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Abstract. A rendezvous problem for a team of autonomous vehicles, which communicate over quantized
channels, is analyzed. The paper illustrates how communication topologies based on uniform and logarith-
mic quantizations influence the performance. Since a logarithmic quantizer in general imposes fewer bits
to be communicated compared to a uniform quantizer, the results indicate estimates of lower limits on the
amount of information that needs to be exchanged in order for the vehicles to meet. Simulation examples
illustrate the results.

1 Introduction

Interplay between coordination and communication is important in many multi-vehicle systems, e.g.,
car platoons on automated highways [8], formations of autonomous underwater vehicles [1], and
multi-robot search-and-rescue missions [7]. Constrained communication between vehicles suggest
the deployment of distributed (local) control strategies [5,6]. Not only the communication topology is
important, however, but also the amount of data being transmitted. Therefore, in this paper we study
multi-vehicle control under quantized communication. The stabilization of linear plants with quan-
tized control has recently been extensively studied, see [3] and references therein. The objective of
this paper is to illustrates how communication topologies based on uniform and logarithmic quanti-
zations influence the performance. In particular, we consider a prototype problem on the stabilization
of 2n first-order systems under various communication and control constraints, which can be inter-
preted as a rendezvous problem for n vehicles with quantized inter-vehicle communication. Our main
results show how the rendezvous problem can be solved under certain communication topologies of
uniform and logarithmic quantizations. Since a logarithmic quantizer in general imposes fewer bits to
be communicated compared to a uniform quantizer, the results indicate estimates of lower limits on
the amount of information that needs to be exchanged in order for the vehicles to meet.

The paper is organized as follows. In Section 2 we introduce a mathematical model for the vehicle
team and formalize the rendezvous problem. In Section 3 a control law is designed that solves the
rendezvous problem when there is no communication limitation. Based on this controller, we show
in Section 4 that the vehicle team is able to rendezvous when the data is transmitted through uni-
formly quantized channels and certain mixtures of uniformly and logarithmically quantized channels.
Simulations are presented in Section 5 to illustrate the behavior of the vehicles.



2 Problem formulation

Consider n ≥ 2 holonomic vehicles with dynamics described by the following linear system

x+
i = xi(t + 1) = xi(t) + ui(t)

y+
i = yi(t + 1) = yi(t) + vi(t) i = 1, . . . , n,

(1)

where (xi, yi)
T ∈ R

2 is the position of vehicle i with respect to a fixed coordinate system and
(ui, vi)

T ∈ R
2 is the control input. The dynamics for the x and y coordinates are independent, so

therefore we simply consider the system

x
+ = Ax + Bu, (2)

where x = (x1, . . . , xn), u = (u1, . . . , un), and A = B is the n × n identity matrix. For any pair of
vehicles (i, j), i < j, we define an output variable wi,j = xi − xj . Let w be a vector collecting all
these variables. They can be represented by a complete graph G = (V, E), with n = |V | vertices and
an edge e ∈ E connecting vertices i and j if and only if w contains wi,j . Note that

w = 0 ⇒ x1 = x2 = · · · = xn. (3)

Each sub-vector of w that also has this property corresponds to a tree graph.
The rendezvous problem is to find a (practically stabilizing) state feedback u = g(x) such that

w asymptotically converges to a pre-specified neighborhood of the origin. If there is no constraints
on g, the rendezvous problem is readily solved also in the decentralized case, for example, by the
application of deadbeat control. When g is quantized, the problem is non-trivial.

3 Perfect information: the centralized scenario

Consider a complete graph G and let w be the vector of outputs associated with it, as previously
described. Since a complete graph with n vertices has m = n(n − 1)/2 edges, we can introduce a
matrix W ∈ R

m×n such that w = Wx. The matrix W can be interpreted as the incidence matrix of
G. Let us consider an optimal control problem for (2), in which the control input is penalized in order
to avoid aggressive solutions such as the deadbeat control. The cost function that should be minimized
is

J(u) =
∞

∑

t=0

w
T (t)w(t) + u

T (t)Ru(t) =
∞

∑

t=0

x
T (t)W T Wx(t) + u

T (t)Ru(t), (4)

where R = RT is a positive definite matrix. Note that the matrix W T W is singular, so the Riccati
equation associated with the optimal control problem does not admit a unique solution. It is however
possible to regularize the problem in the following way. Consider any subgraph of G that is a tree and
denote with z the vector of outputs associated with it. Introduce C ∈ R

(n−1)×n such that z = Cx.
Then, there exits a matrix L such that

w =

(

I
L

)

z.



Note that z = 0 ⇒ w = 0. Minimizing (4) subject to the dynamics (2) is equivalent to minimizing

J(u) =

∞
∑

t=0

z
T (t)(I + LT L)z(t) + u

T (t)Ru(t) (5)

subject to the dynamics

z
+ = z + Cu. (6)

It is straightforward to show that the optimal control law is equal to

u = Kx,

where
K = −(R + CT SC)−1CT SC

and S is the positive definite solution of the algebraic Riccati equation

SC(R + CT SC)−1CT S = I + LT L. (7)

The following result presents a case when we can solve for K analytically.

Proposition 1. Let the control penalty matrix in (4) be given by R = rI , r > 0. Then, the state
feedback that minimizes (4) is given by

K = −β (nI − Z) β =
n +

√
n2 + 4r

2r + n2 + n
√

n2 + 4r
. (8)

where Z = 1n×n is the n × n unit matrix.

Proof. See Appendix.
�

The state feedback in Proposition 1 obviously solves the rendezvous problem for the case of perfect
communication, because it gives z(t + 1) = (1 − nβ)z(t) with 0 < 1 − nβ < 1.

Proposition 2. The state feedback (8) yields (6) asymptotically stable.

We would like to avoid that the meeting point in general is the origin, i.e., we would like that K should
not stabilize (2) despite that it stabilizes (6).

Proposition 3. The linear feedback u = Kx with K as defined in (8) is not asymptotically stabiliz-
ing (2).

Proof. The equilibrium points of the closed-loop system

x
+ = (I + KC)x

is given by Ker(C) = {x ∈ R
n|x1 = · · · = xn}. Hence, the closed-loop system is not asymptotically

stable.
�

The three propositions above show that the proposed state feedback has nice properties for the ren-
dezvous problem under no communication constraints. Next we show that it is possible to base quan-
tized control that solves the rendezvous problem on the same structure.



4 Quantized information: the distributed scenario

Consider the vehicle dynamics (2) with control u = g(x) again, but suppose now that g involves
quantization resulting from that the position information of each vehicle need to be quantized before
communicated to other vehicles. We consider a few different communication topologies for two fun-
damentally different quantizers, namely, uniform and logarithmic quantizations. Logarithmic quanti-
zation is more efficient than uniform quantization from a information theoretic perspective since fewer
bits need to be communicated for data not close to the origin. On the other hand, position data is less
accurate when far from the origin, so from a control perspective it may be harder to stabilize a sys-
tem. For all cases, we suppose that the communication delay is negligible compared to the vehicle
dynamics.

4.1 Uniform quantization

We assume first that all vehicles can exchange information through communication channels with
uniform quantization. A graphical representation for n = 3 vehicles is shown in Figure 1. The quan-
tization error for a uniform quantizer is bounded as

|qu(x) − x| ≤ ε,

where ε is the quantization level and x ∈ R the quantization input. The quantized feedback control is
given by the uniform quantization of the optimal feedback law derived in previous section. Thus the
control input ui for vehicle i is given by

ui = −β(n − 1)xi + β
n

∑

`=1,`6=i

qu(x`) i = 1, . . . , n. (9)

We next show that this control law solve the rendezvous problem. Note first that the difference zi,j ,
i < j, has the dynamics

z+
i,j = zi,j − β

(

(n − 1)xi − (n − 1)xj − qu(xj) + qu(xi))
)

i, j = 1, . . . , n. (10)

Theorem 1. The system (10) is practically stable.

Proof. Consider the Lyapunov function V (zi,j) = |zi,j |. Then we have

∆V (zi,j) = |zi,j − 3βzi,j | − |zi,j | + β|xi − qu(xi)| + β|xj − qu(xj)|
≤ −3β|zi,j | + 2βε i, j = 1, . . . , n and i < j.

Hence, ∆V (zi,j) < 0 if |zi,j | > 2ε/3, since 3β ≤ 1. Thus we have asymptotic convergence when zi,j

is not too small, i.e., practical stability. By considering V = V (z1,2) + V (z1,3) + V (z2,3), it follows
that the uniformly quantized system (10) is practically stable.

�

4.2 Logarithmic quantization

In order to reduce the number of bits communicated over each channel, we try to substitute uniform
quantizers with logarithmic quantizers. This would allow to express data far from the origin with fewer
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Fig. 1. Directed graph that represents uniformly quantized communication between n = 3 vehicles.

bits. The quantization error for the logarithmic quantizer depends on the amplitude of the input signal
as

|q`(x) − x| ≤ δ|x|,

where δ is a positive parameter.
In the literature (e.g., [2]), logarithmic quantizers have been considered for the stabilization of

linear systems. The main point of using a logarithmic quantizer is that if the state is far from the origin
we do not need a very precise value of the state (i.e., δ|x| large) while the state will be high accuracy
when it is close to the origin. In the rendezvous problem we are interested in the convergence of the n
vehicles to a neighborhood of any point such that x1 = x2 = · · · = xn. Therefore, we will logarith-
mically quantize differences between positions of vehicle pairs, since we want these differences to be
small. We limit the following discussion to n = 3 vehicles.

By replacing some of the uniform quantizers in Figure 1 by logarithmic quantizers, we investigate
control structures that require less communication. Figure 2 shows three considered cases, where the
edges represent uniform quantization of the state xi. The remaining channels are based on logarithmic
quantizers. As an illustration, Figure 3 shows the communication topology for Case 1 of Figure 2. Fig-
ure 3 indicates also the data that each vehicles receive after a transmission. For each case of Figure 2,
the rendezvous problem is solved by the following corresponding control law:

Case 1:

u1 = −2βq`(qu(x1) − x3) + βq`(qu(x2) − x3)

u2 = βq`(qu(x1) − x3) − 2βq`(qu(x2) − x3) (11)

u3 = −β
(

x3 − qu(x1) + x3 − qu(x2)
)

Case 2:

u1 = −βq`(qu(x1) − x2) − βq`(qu(x1) − x3)

u2 = −2β
(

x2 − qu(x1)
)

− βq`(qu(x1) − x3) (12)

u3 = 2β
(

qu(x1) − x3

)

− βq`(qu(x1) − x2)
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Fig. 2. All trees represented by the incidence matrix CT for n = 3.

Case 3:

u1 = −2βq`(qu(x1) − x2) − βq`(qu(x2) − x3)

u2 = −β
(

x2 − qu(x1)
)

− βq`(qu(x2) − x3) (13)

u3 = −2β
(

x3 − qu(x2)
)

+ βq`(qu(x1) − x2)

This is summarized in the following result.

Theorem 2. Let CT be the incidence matrix corresponding to Cases 1–3 with z = Cx. Then the
closed-loop system z

+ = z+u, with the control u = (u1, u2, u3)
T as given in (11)–(13), is practically

stable.

Proof. See Appendix.
�

5 Simulations

Figures 4(a)-4(c) and Figures 6(a)-6(c) show the trajectories of rendezvous coordination of three ve-
hicles starting from two different initial conditions. Dashed lines correspond to vehicles communicat-
ing perfectly. Solid lines show the trajectories when the information exchanged among the vehicles is
quantized with logarithmic quantizers (the uniform quantization error is negligible in the simulations).
The three plots (a)–(c) refer to the three different topologies for shown in Figure 2. Figures 5(a)–5(b)
and Figures 7(a)–7(b) show how the performance decreases when quantization is influencing the com-
munication. Here solid line shows the output variable z for the vehicles when the communication is
perfect. Such cases represent an lower bound on the speed of convergence. Dashed, dash-dotted and
dotted line show the output variable ‡ for the three cases of logarithmic quantized channels. Note that
Case 1 has slower convergence than the others. This is probably due to that in this case two vehicles
base their control action only on logarithmic quantized information. To compare Case 2 and Case 3, a
more precise analysis is needed to understand if one configuration is preferable.
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Appendix

Proof Proposition 1

Let L be the matrix such that W = (I, LT )T C as we defined in Section 3. The matrix W T is the
incidence matrix of the complete oriented graph G. Since the graph is complete, there is an edge
between any vertex i and j with i 6= j and the degree1 of each vertex is n − 1 where n is number of
vertices. The matrix W T W is the Laplacian matrix of the complete graph G, as defined for example
in [4]. The Laplacian matrix W T W , since the graph is complete, is such that

(W T W )ij =

{

n − 1 = deg(vi) if i = j

−1 otherwise.

Thus we can write the Laplacian as W T W = nI − Z, with Z = 1n×n. We have then

nCT (I + LT L)C = nW T W = n2I − nZ,

1 The degree of a vertex of an oriented graph is the total number of edges arriving and departing from that vertex



We now prove that the S = αn(I + LT L), with α > 0 is a solution of the Riccati equation (7). If we
substitute we get that

αn(I + LT L)C(R + αCT n(I + LT L)C)−1CT αn(I + LT L) = I + LT L.

Multiplying on the right and the left the previous expression with CT and C respectively and since
nCT (I + LT L)C = n2I − nZ, we get

α(n2I − nZ)
(

rI + α(n2I − nZ)
)−1

α(n2I − nZ) = n2I − nZ.

The matrix n2I −nZ is a circulant matrix. Any circulant matrix can be diagonalized by the following
matrix

F =
1√
n











1 1 . . . 1

1 ω1 . . . ω(n−1)

...
...

. . .
...

1 ω(n−1) . . . ω(n−1)(n−1)











where ω = exp(2πj/n). Then, n2I − nZ = FH∆F where FH is the Hermitian of F and ∆ =
diag (Fc), where c = (n2−n,−n, . . . ,−n)T . Since also rI +α(n2I−nZ) is circulant, we can write
rI + α(n2I − nZ) = FHΓF with

Γ = diag
(

F (r + α(n2 − n),−αn, . . . ,−αn)T
)

The Riccati equation then becomes

αn2I − nZ(rI + αn2I − nZ)−1αn2I − nZ − n2I − nZ = α2FH∆FFHΓ−1FFH∆F − FH∆F.

Since F is a unitary matrix, we can simplify this to

α2∆Γ−1∆ − ∆ = 0.

We have n equations:

α2
(

n2 − n − n
∑n−1

i=1 ωki
)2

r + α(n2 − n) − αn
∑n−1

i=1 ωki
= n2 − n +

n−1
∑

i=1

−nωki, k = 0, 1, . . . , n − 1

The first equation is satisfied for any α while the last n − 1 are satisfied for

α2n2 − αn2 − r = 0 α =
1

2
± 1

2n

√

n2 + 4r

With α = 1
2 + 1

2n

√
n2 + 4r > 0, S = αCT C is a solution of the Riccati equation. The resulting K is

then computed as

K = α2FHΓ−1∆F

which is the following circulant matrix

K = β











n − 1 −1 . . . −1
−1 n − 1 . . . −1

...
...

. . .
...

−1 −1 . . . n − 1











with β = (n +
√

n2 + 4r)/(2r + n2 + n
√

n2 + 4r).
�



Proof of Theorem 2

Consider the Lyapunov function V (zi,j) = |zi,j |. Let V(z) = V (z1,2) + V (z1,3) + V (z2,3). In order
to prove practical stability we will consider ∆V(z) = V(z+) − V(z). We have the following cases.

Case 1: The differences zi,j for i < j are such that

z+
1,2 = z1,2 + 3βq`(x3 − qu(x1)) − 3βq`(x3 − qu(x1))

z+
1,3 = z1,3 + 2βq`(x3 − qu(x1)) − βq`(xe − qu(x2)) + 2βx3 − βqu(x1) − βqu(x2)

z+
2,3 = z2,3 − βq`(x3 − qu(x1)) + 2βq`(x3 − qu(x2)) + 2βx3 − βqu(x1) − βqu(x2).

After some calculations we obtain

∆V(z) ≤ −3β(|z1,2| + |z1,3| + |z2,3|) + 12βδε + 6βε + 6βδ|z1,3| + 3βδ
(

|z1,2| + |z2,3|
)

.

Case 2: The differences zi,j for i < j are such that

z+
1,2 = z1,2 − 2βq`(qu(x1) − x2) − βq`(qu(x1) − x3) + 2βq`(x2 − qu(x1)) + βq`(qu(x1) − x3)

z+
1,3 = z1,3 − βq`(qu(x1) − x2) − βq`(qu(x1) − x3) + 2β(x3 − 2qu(x1) + βq`(qu(x1) − x2)

z+
2,3 = z2,3 − 2β

(

x2 − qu(x1)
)

− βq`(qu(x1) − x3) + 2β
(

x3 − qu(x1)
)

+ βq`(qu(x1) + x2).

After some calculations we obtain

∆V(z) ≤ −3β(|z1,2| + |z1,3| + |z2,3|) + 4βδε + 6βε + 2βδ(|z1,2| + |z1,3|).

Case 3: The differences zi,j for i < j are such that

z+
1,2 = z1,2 − 2βq`(qu(x1) − x2) + β(x2 − qu(x1))

z+
1,3 = z1,3 − 3βq`(qu(x1 − x2)) − βq`(qu(x2) − x3) + 2β

(

x3 − qu(x2)
)

z+
2,3 = z2,3 − β

(

x2 − qu(x1)
)

− βql(qu(x2) − x3) + 2β
(

x3 − qu()x2

)

− βq`(qu(x1) − x2).

After some calculations we obtain

∆V(z) ≤ −3β(|z1,2| + |z1,3| + |z2,3|) + 8βδε + 9βε + 6βδ|z1,2| + 2βδ|z2,3|.

Hence, the system , in all three cases, is practically stable. By choosing the quantization parameters
ε > 0 and δ > 0 sufficiently small, we can thus force y to converge to any neighborhood of the
origin.

�
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(c) Communication topology as in Case 3.

Fig. 4. Trajectories for three vehicles for the three different topologies of figure 2. In the simulations we assumed the uniform
quantization error equal to zero.
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Fig. 5. Performance comparison of the difference communication topologies.
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Fig. 6. Trajectories for three vehicles for the three different topologies of figure 2. In the simulations we assumed the uniform
quantization error equal to zero.
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Fig. 7. Performance comparison of the difference communication topologies.


