffic over the network. We
use a homogenous network in this example to simplify the com-
parison of control cost versus the scheduling threshold.

We consider a shared network of 20 scalar plants, indexed
by j € {1,...,20} and given by (33), where ') = 1 and
RY) =1 for all j. The plants are sampled with a period given
by 7' = 10. The innovations-based scheduler uses a similar
criterion to (24), where ¢ is the threshold of the scheduler. A
p-persistent MAC, with synchronized slots, which permits three
retransmissions, is used. The persistence probability is given
by pg), where 7 denotes the retransmission index and p(f) €
{1,0.75,0.5} for r € {1,2,3}. The LQG criterion in (6), with
N =10 and Qy = @1 = Q3 = 1 is used to design the optimal
certainty equivalent controller (17). The observer calculates the
MMSE estimate given by (25)—(26).

The effect of varying ¢ on the control cost is shown in Fig. 9.
For high values of ¢, the network is under-utilized, and almost
all the transmissions are successful. However, the control cost

LQG Cost versus Epsilon
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250 1 2 3 4 5 6 7 8
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Fig. 9. The control cost Jy,p> versus the scheduler threshold €. For low thresh-
olds, the high traffic in the network causes collisions, and a high Jpp. High
values of ¢ result in an under-utilized network, and a high Jj,p due to insuffi-
cient transmissions.
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Fig. 10. The estimation error, state and control signal with the channel use pat-
tern. Note that the requested bound on the predicted estimation error, which is
marked with a dotted line, is rarely exceeded. Also, the control signal corre-
sponds closely to the state only when there is a successful transmission.

is high as the number of transmissions is low. As we decrease
€, the control cost initially decreases due to increased use of
the network. However, for very low values of ¢, the network
is over-utilized and this results in collisions. Thus, the control
cost increases again, due to dropped packets. It is interesting to
note that the cost function is quite flat. Thus, it is not important,
in practice, to use the optimal scheduling threshold e.

Fig. 10 depicts the state and control signal of the first plant
obtained from our simulation, for the best value of e picked from
the above plot. Note that the estimation error is bounded, with
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a probability of 0.94, by the scheduling threshold, for the value
D = 3.5, and the resulting control cost is Jpp = 27.9235.

VII. CONCLUSIONS AND FUTURE WORK

This paper investigated the effects of a state-based sched-
uler on the design of a closed loop system. We showed that the
optimal controller for a NCS with a state-based (or measure-
ment-based) scheduler is, in general, difficult to find. This is due
to the dual effect of the control signals, wherein the controller
has an incentive to push the state past the scheduler threshold
and modify the estimation error across the network. This result
implies that the optimal scheduler, observer and controller de-
signs are coupled. However, we identified a dual predictor ar-
chitecture, which resulted in the desired separation in design of
the scheduler, observer and controller. The scheduling function
in this architecture is constrained to be a symmetric function of
its arguments, such that the resulting schedule is not a function
of the past applied controls.

Analyzing the performance of a network of systems using the
dual predictor architecture is a challenging direction of work
for the future. Identifying control policies in the more general
case of state-based schedulers with a dual effect has also been
left for the future, as well as a complete extension to distributed
measurements of the state.

APPENDIX
DERIVATION OF THE 2-STEP HORIZON EXAMPLE

Here are the expressions for the estimation error covariances
in Example VI-B. For a detailed derivation, refer to [38].
The estimation error covariance at time & = 0 is given by

0
Fyg = )
0|0 { R:i'g:
]‘0.57.”7,‘50

where Rz, = E[(wg — Zs0)%|zo < 0.5] = I 22 hps, (x +
Ts0)dr. Also, Tso := E[rglre < 0.5] = fii Thy,, ()di,
¢us, 1s the conditional probability distribution function
(pdf) of g, conditioned on g < 0.5. Thus, ¢, (x) =
¢ (2)/Pr{zg < 0.5), where ¢, is the pdf of zg. The prob-
ability of a non-transmission is given by Pr(zgo < 0.5) =
ff; Gy ().

Let us denote e; as the unknown part of x; before y; is
P, (€),

received:
wy,
c1 = ! d)e €) =
! { axrg + wo, ' ( ) { ¢eéo (6)7

where, ¢, is the pdf of e1, ¢, is the pdf of wg and ¢, (¢) =
0.5 N )
S22 bwse (@) g (e — ax)dz. We denote é; as the error in es-
timating e; after y; arrives, and €59 = Elazg + wolzg <
0.5, axg + wy < 0.5 — bug]. Now, the estimation error vari-

ance Py|; is given by

b0 =1,

50 =0 (39)

o =1,
o =0,

S0 =1,
8o =0,

61:17

6 =0 “40)

0,
P1|1:{R
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where R., = E[¢%]6; = 0] is given by

0.5—amg—bug—@g

2 ‘bw(] (‘w-‘,-'L_U(]) -
R = f—oo w P?”(u:o<U.5ffmo*b“0>d’w7 bo=1,
- PRI 9 gso(ctEs) g bo=0

Pr(e;<0.5—bug)
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