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Abstract—The problem of driving a formation from an initial
to a target configuration while under the effect of external dis-
turbances is studied. Additional restrictions on agent sensing as
well as inter-agent communication must be satisfied. We present
a leader-follower solution that relies on a simple uncertainty
model to trigger surfacing events. These events are then used
to update the control signal, for which two different, provably
correct, control strategies are proposed. Finally, we show how
the surfacing events can be used to characterize the disturbance
set. Numerical examples on relevant scenarios are also provided.

I. INTRODUCTION

Recent technological developments have allowed for the
appearance of low-cost robotic platforms. Motivated by the
advantages of multi-agent systems, the spectrum of multi-
agent applications has been increasing, sparking the interest of
the research community and leading to greater advances in this
field. A particular example is the increased data redundancy
and the reduced time and cost needed to cover a wider area
that come with the use of several low-cost platforms compared
to the use of a single (often expensive) platform.

However, with the use of a vehicle formation inevitably
comes the problem of agent coordination, which becomes
more complex if the platforms used have limited communi-
cation and sensing capabilities. This is usually the case for
low-cost vehicles - underwater communication is constrained
in terms of range and bandwidth, with underwater acoustic
modems requiring considerable amounts of power. At the same
time, underwater positioning poses another challenge as good
inertial sensors are very expensive and acoustic positioning
systems have a limited range. Due to these limitations, most
low-cost platforms have to surface to get position fixes through
the use of GPS. Communication is also limited to these
intervals, as more efficient, low-power wireless modules can be
used. Such an example is the Underwater Systems and Tech-
nologies Laboratory (USTL - http://whale.fe.up.pt/lsts/ ) fleet,
which includes six low-cost Light Autonomous Underwater
Vehicles (LAUVs), equipped with a simple inertial navigation
system, GPS, and long baseline (LBL) system by default.
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Additionally, they can be configured with CTD, side-scan
sonar and underwater acoustic modems. Although the LAUV
is undergoing development, it has been successfully deployed
several times over the last few years.

Motivated by the above observations, the problem of multi-
agent coordination for this particular type of vehicles can be
summarized as that of finding a control strategy that is able
to drive a formation of AUVs from the initial to the target set
of positions within a given time and while under the effect
of external disturbances such as ocean currents. At the same
time, inter-agent communication and position feedback have
to be limited to the instants where the agents have surfaced.

Several formation control designs have been proposed.
Some examples can be found in [1]–[6]. For underwater
vehicle applications, in particular, solutions to the multi-agent
problem based on the use of artificial potentials and virtual
bodies are presented in [7], [8]. Lyapunov methods are also
used, particularly for path-following purposes [9]. In [10]
the problem is studied from a high-level perspective, and a
hierarchical control architecture is proposed for the centralized
control of a team of vehicles.

In this note we propose some extensions with respect to
our previous work in [11], namely, we let the upper bound
on the uncertainty growth rate be time-varying, rendering our
approach more robust to unknown or time varying disturbance
sets. Then, we present a method to estimate the disturbance
set, based on the several position drift measurements available
at each surfacing instant.

In this article we begin by studying the single-agent prob-
lem, where we use a position uncertainty model to develop
an event-triggered control strategy based on a boundedness
assumption on the disturbance set. In contrast to our previous
work, we let this bound be time varying. This boundedness
assumption allows us to determine when (and where) the
agent should surface and get a position fix in order to prevent
its position uncertainty from exceeding a threshold value. As
feedback is also limited to these instants, the control signal will
only be updated at the surfacing events. Two different control
laws are proposed for this scenario, and are then extended
and proven to work for a multi-agent formation. Finally, we
take advantage of the surfacing events to characterize the
disturbances acting on the vehicle.

This note is organized as follows: in Section II we present
the agent model, information structure and some background
concepts, all of which are used to present the problem defini-
tion. Our proposed event-triggered solution to the simplified,
single-agent version of the original problem is briefly revisited
in Section III. Here, in contrast to our previous work [11],



we use a more robust mechanism to trigger the update of
the control signal. Two provably correct control strategies and
corresponding sufficient conditions for target reachability are
also derived. This approach is then extended to the original
formation problem in Section IV, and sufficient conditions
under which such extension is valid are derived. In Section
V we discuss how to characterize the disturbance set using
the agents’ position drifts, followed by the presentation and
discussion of some relevant numerical examples in Section
VI.

II. PROBLEM STATEMENT

In order to maintain the self-containment of the current
note, we revisit the problem formulation of [11]. Our for-
mation consists of a set of M planar (xj ∈ R2) agents,
A = {a1, a2, . . . , aM}, that are located at the initial set
X0 = {x1(t0), x2(t0), . . . , xj(t0), . . . , xN (t0)} at time t0.
After applying a transformation to the unicycle model [12],
and assuming additive disturbances, each agent aj can be
modeled as a perturbed single integrator:

ẋj(t) = uj(t) + ωj(t), (1)

with u(t) ∈ U(t) (the admissible control set) and ω(t) ∈
Ω(t) (the disturbance set), for t ∈ [t0, tT ]. The use of such a
simple model is justified the fact that we are interested in path
planning and not attitude control. A possible definition for the
admissible control set comes from the AUV’s maximum linear
speed, umax:

U =
�
u ∈ R2 : �u� ≤ umax

�
(2)

The disturbance set will, for now, be left undefined.
As has already been mentioned, we assume the agents have

very limited sensing capabilities - each agent can only measure
its own position when stopped (at the surface). Communication
between agents is also limited to these instants, and can
only take place if the two agents are connected. For this
purpose, we let the network graph be described using a simple
communication model, where the network’s adjacency matrix
A at time t is defined by

aj,k(t) =

�
1, if �xj(t)− xk(t)� ≤ r
0, otherwise .

(3)

where r denotes the communication range, assumed to be the
same for all agents.

We can now formally state our problem as that of finding
uj(t) for a set of M agents, A = {a1, a2, . . . , aj , . . . , aM}
that drives the formation from the initial configuration X0 =
{x1(t0), x2(t0), . . . , xj(t0), . . . , xM (t0)} to the desired con-
figuration XT = {x1

T , x
2
T , . . . , x

j
T , . . . , x

M
T }, within the de-

sired time, tT , and while satisfying the above conditions on
communication and measurement.

III. THE SINGLE AGENT CASE

We begin by revisiting the equivalent single agent problem,
and present the framework first developed in [11] in order to

keep this paper self-contained. We will, however, modify it so
that it can deal with time-varying bounds.

We want to find a control strategy to drive an agent a from
an initial position x(t0) to a target position xT within the
specified time, tT . Note that here too position measurement
is restricted to the intervals where the agent is stopped. Since
feedback is limited to these instants, it is natural to assume
that the control signal will be a piecewise constant control
signal:

u(t) =
N−1�

i=0

ui (4)

where ui : [ti, ti+1] → R2, ∀i ∈ {0, 1, . . . , N − 1}. Under this
assumption, the solution to equation (1) can be written as

x(tN ) = x0 +
N−1�

i=0

ui(ti+1 − ti) +
N�

i=1

δi (5)

where δi+1 is the position drift from ti to ti+1:

δi+1 =

� ti+1

ti

ω(t)dt (6)

In what follows we will make two assumptions (we will
deal with how to fulfill them later on): i) we have available
a control law h(·) that is able to drive the agent from x0 to
xT if there are no disturbances; and ii) at every instant ti, the
agent has access to an upper bound on the disturbance speed:

γi ≥ max
ω∈Ω,t∈[ti,ti+1]

(�ω(t)�) (7)

γi can also be interpreted as an upper bound on the position
uncertainty growth rate. Due to this fact, the minimum time
it will take for the agent’s position uncertainty to reach a
threshold value � will be given by

∆ti = �γ−1
i (8)

We call � the maximum position uncertainty. As we do not
want position uncertainty to exceed this value, it is reasonable
to have the agent surface to get a position fix after traveling
for ∆ti time units since the last fix (∆ti is called the ith travel
time). As such, the ith surfacing instant will be:

ti = ti−1 +∆ti−1 (9)

or, alternatively,

ti = t0 +
i−1�

k=0

∆tk (10)

At ti the agent will have access to xi, and will use it compute
ui through the h(·) control law. Ideally, this would cause the
agent to surface at a point

Wi+1 = xi + ui∆ti (11)

that is, the i+1th waypoint. Being that there are disturbances,
the agent will surface at

xi+1 = Wi+1 + δi+1 (12)



However, and because of our definition of ∆ti (equation (8))
we can guarantee that

�δi� ≤ �, ∀i ∈ {0, 1, . . . , N} (13)

Using this construction, there will be an instant for which
the time the uncertainty takes to reach the threshold value will
be greater than or equal to the time left to reach the target.
As such, we let N − 1 be such that γ−1

N−1� ≥ tT − tN−1, and
define ∆tN−1 = min

�
tT − tN−1, γ

−1
N−1�

�
. Consequently, we

have that tN = tN−1 +∆tN−1 = tT .
Having devised an uncertainty model that allows us to

determine when to surface and get a position fix so that we
can update the control signal, we now turn to the control law
itself.

In the unperturbed scenario - i.e., where ω(t) = 0, t ∈
[t0, tT ] - setting

u0 = (xT − x0)(tT − t0)
−1 (14)

would yield the optimal control signal, that is, the signal with
the smallest �u� that is able to successfully drive the agent to
the target in the specified time. With this in mind, we could
apply this strategy at every surfacing instant ti:

ui = (xT − xi)(tT − ti)
−1, ∀i ∈ {0, 1, . . . , N − 1} (15)

We call this control strategy h1 and the main results for it
follow.

Theorem 1 (The h1 control strategy): Consider the system
described by (1) and controlled by (15), with ti defined as in
(9), Under these assumptions, the following properties hold: i)
WN = xT ; and ii) �xi−Wi� ≤ �, i ∈ {1, . . . , N}. Assuming
U defined as in (2), a sufficient condition for this theorem to
hold is

�u0�
�
1 +

N−1�

k=0

�

�u0�
(tT − tk)

−1

�
≤ umax (16)

Proof: The proof is omitted as it is a simple extension of
the proof of theorem 1 in [11].
Looking at theorem 1’s condition, we can see that a an adverse
disturbance will cause �ui� to increase monotonically. This is
caused by the fact that the proposed control strategy takes too
long to compensate for a given position drift, which, in the
mentioned adverse scenarios will cause the control signal to
increase. If we compensate for δi during ∆ti (as opposed to
[ti, tT ]), that is

ui = u0 − δi∆t−1
i (17)

we will have the following results:
Theorem 2 (The h2 control strategy): Consider the system

described by (1) and controlled by (17), with ti defined as in
(9), Under these assumptions, the following properties hold: i)
WN = xT ; and ii) �xi−Wi� ≤ �, i ∈ {1, . . . , N}. Assuming
U defined as in (2), a sufficient condition for this theorem to
hold is

�u0�max
i

�
1 +

γi
�u0�

�
≤ umax (18)
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Fig. 1. Waypoint transmission procedure. This figure also represents the pos-
sibility of some agents acting as repeaters, due to the limited communication
range.

Proof: The proof is omitted as it is a simple extension of
the proof of theorem 2 in [11].
We have thus proposed two different control strategies that
not only fulfill one of our initial requirements (both are able
to reach the target in the specified time if there are no
disturbances) but also, are able to position the agent within
a distance � of the target in the presence of disturbances.

IV. THE MULTI-AGENT CASE

With the tools developed from the analysis of the single
agent scenario we now turn to the original multi-agent prob-
lem. We use a similar procedure to what is shown in [11]. By
developing a leader-follower approach, where one agent (the
leader) is assigned the task of computing its next waypoint Wi

(exactly as in the single agent problem), but also to transmit
it to the follower, together with the travel time ∆ti, we are
able to gain some insight into the original problem.

Keeping the leader-follower structure, at time ti the leader
computes ∆ti and Wi+1, and transmits them to the rest of the
network (illustrated in figure 1). Motivated by the formation
property of the network, agent j’s ith waypoint is defined as:

W j
i+1 = WL

i+1 + cL,j , (19)

where L denotes the leader, j denotes any other agent in the
set A, and cL,j the desired relative position between the two
agents. At time ti, agent j defines its control signal as:

uj
i =

�
Wi+1 − xj

i

�
∆t−1

i . (20)

Having the leader use either one of the control strategies
proposed in theorems 1 and 2, then the following prop-
erties hold, for all j ∈ {1, . . . ,M}: i)W j

N = xj
T ; and



ii)�xj
i − W j

i � ≤ �, ∀i ∈ {1, . . . ,M}. This comes from the
fact that, due to equation (19), the multi-agent network is, to
some extent, equivalent to M−1 leader-follower networks, so
the proofs developed for the two-agent network [11] can be
applied, assuming conditions on the inter-agent distance hold.
These are sufficient conditions imposed on � in order do ensure
that communication is preserved (the range condition)

� ≤ min
i∈A

�
1

2

�
r − max

j∈N (i)
(di,j)

��
(21)

and that the agents do not collide with each other (collision
avoidance condition)

� <
1

2
di∗,j∗ (22)

where di,j = �ci,j�, and i∗, j∗ = argmin (di,j)i �=j . These
conditions were obtained using a conservative approach (hence
the use of the word sufficient) and can thus lead to overly
restrictive conditions on �.

V. DISTURBANCE SET ESTIMATION

When developing our control strategy, we assumed that
at every instant ti an upper bound on the disturbance, γi,
would be available. We then proceeded by using this bound to
determine the time it would take for the position uncertainty
to reach the threshold value, �. It so happens that in many
applications, the disturbance set is unknown and/or time-
varying, so fulfilling our initial requirement may not be as
simple.

In the multi-agent scenario, at every stopping instant each
agent j will be at a position xj

i , very likely to be different from
its target position, W j

i . The difference between the two - the
position drift δji - can be measured (as W j

i was computed at
ti−1 and xj

i directly measured at ti) and used to determine the
average disturbance speed for that agent during the interval
[ti−1, ti]:

ωj
i = δji (ti − ti−1)

−1 . (23)

By taking advantage of the fact that we have a formation of M
agents, at every surfacing instant ti we will have M different
measurements of the average disturbance speed that we can
use to characterize the disturbance set Ω. One possible way
to do this is by feeding the kth available measurement to the
following recursive estimators for the mean, µ,

µk = (1− k−1)µk−1 + k−1ωk (24)

and variance, Σ,

Σk = (1− k−1)
�
Σk−1 + k−1 (ωk − µk−1) (ωk − µk−1)

T
�
,

(25)

Note that in order to consider the measurements of all agents
for disturbance set estimation purposes, we must first assume
that the set has a negligible spatial variation with respect to
the formation - in other words, that the parameters describing
the disturbance set are the same for the whole formation at

every instant. These two parameters - the mean and vari-
ance - provide a way to determine the required bound on
the disturbance speed. It should be mentioned that the way
they are used to determine the bound will depend on the
probability distribution function that is chosen to approximate
the disturbance set. At the same time, by using estimates
of the mean and variance we can no longer guarantee our
positioning results, as underestimating these parameters, for
example, may lead to a value of γi that is not an upper bound
on the disturbance set.

A. A normally distributed disturbance set
A likely candidate to approximate the disturbance set is the

normal distribution, motivated by the fact that it can be used to
describe ocean currents [13], as well as other relevant physical
phenomena. However, before we make this consideration, we
first need to introduce some relevant concepts.

The probability density function for a bivariate (x ∈ R2)
normal distribution is given by

fx(x) =
1

2πdet(Σ)
1
2

e−
1
2 (x−µ)TΣ−1(x−µ) (26)

where µ denotes the mean and Σ the variance. In order to
state some relevant results about this distribution, we will also
need to introduce the following definition. An ellipsoid E with
center c ∈ Rn and shape matrix Q, with Q symmetric positive
definite is defined by

E(c,Q) =
�
x ∈ Rn : (x− c)TQ−1(x− c) ≤ 1

�
(27)

The directions of the ellipsoid’s axis are given by the eigen-
vectors of the matrix Q, with the lengths of the semi-axes
given by the square root of the corresponding eigenvalue.

By considering a normally distributed disturbance set we are
able to contemplate a greater number of external disturbances,
and at the same time provide our system with some degree of
increased robustness. This will, nevertheless, conflict with our
uncertainty model, as the normal distribution is unbounded
(Ω will now be equal to R2) and, consequently, there will no
longer be a value of γi for which equation (7) holds. Still,
we can use an extension of the empirical rule (also known
as three-sigma rule) to the bivariate distribution. This rule
allows us to determine the cumulative probability that the
random variable lie in the ellipsoid E(µ, k2Σ) for different
levels of k, as shown in Table I. These cumulative probability

k p
�
x ∈ E(µ, k2Σ)

�

1 0.3945
2 0.8647
3 0.9889
4 0.9997

TABLE I
CUMULATIVE PROBABILITY ASSOCIATED WITH DIFFERENT ELLIPSOIDS.

values will thus influence the likelihood that our results on
the agent’s position hold. Consider, for example, that we have
µ = [0, 0]T and Σ = I . This means that the probability of the



average disturbance speed being less than or equal to 1m/s is
of 0.3945, 0.8647 for 2m/s and so on. Assuming our mean
and variance estimates are close to the true values, by setting
γi = 2m/s we will have a probability of 0.8647 that equation
(13) holds.

We have thus proposed a way to modify our strategy to
handle unknown and/or time-varying disturbance sets, as well
as the case of and unbounded, normally distributed set. Still,
it should be stressed out that we were only able to do this by
compromising the determinism of our initial results.

VI. NUMERICAL EXAMPLES

In the following example we let our formation be such
that A =

�
a1, a2, a3, a4, a5

�
, r = 90, c1,2 = c2,4 =

[−50, 50]T , c1,3 = c3,5 = [−50, 50]T . Additionally, we
have that x1

T = [500, 0]T with tT = 100. The range and
collision avoidance conditions on � will lead us to � ≤ 9.65
and � ≤ 25

√
2 respectively, so we set � = 10. In this

example we let the disturbance set be normally distributed,
with Ω ∼

�
[−1, 1]T , 0.52I

�
, where I denotes the 2 by 2

identity matrix. One way to define the upper bound on the
disturbance speed is to let γ =

��[−1, 1]T
�� + 2σ ≈ 2.5.

The formation trajectory results for this scenario are shown in
figures 2 and 3, where the real and estimated trajectories are
shown in red and blue respectively. The blue circles centered at
the waypoints, with a radius of � units represent the maximum
position uncertainty. The true and estimated disturbance sets
are shown in figure 4.

Fig. 2. Formation trajectory having the leader use the h1 control strategy.

Alternatively, noticing that the mean disturbance is the same
for all agent and, as such, will not affect formation in terms of
collisions or range, we can set γ = 3σ = 1.5. The formation
trajectory results for this scenario are shown in figures 5 and
6, and the true and estimated disturbance sets in figure 7.

Looking at the trajectory plots for both choices of γ we are
able to see h1’s greater sensitivity (with respect to h2) to the
adverse component of the mean disturbance. This is evident
if we look at the increasing distance between waypoints in
figures 2 and 5, and also by noticing that all waypoints lie

Fig. 3. Formation trajectory having the leader use the h2 control strategy.

Fig. 4. Ellipsoids with shape matrices Σ, 22Σ and 32Σ are plotted in blue
and red for the true and estimated disturbance sets respectively. The black
dots represent the average disturbance speed measurements.

Fig. 5. Formation trajectory having the leader use the h1 control strategy.



Fig. 6. Formation trajectory having the leader use the h2 control strategy.

Fig. 7. Ellipsoids with shape matrices Σ, 22Σ and 32Σ are plotted in blue
and red for the true and estimated disturbance sets respectively. The black
dots represent the average disturbance speed measurements.

along the ideal trajectory for h2 (figures 3 and 6). Finally,
looking at figures 4 and 7 we can see the impact of the
reduction of the number of surfacing events in the disturbance
set estimates.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an event-based approach that relies on
an uncertainty model to trigger surfacing events, so that the
agents can measure their own position and, after receiving
instructions from the leader, update their control signal. We
also proposed a method to characterize the disturbance set
using these events. This is an important step, as it is essential
for the network to have an upper bound on the disturbances
in order to compute the waypoints.

Future research directions include the development of a
completely distributed approach, without the need for a leading
agent. More complex, non-linear dynamics should also be
contemplated. Finally, more explicit results on the implications
of a normally distributed disturbance set should be derived,

in order to achieve an increased degree of robustness to
uncertainty.
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