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Abstract— In the design of shared resource networked control
systems (NCSs), resource managers play an important role to
appropriately allocate limited resources across the distributed
system. They are often used to fairly distribute the limited
bandwidth among the medium-sharing entities at the expense of
delaying or discarding unnecessary data samples. Considering
the rapidly growing volume of information being exchanged,
a relevant scenario for efficient resource management is state-
dependent data buffering via network queues. In this paper,
we propose state-dependent data buffering for shared-resource
NCSs, such that the buffer state, i.e. queue length, can be
controlled depending on the real-time conditions of both the
control systems and the communication network. We consider
that the transmission decisions at the sensor sides are taken by
event-based schedulers, and those data eventually sent for trans-
mission are queued and processed depending on the available
communication resource. We derive sufficient conditions under
which the NCS with the proposed cross-layer transmission
scheme is stable in almost sure mean-square sense. Moreover, we
show performance improvements resulting from our proposed
design in comparison with its state-independent counterpart.

I. INTRODUCTION

In the design of shared resource multi-loop networked

control systems (NCSs), intelligent management of limited

or costly communication resources is a crucial aspect to

avoid excessive cost, as well as distributing the available

resources fairly among the medium-sharing entities. It is es-

sential to provide access to fast and low-error communication

infrastructure to facilitate information exchange between dis-

tributed parts of a networked control system. This, however,

imposes high communication and computation costs as well

as network-induced phenomena such as delay, congestion,

and data loss, thus, urges to reconsider the employment of

traditional time-triggered sampling techniques [1]. Various

approaches, such as event-based sampling, scheduling, data

buffering, and network queuing, are developed to coordinate

data exchange in an NCS leading to, first, the reduction of
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communication and computational costs by restricting exces-

sive data sampling, and, second, intelligent coordination of

transmissions among the distributed users to avoid excessive

traffic and latency. Despite the positive aspects, these ap-

proaches often induce delay in some parts of the NCS leading

to error propagation, deteriorating control performance, and

even instability. Hence, these sampling policies need to be

carefully synthesized to preserve stability and provide the

required quality-of-control (QoC) guarantees [2], [3].

Event-based sampling was introduced in the early 2000s

as a beneficial design framework to perform sampling of

signals based on urgency metrics, e.g. an action is executed

only when some pre-defined events are triggered [4]. This

idea is further developed as an online technique capable

of significantly reducing the sampling rate while preserving

the required QoC [5]–[9]. The mentioned works address

sporadic sampling of NCSs governed by real-time conditions

of the medium-sharing control systems or the communication

medium. Having NCSs as the integration of multiple con-

trol systems supported by a communication network, cross-

layer scheduling attracted more attention. The reason is that

scheduling induces delay and affects NCS stability and QoC,

hence, scheduling approaches that take into account real-time

conditions of control systems become popular [10]–[14].

Data queuing is a traditional resource management tech-

nique aiming to maximize quality-of-service (QoS), ex-

pressed often in the form of bandwidth or throughput require-

ments [15], [16]. The idea has gone through various mod-

ifications, e.g. accounting for congestion by back-pressure

algorithms, or collision avoidance via back-off mechanisms,

to adjust to the new communication trends [17]–[19]. The

mentioned works consider queuing data that arrive from

asynchronous nodes across the network, and then designing

buffer discharge mechanisms, such as first-in-first-out (FIFO)

or last-in-first-out (LIFO), to release data to the correspond-

ing end-nodes. The queue models used in these works are

static, and service is independent of the dynamics of sending

and receiving nodes. In event-triggered NCSs wherein con-

trol systems have similar sampling periods, multiple requests

may arrive at the buffer simultaneously, and in addition,

arrival rates are state-dependent as sub-systems decide in

real-time either to request for a transmission or not. This

leads to coupling between the buffer dynamics and systems

dynamics. To the best of the authors’ knowledge, data

queuing in event-triggered NCSs has not been fundamentally

addressed, though a few exceptions exist, e.g., [20], [21].

The main contribution of this paper is proposing a cross-

layer queue-based transmission mechanism that combines
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two approaches of event-triggered sampling and data queuing

for NCSs consisting of multiple linear time-invariant (LTI)

sub-systems. We take the most basic scenario of threshold-

based event-triggers and FIFO queues to present our results.

The results however are extendable to more complicated

models such as priority queues and LIFO buffers. The

decisions on transmission requests are locally taken by event-

triggered schedulers. Those data are queued and processed

depending on the available bandwidth. We demonstrate that

the proposed state-dependent data queuing method is ca-

pable of maintaining the overall NCS stability in mean-

square sense, while significantly reducing the total sampling

instances without degrading control performance.

In the reminder of this paper, we state the problem of inter-

est in Section II. Section III presents the state-dependent data

queuing model. Stability results are provided in Section IV.

Numerical illustrations are afterwards shown in Section V.

II. PROBLEM STATEMENT

We consider an NCS consisting of N heterogeneous LTI

control loops that are exchanging information through a

shared communication network. Each individual loop con-

sists of a linear stochastic plant Pi and a linear feedback

controller Ci, i ∈ {1, . . . , N}. The plant Pi is modeled ac-

cording to the following linear stochastic difference equation

xi
k+1 = Aix

i
k +Biu

i
k + wi

k, (1)

where xi
k∈R

ni represents the system state, ui
k∈R

mi denotes

the control signal executed at time k, and wi
k ∈ R

ni is the ith

sub-system’s exogenous disturbance. The constant matrices

Ai ∈R
ni×ni , and Bi ∈R

ni×mi describe the system matrix,

and input matrix of sub-system i. The disturbance is assumed

to be a random sequence with independent and identically

distributed (i.i.d.) realizations wi
k ∼N (0,Wi), with Wi ≻ 0

denoting the variance of the normal distribution. The initial

state xi
0 is also randomly chosen from an arbitrary finite-

moment distribution and is independent of the disturbance

sequence. For simplicity, we assume that the sensor measure-

ments are perfect copies of the system states, i.e., the output

matrix is unity, and no measurement noise exists. Moreover,

it is assumed that each pair (Ai, Bi) is locally controllable.

The communication channel which supports the informa-

tion exchange between the plants and the controllers, is

assumed to have resource limitations, i.e., the bandwidth is

not sufficient for all sub-systems to transmit simultaneously.

In fact, the data packets sent from the individual sub-systems

are queued in a single buffer and a transmission is completed

when the packet is within the range of the departing band-

width. This may take multiple time-steps from the time of

the transmission request, hence, state information is received

by the corresponding controller with buffer-induced delay.

To take this effect into account, we denote the queue length

at a time-step k by lk, with the initial length l0 <∞. For

technical reasons, we assume that the buffer provides infinite

capacity, hence, every data packet sent for transmission will

be added to the waiting queue. The buffer input and output
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Fig. 1: Schematic of a multiple-loop NCS with a shared communication network
equipped with state-dependent data queuing mechanism.

at time-step k are represented by ak and dk, respectively.

Hence, the buffer dynamics can be expressed as

lk+1 = lk + ak − dk, lk ∈ N ∪ {0}, ∀k > 0. (2)

At every time-step, the controller Ci either receives new

state information (delayed or un-delayed) or receives noth-

ing. Let us generally assume that at a time-step k, the newest

state information the controller Ci has access to, is xi
k̄

, k̄ ≤ k,

which is received at one of the time-steps over [k̄, k]. This

means that xi
k̄

had been sent for transmission at time k̄, and

no newer data packet has been received by Ci afterwards.

Therefore, the delay at time k would be k − k̄. Depending

on the queue length lk̄ at time-step k̄ and the buffer output,

this induced delay, denoted by τ̄ ik, is one of the integer values

in the set [0, k]. It should be noted that, depending on how

arrival and departure of the buffer are modeled, the induced

delay τ̄ ik can be the outcome of a stochastic or deterministic

process. We will discuss this comprehensively in the sequel.

Let the estimator installed at a controller side Ci has the

local knowledge of its corresponding sub-system parameters

Ai, Bi,Wi and the distribution of xi
0, together with the

history of the control inputs U i
[0,k−1] = {ui

0, u
i
1, . . . , u

i
k−1},

at time-step k. The state estimate x̂i
k|k can then be computed,

assuming that the latest received information is xi
k̄
, as follows

x̂i
k|k = E

[

xi
k|x

i
k−τ̄ i

k

, U i
[0,k−1]

]

(3)

=A
τ̄ i
k

i xi
k̄
+A

τ̄ i
k−1

i Biu
i
k̄
+. . .+AiBiu

i
k−2+Biu

i
k−1.

Having (3), the ith system posteriori and apriori estimation

errors at time-step k, denoted by ei
k|k and ei

k|k−1, evolve as

eik|k,xi
k−E

[

xi
k|x

i
k−τ̄ i

k

, τ̄ ik>0
]

=
∑τ̄ i

k

r=1
Ar−1

i wi
k−r , (4)

eik|k−1,xi
k−E

[

xi
k|x

i
k−1−τ̄ i

k−1

]

=
∑1+τ̄ i

k−1

r=1
Ar−1

i wi
k−r . (5)

It is clear that for τ̄ ik = 0, we have x̂i
k|k = xi

k, and conse-

quently, ei
k|k=0. From (5), if τ̄ ik−1=0, then ei

k|k−1=wi
k−1.

Let the state feedback control input ui
k for each sub-system i

be computed according to the following causal mapping of

the ith sub-system’s past information, i.e.

ui
k = −Ki

k x̂i
k|k, (6)
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where, Ki
k is any control gain designed for the ideal com-

munication case without resource limitations such that the

closed-loop matrix (Ai − BiK
i
k) is Hurwitz. From (1), (4),

and (6), the closed-loop dynamics for each sub-system i ∈
{1, . . . , N} is

xi
k+1=(Ai −BiK

i
k)x

i
k +BiK

i
ke

i
k|k + wi

k

=(Ai−BiK
i
k)x

i
k+BiK

i
k

∑τ̄ i
k

r=1
Ar−1

i wi
k−r+wi

k. (7)

From (7) it follows that dynamics of each sub-system i

depend not only on its local I/O variables, but also on the

queuing delays τ̄ ik’s. Here is where the couplings between

sub-systems appear as the result of sharing the communi-

cation network. Therefore, to analyze the behavior of local

sub-systems and also of the overall networked system, time-

varying queuing delays that act as the cross-layer coupling

variable between sub-systems, need to be taken into account.

Remark 1: In control systems where delay is unknown,

control actions are computed based on the latest received

updates, i.e. ui
t=−Ki

tx
i
t−τ i

t

. The control gain Ki
t then plays

a role in characterizing stability, i.e. not any control gain

which stabilizes the un-delayed system can be used for the

delayed system as well. Here we assume that each control

loop knows the delay of the information it receives, and

therefore, the control policy uses state estimation. Hence,

under the assumed information structure, control actions are

computed according to the certainty equivalence control (6).

This ensures the induced delay appears only in the estimation

error, which is unaffected by the control gain (see (5)).

A. State-independent sampling with FIFO buffer service

Let us assume that both buffer input and output are state-

independent. In the sequel, we first study deterministic and

then stochastic input and output scenarios.
1) Deterministic buffer input and output: As a general

static deterministic scenario, we assume a constant buffer in-

put n̄≤N at each time-step. Buffer output is also static based

on the FIFO model, i.e. packets at the front of the queue are

released when bandwidth is assigned. Note that, often in the

existing literature, the buffer queue is elongated based on

“first in” model, i.e. data can arrive at the buffer at any time

instance. In discrete time NCSs where the sampling durations

of control systems are identical, however, the transmission

requests may arrive at the buffer simultaneously. Without

loss of any generality, throughout this paper we assume that

transmission requests at one time-step are randomly located

at the queue tail, via a biased or unbiased randomization.

Hence, the maximum delay for a sub-system corresponds to

the case that its data packet is queued as the last one among

all packets sent to the buffer. Assuming that xi
k̄

is queued at

time k̄ with the then buffer length lk̄, together with having

ak= n̄, and buffer output dk=dc for all k, we have

max{τ̄ ik} =

⌊

lk̄ + n̄

dc

⌋

, (8)

where, ⌊·⌋ is the floor operator. It is clear from (8) that if

dc ≥ n̄, then max{τ̄ ik} ≤ l0
dc

. Otherwise, if dc < n̄, then

lk→∞ as k→∞, and asymptotically max{τ̄ ik}→∞.

2) Stochastic buffer input and output: Consider that ak
and dk are i.i.d. positive integer-valued random variables

chosen at each time from finite-moment discrete distributions

with respective means µa and µd. Assume xi
k̄

is queued at

time k̄ as the latest data packet among all the transmission

requests at time k̄. From (2), the queue length at time k̄ is

lk̄ = l0 + (a0 + a1 + . . .+ ak̄−1)− (d0+d1+. . .+dk̄−1)

= l0 +
∑k̄−1

r=0
(ar − dr) . (9)

If xi
k̄

is received by Ci at an arbitrary time k, then xi
k̄

should

have been discharged from the buffer at time-step k, while

at time k− 1, xi
k̄

should have still stayed in the buffer.

Mathematically, the following two inequalities should hold:

ak̄ + lk̄ −
(

dk̄ + dk̄+1 + . . .+ dk−1

)

> 0, (10)

ak̄ + lk̄ −
(

dk̄ + dk̄+1 + . . .+ dk−1 + dk
)

≤ 0. (11)

Substituting lk̄ from expression (9) and taking the expecta-

tion from (10), for an arbitrary receiving time k, we obtain

E

[

ak̄ +l0+
∑k̄−1

r=0
(ar − dr)−

(

dk̄ + dk̄+1 + . . .+ dk−1

)

]

= l0 + E

[

∑k̄

r=0
ar −

∑k̄

s=0
ds −

∑k−1

s=k̄+1
ds

]

= l0 + (k̄ + 1)(µa − µd)− E
[

(k − k̄ − 1)
]

µd. (12)

With similar calculations this time with the inequality (11),

the following bounds for the delay can be derived

l0+(k̄+1)(µa−µd)

µd

≤E
[

τ̄ ik
]

<
l0+(k̄+1)(µa−µd)

µd

+1 (13)

It is clear that for µd ≥ µa, we have l0
µd

≤ E
[

τ̄ ik
]

< l0
µd

+1.

Remark 2: From (8) and (13) it follows that for state-

independent data queuing, either deterministic or stochastic,

sufficient queue stability in terms of mean-square bounded-

ness of the queue length is guaranteed only if the steady state

buffer input and buffer output are equally balanced, which

results in the delay being asymptotically bounded. Otherwise,

delay converges to infinity and so does the waiting queue.

III. EVENT-BASED SCHEDULING & STATE-DEPENDENT

BUFFER SERVICE

In this section, let each sub-system i be equipped with

an event-triggered scheduler Si which decides at each time

k > 0 whether to send new data to the buffer or not. The

buffer output dk is assumed to be randomly selected from

i.i.d. discrete distributions with mean µd>0. We denote the

ith scheduler’s binary-valued decision at time k by δik, and

δik =

{

1, xi
k sent to the buffer for transmission

0, xi
k not sent to the buffer

(14)

According to (14), the buffer input ak can be expressed as

ak =
∑N

j=1
δ
j
k. (15)

The information available at the scheduler Si to decide on

δik is {U i
[0,k−1], x

i
k, x

i
k−1−τ̄ i

k−1
, τ̄ ik−1}. The decision variable
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δik is then generated at every time-step k as the outcome of

the following local event-triggered threshold-based policy

δik =

{

1, if ‖eik|k−1‖
2
2 > ηi

0, if ‖eik|k−1‖
2
2 ≤ ηi

(16)

where, the constant ηi ≥ 0 is the error threshold for sub-

system i. From (16) it follows that δik’s are functions of

‖ei
k|k−1‖

2
2. This means ak in (15) is dynamically coupled

with all sub-systems error states. In addition, from (5), ei
k|k−1

depends on Ai, τ̄ ik−1, and wi
k−r , with r ∈ [1, 1+ τ̄ ik−1].

Thus, eik|k−1 and also ‖eik|k−1‖
2
2 are both random variables.

Consequently, ak is random and dependent on statistical

properties of ‖ei
k|k−1‖

2
2, for all i∈{1, . . . , N} with δik = 1.

For simplifying the derivations, we assume that the sys-

tem matrices Ai’s are diagonal. This assumption does not

result in loss of any generality, but guarantees that eik|k−1

is a random vector with independent normally distributed

random elements1. Hence, ei
k|k−1 is a multi-variate normally

distributed random vector with delay-dependent covariance.

Finally, ‖ei
k|k−1‖

2
2’s distribution becomes sum of indepen-

dent gamma distributions, with the following parameters

‖eik|k−1‖
2
2 ∼

∑ni

l=1
Γ

(

1

2
, 2σ2

jj

)

, (17)

where, σjj is the element on the j th row and column of the

diagonal covariance matrix Σe =
∑1+τ̄ i

k−1

r=1 Ar−1
i WiA

r−1T

i ,

and ni is the dimension of ei
k|k−1. We define a new vector-

valued random sequence E , evolved until time k, as follows

E , {E0, E1, . . . , Ek}, (18)

where, Et=
[

‖e1
t|t−1‖

2
2, . . . , ‖e

N
t|t−1‖

2
2

]⊤

is a random vector

containing independent random elements each distributed

according to (17). From (15)-(17), the expected buffer input,

assuming that τ̄ ik−1 is known for sub-system i, becomes

E

[

ak|τ̄
j
k−1, ηj , ∀j

]

=
∑N

j=1
E

[

δ
j
k

]

=
∑N

j=1
P

[

δ
j
k = 1

]

=
∑N

j=1
P

[

‖ej
k|k−1‖

2
2 > ηj

]

=
∑N

j=1
(1− FEj

k

(ηj)), (19)

where, FEj

k

(ηj) is the value of the cumulative distribution

function (CDF) of the j th element of Ek, computed at ηj .

As the buffer outputs dk are i.i.d. random variables, and ak
is also random at every time-step k, hence τ̄ ik−1 is a discrete

random variable. Therefore, to compute the expectation of ak
for any delay variable τ̄ ik−1, we need to derive the marginal

distribution of ‖ej
k|k−1‖

2
2, averaged over all τ̄ ik−1’s. Let us

define a discrete-vector-valued random sequence τ , as

τ , {τ0, τ1, . . . , τk}, (20)

where, τt =
[

τ1t , . . . , τ
N
t

]⊤
, and each discrete random vari-

able τ it , i∈{1, . . . , N} takes its value from the discrete set

[0, t]. As before, we denote the realization of τ it by τ̄ it . Since

1Relaxing this assumption means ei
k|k−1

has statistically dependent nor-

mally distributed elements, and makes the mathematics more complicated.
The results of this paper, however, extend to non-diagonal system matrices.

E i
k is a continuous random variable at every time-step k,

while τ ik−1 is discrete, the joint density function, denoted by

f i
Ek,τk−1

, should be expressed in mixed form, as follows:

f i
Ek,τk−1

(‖eik|k−1‖
2
2, τ̄

i
k−1) =

f i
Ek|τk−1

(‖eik|k−1‖
2
2|τ̄

i
k−1)P(τ

i
k−1 = τ̄ ik−1). (21)

Accordingly, for the marginal distribution f i
Ek
(‖ei

k|k−1‖
2
2)

averaged over all delay variables τ ik−1, we can write

f i
Ek
(‖eik|k−1‖

2
2)=

∑

τ̄ i
k−1

f i
Ek,τk−1

(Ek‖e
i
k|k−1‖

2
2, τ̄

i
k−1). (22)

Expression (21) requires knowing P(τ ik−1 = τ̄ ik−1), which

is correlated with the buffer input and output. To take this

into account, let τ̄ ik−1 be an arbitrary realization of τ ik−1, for

the random time k−1. The time of being queued is then

k̃ = k−1− τ̄ ik−1. Let xi
k̃

be received by Ci at an arbitrary

time-step k−1. Then the following two inequalities hold

ak̃ + lk̃ > (dk̃ + dk̃+1 + . . .+ dk−2),

ak̃ + lk̃ ≤ (dk̃ + dk̃+1 + . . .+ dk−1).

Since the left sides of the above inequalities are not random,

and also, as the outputs dk are i.i.d. at all k, we arrive to

P[τ ik−1= τ̄ ik−1]=P[ak̃ + lk̃ ≤
k−1
∑

t=k̃

dt]P[ak̃ + lk̃ >

k−2
∑

t=k̃

dt].

From (15), we know ak̃=
∑N

j=1 δ
j

k̃
. From (2), we conclude

ak̃ + lk̃ = l0 +
∑k̃

t=0

∑N

j=1
δ
j
t −

∑k̃−1

t=0
dt. (23)

We can then compute the two following probabilities:

P[ak̃+lk̃ ≤
k−1
∑

t=k̃

dt]= P[l0 +

k̃
∑

t=0

N
∑

j=1

δ
j
t −

k̃−1
∑

t=0

dt ≤
k−1
∑

t=k̃

dt],

P[ak̃+lk̃ >

k−2
∑

t=k̃

dt]= P[l0 +

k̃
∑

t=0

N
∑

j=1

δ
j
t −

k̃−1
∑

t=0

dt >

k−2
∑

t=k̃

dt].

Note that all the variables above except the buffer outputs

{dk̃, . . . , dk−2, dk−1} are known and not random. In fact,

the only random term in the first expression is
∑k−1

t=k̃
dt,

and in the second expression is
∑k−2

t=k̃
dt. Assuming that the

distribution of the i.i.d. buffer outputs dk is known for all

k > 0, the probability mass functions (PMFs) of the two

discrete random variables
∑k−1

t=k̃
dt, and

∑k−2

t=k̃
dt, denoted

respectively by F i
d[k̃,k−1]

, and F i
d[k̃,k−2]

, are expressed as

P[ak̃+lk̃ ≤
k−1
∑

t=k̃

dt]=1−F i
d[k̃,k−1]

(l0+

k̃
∑

t=0

N
∑

j=1

δ
j
t −

k̃−1
∑

t=0

dt),

P[ak̃+lk̃ >

k−2
∑

t=k̃

dt]=F i
d[k̃,k−2]

(l0 +

k̃
∑

t=0

N
∑

j=1

δ
j
t −

k̃−1
∑

t=0

dt).

Finally, P[τ ik−1= τ̄ ik−1] can be re-written as

P[τ ik−1= τ̄ ik−1]=F i
d[k̃,k−2]

(ak̃+lk̃)
(

1−F i
d[k̃,k−1]

(ak̃+lk̃)
)

.
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Having the latter expression, the marginal distribution ex-

pressed in (22), is then fully characterized, according to (21).

Define the marginal CDF of ‖ei
k|k−1‖

2
2, associated with the

marginal distribution function (22), as F
margin

Ei
k

(‖ei
k|k−1‖

2
2).

Then, the unconditional expected buffer arrival, i.e., E[ak] at

any time-step k > 0, can be expressed as follows

E [ak]=
∑N

j=1
P

[

δ
j
k=1

]

=
∑N

j=1

(

1−F
margin

Ej

k

(ηj)
)

. (24)

It is concluded from (24) that E [ak] at any general time k

is determined by the error thresholds ηj , for all j, and the

statistical properties of the buffer outputs {d0, d1, . . . , dk−1}.

IV. STABILITY ANALYSIS

In this section, we study asymptotic stability of the de-

scribed NCS under the proposed state-dependent data queu-

ing, and derive almost sure sufficient mean-square stability

condition. Let us first define the aggregate state vectors

ek|k−1 , [e1
⊤

k|k−1, . . . , e
N⊤

k|k−1]
⊤, and xk , [x1⊤

k , . . . , xN⊤

k ]⊤,

at time k. Together with lk ∈R
+∪{0}, we can characterize

the dynamics of the NCS at every time k by the overall

state vector [x⊤
k , e

⊤
k|k−1, lk]

⊤. Note that, the overall system

with the mentioned state vector is not linear, due to the

general non-linear coupling between ek|k−1, and lk via

τ̄ ik−1 (see (5)). Within each sub-system, however, the local

aggregate state [xi⊤

k , ei
⊤

k|k−1]
⊤ is linear, according to (5) and

(7). Recalling Remark 1, and assuming controllability of each

pair (Ai, Bi), it is guaranteed that the overall NCS is mean-

square stable in the absence of network-induced delay. This

can also be concluded from (7), as for τ̄ ik =0, it reduces to

xi
k+1=(Ai−BiK

i
k)x

i
k+w

i
k. In the presence of induced-delay,

however, the system state is affected by the estimation error,

which is itself independent of xi
k. Thus, mean-square stability

holds only if ei
k|k−1 is mean-square stable, that is ensured

only if delay is finite, according to (5). In addition, since

dk>0 for all k, and l0<∞, boundedness of delay is ensured

if lk is bounded. In the following, we derive the sufficient

NCS stability condition in almost sure mean-square sense.

First, we revisit the following lemma about convergence of

linear sequences.

Lemma 1: [22, Chapter 1] Consider a linear first-order

non-homogeneous sequence {sk}, as follows

sk+1 = sk + b, k = 0, 1, 2, . . . , s0 = c.

Then, the following statements hold:

1) if b > 0, or b < 0, the sequence diverges to +∞, and

−∞, respectively,

2) if b = 0, sk is a constant sequence.

Theorem 1: Consider an NCS with N dynamical sub-

systems described in (1), each with estimation and control

processes given in (3) and (6), respectively. Assume that the

shared network is equipped with a FIFO buffer with initial

queue length l0, and output dk, where dk is an i.i.d. discrete

random variable with bounded mean µd>0 at each time k.

Under the event-triggered law (16), there always exist local

thresholds ηi’s, i∈{1, . . . , N}, such that for any µd > 0,

E [lk] = l0, ∀k = 0, 1, 2, . . . .

Proof: From (2) and (15), the queue dynamics become

lk+1 = lk +
∑N

i=1
δik − dk. (25)

Taking expectation from both sides of (25) yields

E [lk+1] = E [lk] + E

[

∑N

i=1
δik − dk

]

.

It follows from Lemma 1 that the length sequence {E[lk]}
is a non-divergent time sequence, only if at any time-step k,

E

[

∑N
i=1 δ

i
k − dk

]

=0. Since negative length is meaningless

and is projected to zero, we can replace the equality with

inequality E

[

∑N
i=1 δ

i
k − dk

]

≤0. Employing (24), we have

E

[

∑N

i=1
δik − dk

]

=
∑N

i=1

(

1−F
margin

Ei
k

(ηi)
)

− µd.

Hence E[lk] is a constant sequence, and E[lk]= l0, if

∑N

i=1

(

1−F
margin

Ei
k

(ηi)
)

≤ µd, (26)

for all k > 0. We can then find a set of feasible thresholds

ηi ≥ 0, i ∈ {1, . . . , N} such that for any 0< µd <N , (26)

holds. It is clear that for all µd ≥N , the inequality (26) is

satisfied for any ηi, and the proof then readily follows.

It follows from Theorem 1 that the smaller the mean of the

buffer output is, the larger the error thresholds ηi’s should

become to hold the queue stability, which clearly results in

a lengthy time gap between two consecutive transmissions.

Corollary 1: Consider the inequality (26). Then, the non-

negative random variable τ ik is integrable, and any realization

of τ ik , i.e. τ̄ ik ∈ {0, 1, . . . , k}, satisfies τ̄ ik < ∞, almost surely,

or equivalently, P[τ̄ ik < ∞] = 1, for all k ∈ {1, 2, . . .}.

Proof: With similar calculations in deriving the expres-

sion (13), we can find the following bounds for the expected

delay E[τ ik] = E[k]− k̄, where k is the expected arrival time

for a data packet being queued at an arbitrary time-step k̄

E [ak̄ ]+E[ lk̄]

µd

≤ E
[

τ ik
]

<
E [ak̄ ]+E[ lk̄]

µd

+ 1.

From the expressions (2) and (24), we have

E [ak̄ ]+E[ lk̄]

µd

=

∑k̄
t=1

∑N
j=1(1−F

margin

Ej
t

(ηj))−k̄µd+l0

µd

.

Having (26) satisfied at every time-step k > 0, we obtain

l0

µd

≤ E
[

τ ik
]

<
l0

µd

+ 1. (27)

Boundedness of E
[

τ ik
]

confirms integrability of τ ik , and it is

then straightforward to show, by the definition of Lebesgue

integral, that any realization of the random variable τ ik is

almost surely finite, i.e. P[τ̄ ik < ∞] = 1, for all k > 0.

Theorem 2: Consider the NCS described in Theorem 1.

Assuming that each pair (Ai, Bi) is controllable, then a set

of finite local error thresholds η= {η1, . . . , ηN} exists such

that, under the event-based scheduler (16), the NCS with the

overall state [x⊤
k , e

⊤
k|k−1, lk]

⊤ is a.s. mean-square stable.
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Proof: As already discussed, evolution of the network-

induced error eik|k−1 is independent of xi
k, hence asymptotic

convergence of ei
k|k−1 in mean square sense guarantees

mean-square convergence of the local system states xi
k’s,

according to (7). To show this, we have from expression (5)

E

[

‖eik|k−1‖
2
2

]

= E

[

‖
∑1+τ̄ i

k−1

r=1
Ar−1

i wi
k−r‖

2
2

]

= E

[

∑1+τ̄ i
k−1

r=1
‖Ar−1

i wi
k−r‖

2
2

]

, (28)

where, (28) holds due to statistical independence of noise

realizations. Finding the exact expression for (28) is chal-

lenging since the stopping time, i.e. τ̄ ik−1, determines the

covariance of random elements in the summation via the term

Ar−1
i . Thus we have a random summation of independent but

not identically distributed random elements. We, therefore,

consider the worst case scenario and find an upper-bound for

the expectation of the L2 norm of the error. Assume that all

sub-systems i∈{1, . . . , N} are unstable. Then, we have

E

[

∑1+τ̄ i
k−1

r=1
‖Ar−1

i wi
k−r‖

2
2

]

≤ E

[

∑1+τ̄ i
k−1

r=1
‖A

τ̄ i
k−1

i wi
k−r‖

2
2

]

≤ E

[

‖Ai‖
2τ̄ i

k−1

2

∑1+τ̄ i
k−1

r=1
‖wi

k−r‖
2
2

]

,

where, the second inequality is ensured via sub-multiplicative

property of matrix norms. From Corollary 1, we know that

any delay realization τ̄ ik−1 is a.s. bounded, i.e. a positive

constant M exists a.s., such that τ̄ ik−1<M<∞. Therefore,

E

[

∑1+τ̄ i
k−1

r=1
‖Ar−1

i wi
k−r‖

2
2

]

≤‖Ai‖
2M
2 E

[

∑1+τ̄ i
k−1

r=1
‖wi

k−r‖
2
2

]

.

Since, ‖wi
k−r‖

2
2’s are i.i.d. for each r ∈ [1, 1+ τ̄ ik−1] and for

all i ∈ {1, . . . , N}, and additionally as 1 + τ̄ ik−1 is now a

stopping time2, we employ Wald’s identity, and arrive to

E

[

∑1+τ̄ i
k−1

r=1
‖wi

k−r‖
2
2

]

=E
[

τ̄ ik−1

]

E
[

‖wi
k−r‖

2
2

]

.

Finally, according to (27), we conclude

E

[

‖eik|k−1‖
2
2

]

≤

(

l0

µd

+ 1

)

‖Ai‖
2M
2 tr(Wi), (29)

which proves E

[

‖eik|k−1‖
2
2

]

for each sub-system i is a.s.

bounded. In addition, the buffer state lk is the sole coupling

point between the sub-systems and determines their delay

periods. Theorem 1 ensures a set of thresholds {η1, . . . , ηN}
exists such that lk is mean-square bounded. Since lk is

generic for all sub-systems, under the given thresholds, local

error states eik’s are mean-square bounded, and this ensures

mean-square boundedness of the local system states xi
k’s, if

stabilizing gains Ki
k’s exist. and the proof is complete.

Remark 3: According to (29), the upper-bound of the

error variance depends on Wi, Ai, µd, and l0. As expected,

2A random time N is said to be stopping time with respect to a stochastic
process {Xn, n ≥ 0}, if for each n ≥ 0, the event N = n is fully
determined by the total information contained in {X0, . . . , Xn}, and N is
independent of the future states {Xn+1, Xn+2, . . .}.

higher noise uncertainty, system matrices with larger spectral

radius, or lower buffer output lead to increase the bound of

the error variance. Therefore, although results of Theorem

2 hold for general parameters, if a specific performance is

required, these parameters need to be appropriately adjusted.

V. NUMERICAL RESULTS

We consider multi-loop NCSs consisting of N stochastic

scalar sub-systems, where N ∈ {2, 4, 6, 8, 10}. Sub-systems

are divided into two heterogeneous classes of N
2 identi-

cal systems, i.e. class of unstable and stable sub-systems,

denoted by cl1 and cl2, respectively, with the parameters

Acl1 =1.25, Acl2 =0.75, Bcl1 =Bcl2 =1, Wcl1 =Wcl2 =1.

Every sub-system is assumed to be controlled by a dead-

beat control law Ki
k=AiB

−1
i , at every time-step k > 0. Data

are sent to a single buffer with l0 = 0. We perform Monte

Carlo simulations, and plot the averages over 10 runs, with

the time horizon of each simulation run set to be T =5000.

To check our simulation accuracy, we first set ηi =0 for

all i that results in ak = N at all k. We observe that for

an NCS with N systems the average error variance grows

unbounded if dk <N . As expected, dk ≥N results in un-

delayed transmissions at all time-steps, and the average error

variance equals to the average noise variance, (see (5)). In

the stochastic case also for E[dk]<N , error variances take

very large values, while for E[dk]=N , it varies from run to

run between bounded and unbounded values. The reason is

that in simulations with finite samples, the numerical mean

of dk is not exactly equal to N but close to N .

In Table I, state-independent stochastic queuing is com-

pared with the event-triggered data queuing. In the upper part

of Table I the error variances for different NCS setups with

their respective E[dk] for the static-input stochastic-output

case are given. Discrete buffer outputs dk are uniformly

distributed at each time-step, i.e.dk ∼ U(1, 2N), and E[dk] =
2N+1

2 . As all N sub-systems regularly send data to the buffer,

therefore, the average transmission rate equals exactly one

transmission per time-step, per sub-system. Note that, as

opposed to the deterministic case that if dk≥N , then average

error variance reduces to the noise variance (in this case

1), in the stochastic case, the average error variance takes

larger value. The reason is, in the latter case dk varies and

TABLE I: Static vs. event-based data queuing for shared resource NCSs

Number of plants (N) 2 4 6 8 10

Static stochastic data queuing

Error threshold (ηi) 0 0 0 0 0

E[dk] 2.5 4.5 6.5 8.5 10.5

Average error variance 1.359 2.588 4.807 8.445 12.676
Total number of transmissions

N.T
1 1 1 1 1

Event-based stochastic data queuing

Error threshold (ηi) 0.25 7.00 19.80 46.15 78.20

E[dk] 2 4 6 8 10

Average error variance 1.358 2.585 4.808 8.448 12.472
Total number of transmissions

N.T
0.649 0.102 0.059 0.047 0.042

µmax
d

1.799 2.491 3.149 3.990 4.941

µ
average

d
1.438 1.698 2.008 2.450 3.014
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TABLE II: Existence of stabilizing error thresholds for different E[dk] < N

N = 4

E[dk] 1.5 2 2.5
Error threshold (ηi) 12.2 3.7 1.6
Average error variance 3.516 1.996 1.776
µ
average

d
1.488 1.922 2.208

N = 6

E[dk] 2.5 3 3.5
Error threshold (ηi) 8.2 3.5 2.1
Average error variance 2.844 1.836 1.678

µ
average

d
2.489 2.920 3.135

N = 8

E[dk] 3.5 4 4.5
Error threshold (ηi) 6.4 3.3 2.5
Average error variance 2.469 1.896 1.737

µ
average

d
3.487 3.928 4.085

N = 10

E[dk] 4.5 5 5.5
Error threshold (ηi) 5.4 3.5 2.8
Average error variance 2.341 1.946 1.801
µ
average

d
4.476 4.849 4.976

its realization is occasionally less than N , which results in

delay, and consequently increases the estimation error.

In the lower part of Table I, we found error thresholds

which provide similar error variances as those derived from

the state-independent design for each setup. The results

demonstrate that we can achieve very similar performance by

considerably less transmissions. For example, for N=10 we

achieve error variance 12.676 with E[dk]=10.5, with 50, 000
transmissions for static data queuing. With event-based

queuing similar performance is achieved by only 2, 100
transmissions (see the underlined values). Moreover, from

the sufficient stability condition (26), the maximum required

E[dk] to provide such performance is 4.941, which compared

to 10.5 for state-independent case is about 53% lower.

In Table II, we validate the results of Theorem 2 by

showing the existence of ηi’s for different E[dk] < N that

result in bounded error variances. The selected E[dk]’s in

Table II lead to overall instability for static data queuing. As

expected, error thresholds must be larger for lower E[dk].
In Table II, µave

d ’s are calculated instead of the maximum

required µmax
d in order to observe an interesting property of

the stochastic buffer discharge model. It is seen that µave
d

is a reliable choice for µd if the standard deviation of the

output distribution is small, and it becomes less reliable as

the boundaries of the uniform distribution move afar.

VI. CONCLUSION

In this paper, state-dependent data queuing in shared-

resource multi-loop NCSs is addressed. We propose a cross-

layer design framework within which local event-based

schedulers decide if a data packet should be sent for trans-

mission or not. Consequently, the buffer input becomes state-

dependent and the buffer state then depends on all control

loop’s estimation errors. A sufficient stability condition for

the NCSs of interest is derived under the proposed state-

dependent scheme in mean-square sense. Moreover, perfor-

mance improvement is shown to be achieved under our

proposed design compared to the state-independent scenario.
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