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Abstract— Timeliness is an emerging requirement for cyber-
physical systems, where the value of information can quickly di-
minish with time. Nevertheless, there are different imperfections
and constraints that hinder the immediate access of decision
makers to the latest states of such systems. This obliges the
designers of these systems to study the impact of information
staleness on the control performance. In this paper, we focus
on control with stale information and study a trade-off between
the information staleness and control performance. To this
purpose, we design a test channel in which the staleness of
observations is chosen deliberatively. This test channel should
be regarded as an abstract model that allows us to obtain the
achievable region in our trade-off analysis. Based on this trade-
off, the performance of any communication channel with time-
varying delay used for control applications can be assessed,
and the maximum staleness that is tolerable for stability can
be specified.

Index Terms— age of information, communication channel,
time-varying delay, estimation, freshness of information, opti-
mal control, status update.

I. INTRODUCTION

Timeliness is an emerging requirement for cyber-physical

systems, where the value of information [1] can quickly

diminish with time. It is not hard to see, for instance, that too

stale information regarding the state of an unmanned vehicle

at the corresponding decision maker can cause a catastrophic

failure in an intelligent transportation system. Nevertheless,

there are different imperfections and constraints that hinder

the immediate access of decision makers to the latest states

of such systems. This obliges the designers of these systems

to study the impact of information staleness on the control

performance. However, prior to any analysis in this regard, it

is necessary that first the notion of staleness associated with

an information flow is defined properly.

A measure of staleness, which has recently received a

significant attention in the literature, is age of information

(AoI) [2]. The main characteristic of age of information is

that it captures the staleness from the perspective of the re-

ceiver from the generation until the delivery of observations.

Formally speaking, age of information quantifies the time

elapsed since the last received observation was generated.

Fig. 1 schematically shows the evolution of the age of

information as a function of time for a receiver. As it is

seen, this quantity drops when an observation is delivered.

Otherwise, it grows linearly.
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Fig. 1: Evolution of the age of information as a function of

time with the corresponding delivery timings for a receiver.

Age of information was introduced by Kaul et al. [3] for

quantifying the staleness in wireless networks where nodes

periodically broadcast time-sensitive information. Age of in-

formation has since been adopted in various applications, and

different related metrics such as average age of information,

peak age of information, and nonlinear age of information

have been proposed accordingly (see e.g., [4]–[9]). Despite

extensive research on age of information, the fact is that

the context, which determines the value of information, has

largely been neglected.

In this paper, we contextually adopt age of information in

a generic control task subject to stale information, and make

a trade-off between the information staleness and control

performance. To this purpose, we design a test channel in

which the staleness of observations is chosen deliberatively.

This test channel should be regarded as an abstract model

that, as we shall show, allows us to obtain the achievable

region in our trade-off analysis. Based on this trade-off,

the performance of any communication channel with time-

varying delay used for control applications can be assessed,

and the maximum staleness that is tolerable for stability can

be specified.

In Part I of our study, we concentrate on fully observable

linear systems. In Part II, which will be published elsewhere,

we will address partially observable linear systems. The main

contributions of the current paper are as follows: 1) Adopting

a measure for staleness associated with an information flow

in control systems, 2) Making a trade-off between the

information staleness and control performance. This paper

is organized in 6 sections. We formally state the problem in

Section II. We provide the main results in Section III. Then,
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Fig. 2: A model for control with stale information where

observations of the process are transmitted through a channel

with time-varying delay.

we present the numerical results in Section IV. Finally, we

conclude the paper in Section V.

A. Preliminaries

In the sequel, vectors, matrices, and sets are represented by

lower case, upper case, and Calligraphic letters like x, X , and

X respectively. The sequence of all vectors xt, t = 0, . . . , k,

is represented by xk, and the sequence of all vectors xt, t =
k, . . . , N for a specific time horizon N , is represented by

x
k. For matrices X and Y , the relations X ≻ 0 and Y � 0

denote that X and Y are positive definite and positive semi-

definite respectively. The expected value and covariance of

the random variable x are represented by E[x] and cov[x]
respectively.

Consider a team game with two decision makers. Let γ1 ∈
G1 and γ2 ∈ G2 be the policies of the first and the second

decision makers respectively where G1 and G2 are the sets

of admissible policies, and J(γ1, γ2) be the cost function. A

policy profile (γ1∗, γ2∗) represents a Nash equilibrium [10]

if and only if

J(γ1∗, γ2∗) ≤ J(γ1, γ2∗), for all γ1 ∈ G1,

J(γ1∗, γ2∗) ≤ J(γ1∗, γ2), for all γ2 ∈ G2.

The optimality considered in this study is in the above sense.

II. PROBLEM FORMULATION

Consider a process with stochastic dynamics governed by

the following linear discrete-time state system:

xk+1 = Axk +Buk + wk, (1)

for k ≥ 0 with initial condition x0 where xk ∈ R
n is the state

of the system, A ∈ R
n×n is the state matrix, B ∈ R

n×m is

the input matrix, uk ∈ R
m is the control input to be decided

by a controller, and wk ∈ R
n is a Gaussian white noise with

zero mean and covariance Wk ≻ 0. It is assumed that x0 is

a Gaussian vector with mean m0 and covariance M0, that

x0 and wk are mutually independent for all k, and that the

pair (A,B) is controllable. The process is fully observable,

and observations are transmitted to the controller through a

channel with time-varying delay (see Fig. 2). In this study,

we design this channel (i.e. queue) such that the staleness of

observations is chosen deliberatively.

Let sN and rN be two sequences that represent the inputs

and outputs of the channel over the time horizon N . By

assumption, sk = xk. However, we have rk = xk′ with

k′ ≤ k if xk′ is received by the controller at time k after a

(k−k′)-step delay, and rk = ∅ if nothing is received by the

controller at time k. For example, for N = 10, we may have

s10 =
{

x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

}

,

r10 =
{

x0,∅, x2,∅,∅,∅, x3, x4,∅,∅, x6

}

.

An observation xk is said to be informative if the latest

observation at the controller is xk′ such that k′ < k.

Moreover, an observation xk is said to be obsolete if there

is at least one observation xk′ that is transmitted to the

controller such that k′ ≥ k. Clearly, an observation that is not

informative is obsolete. Obsolete observations are discarded

by the controller. Thus, for the above example, the following

sequences are equivalent:

r10 =
{

x0,∅, x2,∅,∅,∅, x3, x4,∅,∅, x6

}

,

r
′
10 =

{

x0,∅, x2,∅, x1,∅, x3, x4,∅,∅, x6

}

.

In this study, we adopt age of information (AoI) to

measure the staleness of rN with respect to sN . Let us define

AoI at time k by an integer variable ηk such that ηk ∈
{0, . . . , ηk−1 + 1} for k ≥ 0. Then, the latest observation

at the controller at time k is specified by xk−ηk
. We have

ηk ≤ ηk−1 if the observation xk−ηk
is delivered to the

controller at time k. However, we have ηk = ηk−1 +1 if no

observation is delivered at time k. We assume by convention

that η0 = 0.

The information set of the queue is defined by the set of

the current and prior observations xt for all t ≤ k:

Iq
k =

{

xt

∣

∣

∣
t ≤ k

}

, (2)

and the information set of the controller is defined by the set

of the delivered observations xt−ηt
for all t ≤ k:

Ic
k =

{

xt−ηt

∣

∣

∣
t ≤ k

}

. (3)

We assume that any information that ηk might carry about

non-transmitted observations is neglected at the controller.

Notice that neglecting this information will simplify the

structure of the optimal estimator at the controller.

Let π = {η0, . . . , ηN} and µ = {u0, . . . , uN} be a

queuing policy and a control policy respectively. We say

that π ∈ P if ηk is a measurable function of Iq
k for all

0 ≤ k ≤ N and µ ∈ M if uk is a measurable function of

Ic
k for all 0 ≤ k ≤ N . Given these policies, we measure the

information staleness by

A(π, µ) = 1

N+1
E

[

∑N

k=0
fk(ηk)

]

, (4)
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where fk(ηk) is a, possibly nonlinear, function of ηk, and

the control performance by

J(π, µ) = 1

N+1
E

[

xT
N+1QN+1xN+1

+
∑N

k=0
xT
k Qkxk + uT

kRkuk

]

,
(5)

where Qk � 0 and Rk ≻ 0 are weighting matrices.

We would like to make a trade-off between the information

staleness and control performance. To do so, we define the

following loss function

χ1(π, µ) = λJ(π, µ) − (1− λ)A(π, µ) (6)

where λ > 0 and aim at finding the optimal policies π∗ and

µ∗ such that the policy profile (π∗, µ∗) represents a Nash

equilibrium. Notice that optimization of χ1(π, µ) over π∗

and µ∗ is in general intractable.

III. MAIN RESULTS

Due to the existence of the channel, the controller cannot

access the current state of the process at each time, and hence

is required to employ an estimator. The next proposition

provides the optimal estimator at the controller.

Proposition 1: The optimal estimator minimizing the

mean-square error at the controller with the information set

Ic
k is given by

x̂k = Aηkxk−ηk
+
∑ηk

t=1
At−1Buk−t, (7)

where x̂k = E[xk|I
c
k].

Proof: First of all, it is clear that given the information

set Ic
k, the conditional expectation x̂k = E[xk|I

c
k] minimizes

the mean-square error. From the definition, xk−ηk
represents

the latest observation at the controller. Given ηk , we can

write xk in terms of xk−ηk
as follows:

xk = Aηkxk−ηk
+
∑ηk

t=1
At−1Buk−t +At−1wk−t.

Taking conditional expectation given Ic
k, we get

E[xk|I
c
k] = E

[

Aηkxk−ηk
+
∑ηk

t=1
At−1Buk−t

+At−1wk−t

∣

∣

∣
Ic
k

]

= Aηkxk−ηk
+
∑ηk

t=1
At−1Buk−t,

where we used the fact that xk−ηk
and ut for k− ηk ≤ t ≤

k − 1 are Ic
k-measurable and E[wt|I

c
k] = 0 for all k − ηk ≤

t ≤ k − 1.

The following theorem presents the main result of this

paper. It characterizes the optimal policies π∗ and µ∗ such

that (π∗, µ∗) represents a Nash equilibrium.

Theorem 1: Let Sk � 0 be the solution of the following

Riccati equation:

Sk = Qk +ATSk+1A

−ATSk+1B(Rk + BTSk+1B)−1BTSk+1A,
(8)

for all k with initial condition SN+1 = QN+1. Then,

the optimal queuing policy and optimal control policy are

determined respectively by

η∗k = argmax
i∈{0,...,ηk−1+1}

VoIik, (9)

u∗
k = −Kkx̂k, (10)

where VoIik is the value of information (associated with

the observation xk−i) and Kk is the control gain defined

respectively as

VoIik =
(

∑ηk−1+1

t=i+1 At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1 At−1wk−t

)

+ 2
(

∑i

t=1
At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1 At−1wk−t

)

− θ
(

fk(ηk−1 + 1)− fk(i)
)

+ cik,
(11)

Kk = (Rk +BTSk+1B)−1BTSk+1A, (12)

where θ = (1 − λ)/λ, Γk = KT
k (B

TSk+1B + Rk)Kk, and

cik is a variable related to cost-to-go with c
ηk−1+1

k = 0.

Proof: Using (1) and (8) and after few algebraic

operations, one can show that the following identity holds:

xT
N+1SN+1xN+1 +

∑N

k=0
xT
kQkxk + uTRkuk

= xT
0 S0x0 +

∑N

k=0
wT

k Sk+1wk + 2(Axk +Buk)
TSk+1wk

+ (uk +Kkxk)
T (BTSk+1B +Rk)(uk +Kkxk).

Subtracting the term
∑N

k=0
θfk(ηk) from both sides of the

above identity and taking expectation, we obtain the loss

function:

χ2(π, µ) = E

[

xT
0 S0x0 +

∑N

k=0
−θfk(ηk) + wT

k Sk+1wk

+ 2(Axk +Buk)
TSk+1wk

+ (uk +Kkxk)
T (BTSk+1B +Rk)(uk +Kkxk)

]

= E

[

xT
0 S0x0 +

∑N

k=0
−θfk(ηk) + wT

k Sk+1wk

+ (uk +Kkxk)
T (BTSk+1B +Rk)(uk +Kkxk)

]

,

where in the second equality we used the fact that wk is

independent of xk and uk. Clearly, optimizing χ2(π, µ) is

equivalent to optimizing χ1(π, µ) as λχ2(π, µ) = (N +
1)χ1(π, µ).

Incorporating the optimal control policy in χ2(π, µ), we

obtain

χ2(π, µ
∗) = E

[

xT
0 S0x0 +

∑N

k=0
−θfk(ηk) + wT

k Sk+1wk

+ eTkK
T
k (B

TSk+1B +Rk)Kkek

]

.

Following the fact that the terms x0 and wk are independent

of the queuing policy, related with χ2(π, µ
∗), we define the

value function V q
k as

V q
k = min

ηk

E

[

∑N

t=k −θft(ηt) + eTt Γtet

∣

∣

∣
Iq
k

]

.
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Consequently, we have

V q
k = min

ηk

E

[

− θfk(ηk) + eTk Γkek + V q
k+1

∣

∣

∣
Iq
k

]

= min
ηk

{

− θfk(ηk) + eTk Γkek + E[V q
k+1

|Iq
k ]
}

,

where in the first equality we used the linearity of the value

function V q
k with V q

N+1
= 0 and in the second equality the

fact that ek is Iq
k-measurable. From Proposition 1, we can

obtain the estimation error:

ek = xk − x̂k

= xk − Aηkxk−ηk
−
∑ηk

t=1
At−1Buk−t

=
∑ηk

t=1
At−1wk−t.

(13)

Let us define

VoIik =
(

∑ηk−1+1

t=1
At−1wk−t

)

Γk

(

∑ηk−1+1

t=1
At−1wk−t

)

− θfk(ηk−1 + 1) + E[V q
k+1

|Iq
k , ηk = ηk−1 + 1]

−
(

∑i

t=1
At−1wk−t

)

Γk

(

∑i

t=1
At−1wk−t

)

+ θfk(i)− E[V q
k+1

|Iq
k , ηk = i]

=
(

∑ηk−1+1

t=i+1 At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1 At−1wk−t

)

+ 2
(

∑i

t=1
At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1
At−1wk−t

)

− θ
(

fk(ηk−1 + 1)− fk(i)
)

+ cik,
(14)

where ck = E[V q
k+1

|Iq
k , ηk = ηk−1+1]−E[V q

k+1
|Iq

k , ηk = i].
Then, the optimal age of information at time k is given by

η∗k = argmax
i∈{0,...,ηk−1+1}

VoIik . (15)

Hence, η∗k is a function of wt for k− ηk−1 − 1 ≤ t ≤ k− 1.

In addition, using the optimal queuing policy and the

identity xk = x̂k + ek in χ2(π, µ), we obtain

χ2(π
∗, µ) = E

[

xT
0 S0x0 +

∑N

k=0
−θfk

(

argmax
i∈{0,...,ηk−1+1}

VoIik
)

+ wT
k Sk+1wk + (uk +Kkx̂k +Kkek)

T

× (BTSk+1B + Rk)(uk +Kkx̂k +Kkek)
]

.

Following the fact that the terms x0, VoIik, and wk are

independent of the control policy, related with χ2(π
∗, µ),

we define the value function V c
k as

V c
k = min

u
k

E

[

∑N

t=k(ut +Ktx̂t +Ktet)
T

× (BTSt+1B +Rt)(ut +Ktx̂k +Ktet)
∣

∣

∣
Ic
k

]

.

Consequently, we have

V c
k = min

u
k

E

[

∑N

t=k(ut +Ktx̂t)
T

× (BTSt+1B +Rt)(ut +Ktx̂t)

+ eTt K
T
t (B

TSt+1B +Rt)Ktet

+ 2(ut +Ktx̂t)
T (BTSt+1B +Rt)Ktet

∣

∣

∣
Ic
k

]

= min
u

k

{

∑N

t=k(ut +Ktx̂t)
T

× (BTSt+1B +Rt)(ut +Ktx̂t)

+ E
[

eTt K
T
t (B

TSt+1B +Rt)Ktet
∣

∣Ic
k

]

}

,

where in the second equality we used the fact that x̂k is Ic
k-

measurable and E[ek|I
c
k] = 0. Now, we can conclude that

u∗
k = −Kkx̂k. This completes the proof.

The optimal policies characterized in Theorem 1 allow us

to make the trade-off between the information staleness and

control performance. We showed that the optimal queuing

policy depends on the value of information VoIik. In general,

one can solve the related optimality equation backward in

time and obtain the exact value of information VoIik.

The following proposition can be used for finding an

approximation of the value of information VoIik with low

computational complexity and with a performance guarantee.

Proposition 2: A suboptimal queuing policy that outper-

forms the zero-wait policy (i.e., the queuing policy with

ηk = 0 for all k) is given by

η+k = argmax
i∈{0,...,ηk−1+1}

VoIik, (16)

where VoIik is the value of information (associated with the

observation xk−i) defined as

VoIik =
(

∑ηk−1+1

t=i+1 At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1 At−1wk−t

)

+ 2
(

∑i

t=1
At−1wk−t

)T

Γk

(

∑ηk−1+1

t=i+1 At−1wk−t

)

− θ
(

fk(ηk−1 + 1)− fk(i)
)

,
(17)

where θ = (1− λ)/λ and Γk = KT
k (B

TSk+1B +Rk)Kk.

Proof: Let π′ denote the suboptimal queuing policy

given by (16) and π′′ denote the zero-wait policy. Clearly, in

order to prove that χ2(π
′, µ∗) ≤ χ2(π

′′, µ∗) it is enough to

show that V q′

k ≤ V q′′

k . This holds at time N +1 as V q′

N+1
=

V q′′

N+1
= 0. Assume that the claim holds at time k + 1, we

prove that it also holds at time k. We have

V q′

k = −θfk(η
′
k) + e′k

T
Γke

′
k + E[V q′

k+1
|Iq

k ]

≤ −θfk(η
′
k) + e′k

T
Γke

′
k + E[V q′′

k+1
|Iq

k ]

≤ −θfk(η
′′
k ) + e′′k

T
Γke

′′
k + E[V q′′

k+1
|Iq

k ] = V q′′

k ,

where e′k and e′′k are the estimation errors associated with η′k
and η′′k respectively. Moreover, for the zero-wait policy we
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Fig. 3: Trade-off curve between the information staleness and

control performance. The control performance is scaled by

one thousandth. The area below the trade-off curve represents

the achievable region in control with stale information.

have

E[V q′′

k+1
|Iq

k ] = E

[

∑N

t=k+1
−θft(η

′′
t ) + e′′t

T
Γte

′′
t

∣

∣

∣
η′′t = 0, Iq

k

]

= 0.

This completes the proof.

IV. EXAMPLE

Consider a scalar stochastic process:

xk+1 = 1.5xk + 0.5uk + wk, (18)

with initial condition x0 = 0 and noise variance Wk = 4 for

all k. The function fk(ηk) = ηk. The weighting coefficients

are Qk = 5, Rk = 0.1 for all k, and QN+1 = 10. The

terminal time is N = 100. Following Proposition 1, the

optimal estimator can be constructed as

x̂k = (1.5)ηkxk−ηk
+
∑ηk

t=1
(1.5)t−10.5uk−t. (19)

For this system, we obtained the optimal control policy and

the suboptimal queuing policy based on Theorem 1 and

Proposition 2.

The trade-off curve, depicted in Fig. 3, was obtained by

using different values of λ. The area below the trade-off

curve represents the achievable region in control with stale

information. Note that the obtained trade-off curve should be

conceived as an approximate bound due to the assumptions

used. Under these assumptions, there exists no channel with

time-varying delay that can achieve an operating point in the

unachievable region. An interesting point regarding the trade-

off curve is its asymptote, which implies that there exists

critical information staleness above which the system cannot

be stabilized.

V. CONCLUSION

In this paper, we studied the trade-off between the infor-

mation staleness and control performance for fully observ-

able linear systems. We adopted the notion of age of informa-

tion for measuring staleness associated with an information

flow. We formulated an optimization problem, and obtained

the optimal policies. Critical information staleness, partially

observable linear systems, optimality gap, and more complex

examples will be addressed in future research.
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